首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
利用方式和土壤肥力对土壤团聚体和养分的影响   总被引:6,自引:0,他引:6  
The size distribution of water-stable aggregates and the variability of organic C, N and P contents over aggregate size fractions were studied for orchard, upland, paddy, and grassland soils with high, medium, and low fertility levels. The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%, respectively, less than those in the un-tilled orchard soil. Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses. However, the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses. Soil organic C, N and P contents were higher in larger aggregates than those in smaller ones. The amount of water-stable aggregates was positively correlated to their contribution to soil organic C, N and P. For orchard and grassland soils, the > 5 mm aggregates made the greatest contribution to soil nutrients, while for upland soil, the 0.25-0.053 mm aggregates contributed the most to soil nutrients. Therefore, the land use with minimum disturbance was beneficial for the formation of a better soil structure. The dominant soil aggregates in different land use types determined the distribution of soil nutrients. Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.  相似文献   

2.
A field experiment with cotton was conducted on a well drained,calcareous,clay loamy Typic Xerochreph to investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of tis application on the basic soil properties and heavy metal concentrations.The experimental design was completely randomized blocks with five treatments replicated four times each.Sewage sludge came from the treatment plant of the municipality of Volos,Central Greece,with the following characteristics:organic matter content 36.6%,pH(H2O1:5)6.89,CaCO3 53.4g kg^-1,total N 265.g kg^-1,ttal P33.5g kg^-1,and total K 968mg kg^-1 soil.Heavy metal concentrations were Cd 5.24,Pb 442,Ni38,Cu 224,Zn1812,and Mn 260mgkg^-1 dry weight,respectively.The soil was high in potassium(K)and poor in available phosphorus(P).The results showed that sewage sludge application increased cotton yield and K and P concentrations in cotton leaves,Soil pH was reduced in the case of higher sewage sludge rate.Electrical conductivity,organic matter content,totalN,and avaiable P were significantly increased.Total concentrations of Zn,Pb,and Cu were slightly increased.DTPA-extractable Zn,Cu,and Mn were also significantly increased.Available forms of all heavy metals,except Cd,were significantly correlated with organic matter content in a positive way and negatively with soil pH.  相似文献   

3.
中国亚热带稻田土壤碳氮含量及矿化动态   总被引:9,自引:0,他引:9  
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China. Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratory incubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cm soil contained 19.6 g kg^-1 organic C and 1.62 g kg^-1 total N, with the corresponding values of 18.1 g kg^-1 and 1.50 g kg^-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation the mineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%, respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organic C and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and then increased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass N increased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm) contained 332.8 mg kg^-1 of microbial biomass C and 23.85 mg kg^-1 of microbial biomass N, which were 111% and 47% higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation in subtropical China would have attained a steady state of organic C content, being about 19 g kg^-1.  相似文献   

4.
26年连作影响下土壤酶活性和有机质组成   总被引:1,自引:0,他引:1  
The study was to determine the long-term effects of subtropical monoculture and rotational cropping systems and fertilization on soil enzyme activities and soil C, N, and P levels. Cropping systems included continuous sorghum(Sorghum bicolor L.), cotton(Gossypium hirsutum L.), corn(Zea mays L.), and cotton/sorghum rotations after 26 years of treatment imposition. Soil under continuous sorghum and continuous corn had 15% and 11%, respectively, greater C concentrations than soil under continuous cotton.Organic C was 10% higher at 0–7.5 cm than at 7.5–15 cm. Total N followed similar trends with soil depth as organic C. Continuous sorghum had 19% higher total N than other crop species and rotations. With fertilization, continuous cotton had the highest total P at 0–7.5 cm and sorghum had the highest at 7.5–15 cm. Soil total P was 14% higher at 0–7.5 than at 7.5–15 cm, and fertilization increased 15% total P compared to unfertilized soil. Arylsulfatase, alkaline phosphatase, and β-d-glucosidase activity were the highest for sorghum and the lowest for cotton. Rotation increased enzyme activities compared to continuous cotton but not for continuous sorghum. Of all crop species and rotations, continuous cotton generally showed the lowest levels of organic matter and enzyme activities after 26 years. Fertilization significantly increased the yields for all cropping systems, but rotation had no significant effect on either sorghum or cotton lint yield compared to each crop grown in monoculture. Long-term cropping did not increase soil organic matter levels beyond short-term gains, indicating the difficulty in promoting C sequestration in subtropical soils.  相似文献   

5.
Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251, 250, 171, and 2.4 mg kg-1 respectively. DTPA-extractablc metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, total Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C minera]ization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some "linked" microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.  相似文献   

6.
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC) and N (SMBN) in 16 loessial soils sampled from Ansai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg C g-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.  相似文献   

7.
长期稻草还田对土壤球囊霉素和土壤C、N的影响   总被引:7,自引:0,他引:7  
A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil.  相似文献   

8.
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.  相似文献   

9.
A glasshouse pot experiment was conducted to study changes in the solubility of copper and zinc in the soil-plant system following heavy application of sewage sludge and partial sterilisation of the sludge/soil mixture. A slightly acid sandy loam was mixed with alkaline stabilised and composted urban sewage sludge solids (Agri-Soil, 180 t hm-2), and the soil/sludge mixture was-irradiated (10 kGy). The contrasts without the application of sewage sludge and-irradiation were also included in the experiment. Perennial ryegrass (Lolium perenne cv. Magella) was grown on irradiated and unirradiated soils for 50 days. Soil solution samples were obtained using soil suction samplers immediately before plant transplantation and every ten days thereafter. The soil solution samples were used directly for determination of Cu and Zn, toget her with pH, electrical conductivity (EC) and absorbance at wavelength 360 nm (A360). Applicat ion of Agri-Soil led to a substantial increase in dissolved Cu and a significant decrease in dissolved Zn in the soil solution and these effects were accompanied by increased soil solution pH, EC and A360. The alkaline sludge product (Agri-Soil) in combination with-irradiation also led to a pronounced elevation of Cu and A360 but a marked decline in EC, indicating an increase in dissolved organic compounds and a decrease in the ionic strength of the soil solution. The dissolved Cu and Zn, EC and A360 usually decreased while the pH increased after plant grow th for 50 days.  相似文献   

10.
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolate, (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P < 0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P < 0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.  相似文献   

11.
The effect of three annually consecutive additions of pig slurry at two rates (90 and 150 m3 x ha(-1) x year(-1) on soils and soil humic acids (HAs) was investigated in a field experiment under semiarid conditions. Soils and pig slurries were analyzed by standard methods. The HAs were isolated from soils and pig slurry by a conventional procedure based on alkaline extraction, acidic precipitation to pH 1, purification by repeated alkaline dissolutions and acidic precipitations, water washing, dialysis, and final freeze-drying. The HAs obtained were analyzed for elemental (C, H, N, S, and O) and acidic functional group (carboxylic and phenolic) composition, and by UV-vis, FT-IR, fluorescence, and ESR spectroscopies. With respect to the control soil, the pig slurry amended soils had greater pH and electrical conductivity, slightly larger total N content, and smaller values of C/N ratio. A decrease of total organic C was observed only in soils amended for 2 and 3 years at the higher slurry rate. With respect to control soil HA, pig slurry HA was characterized by larger contents of S- and N-containing groups, smaller acidic functional group and organic free radical contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. Amendment with pig slurry HA determines a number of modifications in soil HAs, including increase of C, S, and COOH contents, C/N ratios, and aliphaticity and decrease of extraction yields and N, O, phenolic OH, and organic free radical contents. These effects are generally more evident after the first year of slurry application and tend to disappear with increasing number of treatments. Most probably, over the years the slightly humified slurry HA is mineralized through extended microbial oxidation, whereas only the most recalcitrant components, such as S-containing, phenolic, and aliphatic structures, are partially accumulated by incorporation into soil HA.  相似文献   

12.
The residual effects of adding 40 t ha–1 sewage sludge (SL) to a degraded soil cropped with barley were investigated after 9 and 36 months in a field experiment under semiarid conditions. The principal soil properties were apparently still affected by SL amendment 9 months after application but the effects disappeared after 36 months. With respect to control soil humic acids (HAs), the SL-HA was characterized by higher contents of S- and N-containing groups, smaller contents of acidic groups, a prevalent aliphaticity, extended molecular heterogeneity, and smaller degrees of aromatic polycondensation and humification. Amendment with SL caused an increase in N, H, S and aliphaticity contents and a decrease in C/N ratios and O and acidic functional group contents in soil HAs isolated 9 months after SL application. These effects tended to decrease after 36 months, most probably because the slightly humified SL-HA was mineralised over time through extended microbial oxidation, while only the most recalcitrant components such as S-containing and aromatic structures were partially accumulated by incorporation into soil HA. Microbial biomass, basal respiration, metabolic quotient and enzymatic activities increased in soil 9 months after SL application, possibly because of increased soil microbial metabolism and enhanced mineralisation processes. After 36 months these properties returned to values similar to those of the unamended soil, presumably due to the loss of energy sources.  相似文献   

13.
The effects of the addition of either crude or exhausted olive pomace at two rates (10 and 20 t ha(-)(1)) on soil and soil humic acid (HA) properties and durum wheat (Triticum turgidum L.) yield were investigated in open-field Mediterranean conditions. Soil amendment with olive pomaces produced a significant increase of total organic, total extractable, humified and nonhumified C forms, and available K contents. With respect to control soil HA, humic-like acids isolated from crude and exhausted olive pomaces were characterized by larger phenolic OH group contents, smaller carboxyl group contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. In general, application of olive pomaces to soil produced a number of modifications in soil HAs, including the increase of O and acidic functional group contents, C/N ratio, and aliphaticity and the decrease of C/H ratio and N and C contents. Wheat grain yield increased significantly as an effect of olive pomace amendment. In particular, the increases were related to kernel weight, kernel number per square meter, and soil organic matter content. Possibly, the enhanced amount of soil organic matter in olive-pomace-amended soils relieved wheat of drought stress from anthesis to maturity by promoting a good soil structure, thereby reducing water loss by evaporation.  相似文献   

14.
The humic acids (HAs) isolated by conventional procedure from rhizosphere (r) and bulk (c) soils were analyzed by means of chemical and physico-chemical techniques. Two different crops were selected, tomato (T) and artichoke (A), and each HA was fractionated by size-exclusion chromatography (SEC) into three fractions with increasing molecular size, respectively, Fraction I (FrI) < Fraction II (FrII) < Fraction III (FrIII). Elemental analysis data indicated greater N and S contents in the rhizosphere T-HAs, with respect to rhizosphere A-HA, which suggests the occurrence in the former ones of a large amount of organic nitrogen- and sulfur-containing compounds that are released by the rhizodeposition processes. Further, the three HA fractions from the bulk soils of the two series showed a gradual increase of C, H, and N contents, and a decrease of O and S contents and C/N and C/H ratios. These results suggested that the lowest molecular size fractions are richer in oxygenated functional groups, whereas the higher molecular size fractions are richer in N-containing groups and structural C- and H-containing units. The three HA fractions from the rhizosphere soils of the two series showed a gradual decrease in C content, and an increase of H, N, and O contents, which suggests the possible incorporation into soil HAs of a multitude of C-containing compounds of low molecular size released by plant roots. The FT-IR data, in general, suggested that the contents of carboxylic, phenolic and N-containing groups and polysaccharide-like components in HAs from rhizosphere soils are larger than those of HAs from the corresponding bulk soils. Further, the FrI fraction consisted mainly of simple structural units, likely quinonic and phenolic units with a prevalent aromatic character, whereas the FrII and, especially, FrIII fractions featured a mixed aliphatic/aromatic nature and a greater molecular complexity. The extent of these differences appeared to depend on the plant species and age, and is mainly due to the partial incorporation into rhizosphere HAs of typical root exudate components, such as amino acids, amides, aliphatic and aromatic acids of low molecular size, polysaccharides and sugars, fatty acids and sterols, and enzymes.  相似文献   

15.
Abstract

Humic substances were extracted from raw sewage sludge samples as well as an alluvial slightly alkaline soil [Typic Xerofluvent (So)], a clay loam soil [Calcixerollic Xerochrept (M)] and the corresponding field plots amended with different rates of sewage sludge and cultivated with corn and cotton respectively, in a two‐year field experiment. These substances have been characterized by chemical and spectroscopic methods. The chemical analyses showed that humic acids (HAs) and fulvic acids (FAs), were effected by the cultivated plant. Humic substances extracted from field plots with cotton showed higher carbon, but less nitrogen (N), total acidity and carboxylic groups content, as compared with those under corn. Generally HAs and FAs extracted from the fields plots amended with sewage sludge had higher N content, lower values of total acidity, carboxylic groups and carbon contents than those from the unamended soils. The FT‐IR spectra of humic (HAs) and fulvic (FAs) acids extracted from sewage sludge indicated the presence of high percentage of aliphatic carbon, polysaccharides and proteinaceous materials. The spectra of the humic matter in the field plots showed less aliphatic but increased amide stretch in comparison with the sludge. The absorption due to C=O in carboxylic groups of the FAs was not pronounced, though the presence of polysaccharides and protein decomposition products was clearly indicated.  相似文献   

16.
The use of organic amendments requires an adequate control of the chemical quality of their humic acid (HA)-like fractions and of the effects that these materials may have on the status, quality, chemistry and functions of native soil HAs. In this work, the compositional, functional and structural properties of the HA-like fractions isolated from a liquid swine manure (LSM), a municipal sewage sludge (SS), and two municipal solid waste composts (MSWCs) were evaluated in comparison to those of HAs isolated from three unamended soils and from the corresponding soils amended with LSW, SS, and MSWC at various rates in three field plot experiments conducted in Minnesota, USA. With respect to the unamended soil HAs, the HA-like fractions of the three amendments featured a greater aliphatic character, a marked presence of proteinaceous, S-containing and polysaccharides-like structures, an extended molecular heterogeneity, small organic free radical contents and a small degree of humification. The MSWC-HAs featured a larger degree of humification than LSM-HA and SS-HA. The three amendments affected in different ways and by various extents the compositional, structural and functional properties of soil HAs depending upon the nature, origin and application rate of the amendment. In general, the data obtained suggested that proteinaceous, S-containing and aliphatic structures contained in HA-like fractions of organic amendments were partially incorporated into native soil HAs.  相似文献   

17.
添加不同辅料对污泥堆肥腐熟度及气体排放的影响   总被引:2,自引:1,他引:2  
选择玉米秸秆和木本泥炭两种辅料添加至脱水污泥中进行联合好氧堆肥,研究了秸秆和木本泥炭作为添加剂对污泥堆肥腐熟度和堆肥过程中气体排放(NH_3、CH_4和N_2O)的影响。两种辅料添加量均为初始物料的15%,堆肥在60 L的密闭反应器中共持续35 d。研究结果表明,秸秆作为添加剂与污泥联合堆肥,堆肥产品可以达到卫生标准和腐熟标准。添加秸秆处理整个堆肥过程中累积NH_3、CH_4和N_2O排放量分别为2.2、0.14和0.09 g/kg,NH_3和CH_4排放主要发生在堆肥的升温期和高温期,N_2O排放主要发生在堆肥的后腐熟阶段。添加木本泥炭作为添加剂不能成功启动堆肥,整个堆置过程中未检测到NH_3和CH_4排放,但是在堆肥前期有大量N_2O产生。对于添加秸秆的处理,CH_4、N_2O和NH_3对总温室气体排放的贡献率分别为45%,36%和19%,CH_4所占比重最高。  相似文献   

18.
Abstract

An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E4/E6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules.  相似文献   

19.
Appropriate management of sewage sludge is an important worldwide issue due to the still growing amount of wastewaters. In the study we examined to what extent the addition of dairy sewage sludge compared with mineral fertilization affects porosity, repellency index, and hydraulic conductivity of variously sized aggregates from two soil depths of Eutric Cambisol derived from loess: 5–15 cm and 25–35 cm. The repellency index was calculated as a ratio of ethanol and water sorptivity. Data on water and ethanol sorptivities of initially air‐dry soil aggregate fractions were obtained from steady state flow measurements using an infiltration device. Hydraulic conductivity was determined by measuring water infiltration at five pressure heads: –8, –6, –4, –2, and 0 cm of water column with the same device as for sorptivity determination. Addition of sewage sludge to the soil decreased the soil repellency index by an average of 27% in topsoil and 32% in subsoil for both aggregate sizes, respectively, and increased hydraulic conductivity about four times in both layers. Smaller aggregates (15–20 mm diameter) from soil amended with sewage sludge, in comparison with larger ones (30–35 mm diameter), had a higher repellency index by 36 and 24% in topsoil and subsoil, respectively. As for aggregates from soil with mineral fertilization, those differences were smaller and equal to 15% in subsoil, in topsoil smaller aggregates even had slightly lower repellency index (by 5%). Aggregates taken from the upper soil layer were more water repellent and had smaller hydraulic conductivity than those taken from subsoil, regardless of soil treatment and aggregate size.  相似文献   

20.
The use of sewage sludge biochar (SSB) for agro-environmental purposes has been increasing. However, due to the strong influence of pyrolysis temperatures on its production, there is great variation in its final properties. In this regard, efforts to generate relationships among many correlated SSB properties may help to understand this influence. This study sought to evaluate the effect of pyrolysis temperature on agro-environmental physicochemical properties of SSB. Biochars from sewage sludge (SS) were produced at 300, 400 and 500°C and their physicochemical properties were evaluated in comparison to SS samples. The increase in pyrolysis temperature decreased C, N, and H contents and the H/C atomic ratio, while increasing the C/N ratio. The pyrolysis process increased pH values, the surface area and pore volume and enriched the SSB with macro and micronutrients. Considering all variables together, the biochar produced at 300°C was that which showed the greatest nutrients availability, such as N total, S, NO3?, NH4+, Ca2+ and Mg2+. Conversely, SSB produced at 500°C showed higher recalcitrant organic matter and alkalinity, important properties for C sequestration and the correction of acidic soils. The combined application of SSB produced at lower and higher pyrolysis temperatures should be furthered studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号