首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Effects of daily feeding frequency, water temperature, and stocking density on the growth of tiger puffer, Takifugu rubripes, fry were examined to develop effective techniques to produce tiger puffer in a closed recirculation system. Fish of 4, 14, and 180 g in initial body weight were fed commercial pellet diets once to five times a day to apparent satiation each by hand for 8 or 12 wk at 20 C. Daily feeding frequency did not affect the growth of 14‐ and 180‐g‐size fish. However, the daily feed consumption and weight gain of the 4‐g‐size fish fed three and five times daily were significantly higher than those of fish fed once daily (P < 0.05). Fish of 4 and 50 g in initial body weight were reared with the pellet diet at 15–30 C for 8 wk. The weight gain of fish increased with increasing water temperature up to 25 C and decreased drastically at 30 C for both sizes. Similar trends were observed for feed efficiency, although 4‐g fish had highest efficiency at 20 C. Effects of stocking density on growth were examined with fish of 8, 13, and 100 g in initial body weight. Fish were reared with the pellet diet for 8 or 16 wk at 20 C. Fish were placed in floating net cages in the culture tank, and the stocking density was determined based on the total weight of fish and volume of the net cage. Fish of 8 g in body weight grew up to 35–36 g during the 8‐wk rearing period independent of the stocking density of 8, 15, and 31 kg/m3 at the end of rearing. Final biomass per cage reached 32, 60, and 115 kg/m3 for 13‐g‐size fish, and 10, 18, and 35 kg/m3 for 100‐g‐size fish, and the growth of the fish tended to decrease with increasing stocking density for both sizes.  相似文献   

2.
Cobia Rachycentron canadum juveniles (119.7 mm TL, weight 8.5 g) were reared for 10 wk at three salinity levels: 5 ppt, 15 ppt. and 30 ppt. Growth and survival were determined through biweekly sampling. Blood samples obtained at termination of the study were analyzed to determine hematocrit, blood osmolality, and total protein. Results indicated that the overall growth of fish was significantly affected by salinity. Mean (± SE) total length (TL) and weight of fish reared at a salinity of 30 ppt were 201.7 ± 2.6 mm and 47.6 ± 1.9 g, respectively, followed by fish reared at 15 ppt (182.2 ± 1.7 mm, 34.1 ± 1.6 g). and 5 ppt (168.3 ± 5.8 mm TL, 28.3 ± 2.3 g). Differences in specific growth rates among treatments for the 10-wk period were also significant. No differences were detected in mean survival among fish reared at salinities of 5, 15, and 30 ppt (84, 94, and 94%, respectively). However, fish reared at salinity 5 ppt appeared to be in poor health as skin lesions, fin erosion, and discoloration were evident. Analysis of blood revealed that, while no differences existed among treatments with respect to plasma total protein, fish reared at a salinity of 5 ppt exhibited significantly reduced hematocrit (25% vs. > 30%) and plasma osmolality values (318 vs. > 353 mmolkg) relative to fish reared at higher salinities. Cobia can tolerate exposure to low salinity environments for short periods of time without mortality; however, moderate to high salinities are required for sustained growth and health of this species.  相似文献   

3.

We evaluated whether bearing tetrodotoxin (TTX) affects salinity stress in the juvenile tiger puffer Takifugu rubripes. Juveniles of hatchery-reared non-toxic T. rubripes [body weight (BW): 1.7?±?0.2 g, n?=?120] were divided into six tanks and acclimatized to salinity (8.5 ppt) that is equivalent to blood osmolality. Fish in three tanks were fed non-toxic diet, and those in the other three tanks were fed a TTX-containing diet (356 ng/g diet) three times a day until satiation. In each diet treatment, salinity of one tank was kept at 8.5 ppt, and the other two tanks were adjusted to either 1.7 or 34.0 ppt, and fish were reared for another 33 days. Then, we compared survival, growth, TTX accumulation, plasma osmolality, plasma cortisol, and glucose levels among treatments. We detected TTX only in the fish in the TTX-diet groups. Survival was highest at 8.5 ppt (70%) and lowest at 1.7 ppt in the TTX-diet group (20%). The BW was greater at 8.5 ppt, and plasma osmolality was significantly higher at 34.0 ppt than at any other salinities. Plasma cortisol level was significantly higher but glucose level was lower at 1.7 ppt. Possessing TTX at a low salinity may be lethal to tiger puffer juveniles.

  相似文献   

4.
ABSTRACT:   Two feeding experiments were conducted to elucidate growth performance of tiger puffer in a 10 m3 water volume closed system. In experiment 1, 1000 fish of 3.5 g average body weight were fed tiger puffer commercial feed twice daily to apparent satiation, 6 days a week for 224 days. Sand-filtered sea water was used and no water was exchanged during the rearing period. Immediately after cutting of lower teeth at day 112, daily feed consumption decreased greatly and 60 fish died in few days. Feeding rates recovered and then decreased gradually as nitrate levels increased from 600–1048 mg N/L. Fish grew to 343 g with 91% survival rate and 87% feed efficiency. Rearing conditions of experiment 2 were similar to experiment 1, except that culture water was exchanged to maintain the nitrate level less than 600 mg N/L during the 224-day experiment. Mortality and reduction of feed consumption occurred immediately after teeth cutting as was observed in experiment 1. Significant reduction of feed intake was not found during other rearing periods. Fish of 3 g grew to 303 g with 91% survival rate and 72% feed efficiency.  相似文献   

5.
The effects of salinity on the growth and energy budget of juvenile cobia, Rachycentron canadum, were evaluated. Triplicate tanks with ten fish per tank (initial weight 17.58 ± 0.26 g/fish, mean ± SD) reared at salinities of 5, 10, 15, 20, 25, 30, and 35 ppt were fed with fresh squid to satiety for 15 d. Results indicated that there were no significant differences in daily ration level in wet weight (RLw), dry weight (RLd), and energy (RLe) of the fish. There were also no significant variations in daily fecal production (fe) and apparent digestibility coefficient of energy (ADCe) among salinity treatments. Specific growth rates (SGRs) in wet weight (SGRw), dry weight (SGRd), and energy (SGRe) showed domed curves relative to salinity. Quadratic regression analyses of SGRw, SGRd, and SGRe against salinity indicated that the optimal salinity for maximal growth of juvenile cobia was 29.9, 29.9, and 28.5 ppt, respectively. Similar to the trend of SGR, food conversion efficiency for juvenile cobia in wet weight (FCEw), dry weight (FCEd), and energy (FCEe) increased with the increases in salinity, maximized at 30 ppt, and then decreased when salinity reached 35 ppt.  相似文献   

6.
Abstract

Hemolymph osmolality and osmoregulatory capacity (OC) of brown tiger shrimp, Penaeus esculentus (0.94±0.04 g mean initial weight) and western king shrimp, P. latisulcatus (5.37±0.10 g mean initial weight) from four salinities (10, 22, 34 and 46 ppt) were determined following 7, 14 and 21 minutes of air-exposure. Hemolymph osmolality of both species increased with increasing salinity. Isosmotic points of brown tiger shrimp calculated from regression lines between hemolymph and medium osmolality were 30.9, 31.9, 32.1 and 31.1 ppt at 0, 7, 14, and 21 minutes of air-exposure, respectively. Isosmotic points of western king shrimp were 33.8, 33.3, 32.8 and 33.1 ppt at 0, 7, 14, and 21 minutes air-exposure, respectively. OC of brown tiger shrimp at salinity of 34 ppt did not change when exposed to air for any length whereas OC of shrimp at other salinities (10, 22 and 46 ppt) were significantly different (P < 0.05) when exposed to air for 21 minutes. OC of western king shrimp at salinity 10 ppt was reduced (P < 0.05) when exposed to 14 and 21 minutes of air when compared to control and 7 minutes of air exposure. The results indicate that both species spent less energy (P < 0.5) for osmoregulation from 30 to 34 ppt. Furthermore, salinities 10 and 46 ppt were unsuitable for rearing brown tiger shrimp and salinity 10 ppt was unsuitable for growing western king shrimp.  相似文献   

7.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

8.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

9.
Inclusion of the water-soluble fraction of blue mussels Mytilus galloprovincialis as a feed additive was examined with tiger puffer Takifugu rupbripes. The control diet mainly consisted of fish meal, potato starch, and pollack liver oil. Experimental diets were formulated to replace 30% and 40% of the fish meal protein with defatted soybean meal (SBM), and were supplemented with 0–20% mussel extracts. Fish of 18 g initial body weight were fed each diet to satiation, twice daily, 6 days per week for 7 weeks at 20°C. Weight gain and protein efficiency ratio of fish fed the diet containing SBM without the extract were significantly lower than those of the control at the 30% replacement level. Addition of 5% or 10% extract improved the growth and feed utilization to levels comparable to those of the control. At 40% substitution, statistically identical growth and feed performance to the control were obtained for diets supplemented with 10% or 20% extract; however, performance for 5% addition was significantly lower. Thus, the water-soluble fraction of blue mussels would be an effective feeding stimulant in aquaculture feed for tiger puffer that makes it possible to replace 30–40% of fish meal protein with SBM.  相似文献   

10.
Florida red tilapia (Oreochromis sp.) were reared in 23 m3 seawater (37 ppt) pools. Monosex males (1.3 g mean weight) were stocked at a density of 25 fish/m3 and reared to fingerling size (>10 g) in pools receiving either chicken manure applied at a rate of 105 kg/ha day−1 or pelletized feed (30% protein) administered ad libitum. Following the nursery period, fingerlings in fed pools were reared through adult, marketable sizes.

After 20 days of nursery rearing, mean fish weights (5.7–9.6 g) and survival (77.5–98.6%) in manured pools ranged from less than to greater than values in fed pools (7.9–9.4 g and 95.5–98.2%). By day 33, while mean weights (11.3±0.4 g) and survival (84.5±5.2%) in manured pools were significantly less than those in fed pools (18.0±0.6 g and 95.9±1.4%), fingerling-size fish were obtained from manured pools at an overall productivity of 55 kg/ha day−1.

After 170 days in fed pools, mean fish weight was 467±9 g, survival was 89.7±0.9%, and food conversion was 1.6±0.2. Daily weight gain achieved a maximum of 4.4 g day before a rapid decline in water temperature from 28–29°C to 24–25°C caused a loss of fish appetite and evidence of disease.

The results suggest that while nursery rearing of Florida red tilapia in seawater pools fertilized with chicken manure is feasible, considerable variability in fish performance among pools can be expected, despite identical management methods. In pools receiving prepared feed, high growth rates and survival through adult, marketable sizes suggests a potential for commercial production of Florida red tilapia in seawater.  相似文献   


11.
Availability of environmental and dietary calcium in tiger puffer   总被引:1,自引:0,他引:1  
Tiger puffer, Takifugu rubripes, juveniles were fed with four semi-purified experimental diets containing 0.2% Ca from Ca-lactate (diet 1), no supplemental Ca (diet 2) and 0.2% and 2.5% Ca from tricalcium phosphate, TCP (diets 3 and 4), respectively. After a 10 week rearing period, growth and feed utilization were significantly lower in the fish group fed on diet 2 than in the fish group fed on diet 1. Fish groups fed on diets 3 and 4 also showed poor growth performances compared with group 1. It appears that Ca intake from seawater is not sufficient for the normal growth of tiger puffer. Furthermore, Ca in dietary TCP appeared to be unavailable to this species. Dietary TCP strongly inhibited the bone mineralization of Zn and Mn. The findings indicate that easily digestible Ca supplementation is indispensable in a diet of tiger puffer for normal growth, feed utilization and bone mineralization. © Rapid Science Ltd. 1998  相似文献   

12.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

13.
Culture density in excess of a critical threshold can result in a negative relationship between stocking density and fish production. This study was conducted to evaluate production characteristics of juvenile cobia, Rachycentron canadum, reared to market size in production‐scale recirculating aquaculture systems (RAS) at three different densities. Cobia (322 ± 69 g initial weight) were reared for 119 d at densities to attain a final in‐tank biomass of 10, 20, or 30 kg/m3. The specific objective was to determine the effects of in‐tank crowding resulting from higher biomass per unit rearing volume independent of system loading rates. Survival was ≥96% among all treatments. Mean final weight ranged from 2.13 to 2.15 kg with feed conversion efficiencies of 65–66%. No significant differences were detected in growth rate, survival, feed efficiency, or body composition. This study demonstrates that cobia can be reared to >2 kg final weight at densities ≤30 kg/m3 under suitable environmental conditions without detrimental effects on production.  相似文献   

14.
The goal is to determine the requirements allowing cultured Salvelinus alpinus to thrive in seawater, as they do in the wild. In late-June, eight families of individually identified 1+ year-old charr (mean wt: 427 g) of a domesticated strain derived from the Fraser River population were directly transferred from freshwater (9 °C) to salinities of either 0, 10, 20 and 30 ppt at 10 °C, then on-grown in tanks until December. Cumulative mortality was 16% in 30 ppt salinity, and < 4% in the lower salinities. Repeated measures analysis revealed somatic growth was inhibited by both elevated salinity and sexual maturation. Among immature fish, final mean weight and condition factor in 30 ppt salinity was 490 g and 1.2, compared to nearly 1 kg and > 1.7 in 0 and 10 ppt. In 20 ppt salinity, growth was initially similar to that in ≤ 10 ppt salinity but deteriorated from September onwards. Sexually maturing fish in ≤ 10 ppt salinity attained a final mean weight about 35% less than immatures. Plasma osmolality was only slightly elevated in the 30 ppt salinity, remaining < 340 mOsm kg− 1. Food intake and conversion were affected by the interaction between salinity and time, being optimum in 0 and 10 ppt treatments. Family effects on final body size were large, but the effect of salinity on growth was independent of family. In conclusion, despite their large body size, direct transfer of this strain from freshwater to seawater does not appear viable for commercial aquaculture.  相似文献   

15.
For large-scale seed production of sea cucumbers through a hatchery system, it is imperative to know the effects of environmental parameters on larval rearing. Auricularia larvae (48 h post-fertilization) were obtained from induced spawning of Holothuria spinifera and used in experiments to ascertain the effects of temperature, salinity and pH on the growth and survivorship of the larvae. The larvae were reared for 12 days at temperatures of 20, 25, 28 and 32 °C; salinities of 15, 20, 25, 30, 35 and 40 ppt; and pH of 6.5, 7.0, 7.5, 7.8, 8.0, 8.5 and 9.0. The highest survivorship and growth rate and fastest development of auricularia indicated that water temperature of 28–32 °C, salinity of 35 ppt and pH of 7.8 were the most suitable conditions for rearing larvae of H. spinifera.  相似文献   

16.
A feeding experiment was conducted to examine the potential use of defatted soybean meal (SBM) and freeze‐dried meat of blue mussel (BM) as partial replacement of fish meal in the diet of tiger puffer. Eight experimental diets were formulated, in which 0, 20, 40 and 60% fish meal protein were replaced with SBM (S0B0, S20B0, S40B0, and S60B0), and 40 and 60% with a combination of SBM and BM (S30B10, S20B20, and S45B15, S30B30). Fish of 11 g initial body weight were fed the diets to satiation twice daily, 6 d/wk for 8 wk at 20 C. Specific growth rate, feed efficiency, and protein efficiency ratio (PER) of fish fed diets containing SBM as an alternative protein source for fish meal decreased with increasing level of SBM, and these parameters of fish fed S40B0 and S60B0 diets were significantly lower than those of the control. Growth of fish in dietary groups containing BM were statistically identical to those in the control, and tended to increase with increasing level of dietary BM both at 40 and 60% substitution levels. Growth and feed utilization of fish fed S20B20 were almost the same to those in the control.  相似文献   

17.
The objective of this study was to investigate the influence of size on salinity tolerance in 1 year old juvenile white sturgeon. Two sizes of sturgeon (10 and 30 g) from the same spawning event (thus reducing confounding effects of genetic make-up and size) and reared in the same environment were exposed to a salinity of 0, 8, 16, 24, or 32 ppt for up to 120 h. Both 10 and 30 g fish exhibited > 93% mortality within 24 h after transfer to 24 or 32 ppt, regardless of whether they were transferred directly from freshwater (FW) or following a 48 h pre-treatment period at 16 ppt. Direct transfer from FW to 16 ppt was associated with 25 to 30% mortality, indicating that these fish have some ability to tolerate large changes in salinity for up to 5 days at this stage. Following exposure to 8 and 16 ppt, an elevation in plasma osmolarity, [Na+], and [Cl?] was observed between 24 and 72 h in both 10 and 30 g sturgeon, but plasma ions and osmolarity in surviving fish at 120 h were not significantly different between groups held at 0, 8, and 16 ppt. Despite being unprepared for either direct or stepwise transfer to salinities of 24 ppt or greater, size confers some ionoregulatory advantage, as mortality occurred more slowly and the degree of ionoregulatory perturbation was less in 30 g than 10 g fish over the course of the exposures. It is not known whether the apparent advantage of size is related to a size-dependent development of ionoregulatory capacity or due to social status which can also influence ionoregulatory capacity, but age and genetic differences did not likely contribute to this size effect.  相似文献   

18.
Effect of rearing salinity on the performance of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758) was studied under a laboratory condition. Fish growth, survival, RNA/DNA ratio, pepsin activity, α‐amylase activity and FCR were used as evaluation criteria. The growth and RNA/DNA ratio were significantly affected by the rearing salinity. High growth rate and RNA/DNA ratio were observed when fish were reared at the salinity of 34‰. The pepsin activity of fish was not significantly affected by the rearing salinity. However, the α‐amylase activity of fish was significantly affected by the rearing salinity. The α‐amylase activity of fish reared at the salinity of 10‰ was significantly lower than fish cultured at the salinity of 34‰. Rearing salinity can significantly affect the FCR of juvenile golden pompano. The FCR of fish cultured at the salinity of 10‰ was 5‐times higher than the FCR of fish reared at 34‰. Results from the present study indicate that juvenile golden pompano can be reared above 26‰ without affecting fish performance, and the salinity of 10‰ may be too low to rear juvenile golden pompano as fish growth, RNA/DNA ratio and α‐amylase activity were reduced.  相似文献   

19.
Experiments were designed to determine the effects of temperature and salinity on the virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus. In the temperature experiment, a two‐factor design was conducted to evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen virulence. E. tarda was incubated at 15, 20, 25 and 30±1°C, and the fish (mean weight: 10 g) were reared at 15, 20 and 25±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4‐day LD50 test showed that temperature significantly affected the virulence of E. tarda (P<0.01) and the interaction between the two factors was also significant (P<0.01). For fish reared at 15°C the virulence of E. tarda was the highest at 25°C of pathogen incubation, followed by 20, 15 and 30°C. When the fish rearing temperature was raised to 20 and 25°C, the virulence of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The higher rearing temperature increased the proliferation rate of the pathogen in fish. In the salinity experiment, the incubation salinity of E. tarda was at 0, 10, 20 and 30 g L?1, respectively, and the fish with mean weight of 50 g were cultured in natural seawater of 30 g L?1. The results of one‐way anova in 4‐day LD50 test showed that incubation salinity significantly affected virulence. Virulence was lower when the salinity of the incubation medium was at 0 and 30 g L?1, higher at 10 and 20 g L?1. The results of isolation test were in accordance with those of LD50. At 20 g L?1E. tarda had a faster proliferation rate than that at 10 g L?1.  相似文献   

20.
It is presumed that in hypo‐ and hypersaline environments, shrimp’s requirements for some specific nutrients, such as protein, may differ from those known in the marine habitat; however, few investigations have been conducted in this area of study. In the present investigation, the effects of salinity and dietary protein level on the biological performance, tissue protein, and water content of Pacific white shrimp, Litopenaeus vannamei, were evaluated. In a 3 × 4 factorial experiment, juvenile shrimp with an average initial weight of 0.36 ± 0.02 g were exposed for 32 d to salinities of 2, 35, and 50 ppt and fed experimental diets with crude protein contents of 25, 30, 35, and 40%. A significant effect of salinity on growth of shrimp was detected, with the growth responses (final weight, weight gain) ranked in the order 2 ppt (3.87, 3.50 g) > 35 ppt (3.40, 3.04 g) > 50 ppt (2.84, 2.47 g). No effects of dietary protein level or an interaction between salinity and protein on growth of shrimp were observed under the experimental conditions of this study. Percent survival of shrimp fed the highest protein content (40%, survival of 74%) was, however, significantly lower than those of shrimp fed the other feeds (25, 30 and 35% protein, survival of 99, 91, and 94%, respectively), a result likely associated with the concentration of total ammonia nitrogen, which increased significantly at increasing protein levels. Final water content of whole shrimp was significantly lower in animals exposed to 50 ppt (70.8%) than in shrimp held at 2 (73.7%) and 35 ppt (72.3%). No effect of salinity, protein, or their interaction was observed on the protein content of whole shrimp. The results of the present study are in agreement with reports of superior and inferior growth of L. vannamei reared in hypo‐ and hypersaline environments, respectively, as compared to what is generally observed in seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号