首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The efficacy of emamectin benzoate as an oral treatment of sea lice, Lepeophtheirus salmonis (KrÒyer), infestations in Atlantic salmon, Salmo salar L., was evaluated in a dose titration study and two dose confirmation studies. Replicated groups of salmon with induced infestations of sea lice were given emamectin benzoate on pelleted feed at doses of 0, 25, 50 and 100 μg kg−1 biomass day−1 for seven consecutive days. Sea lice were counted at 7, 14 and 21 days from the start of treatment, and comparisons made with control fish given the same diet without emamectin benzoate. Total numbers of sea lice were significantly reduced at all doses in all three studies when compared to control fish. There was no significant difference between doses of 50 and 100 μg kg−1, but the 50 μg kg−1 dose resulted in significantly fewer lice than the 25 μg kg−1 dose. Emamectin benzoate was highly effective in reducing numbers of preadult and adult lice and prevented the maturation of chalimus to motile stages. The optimum therapeutic dose was selected as 50 μg kg−1 day−1 for seven days. Treatment reduced the incidence of epidermal damage by sea lice and, in one study, survival of treated fish was 48% higher than in control groups. No fish mortalities or adverse effects were attributed to treatment with emamectin benzoate at any of the doses tested.  相似文献   

2.
Comparison of nutrients release among some maricultured animals   总被引:6,自引:0,他引:6  
Integrated mariculture is a feasible method to maintain sustainable and high productivity of aquaculture. The choice of cultured animals and biofilters in the integrated system has to be made on the basis of their nutrient release rates and the clearance rate of each component of the system. We are examining the nutrient release rates among fish (mangrove snapper, Lutjanus russeli, and sea perch, Abudefduf septemfasciatus), abalone (Haliotis diversicolor), scallops (Chlamys noblis), and green mussels (Perna viridis) in the laboratory. Fish feed is the major sources of inorganic nutrient input in fish farms. The orthophosphate and ammonia release rates of minced trash fish (1593 μg P g−1 day−1 and 150 μg N g−1 day−1) were respectively 6–12 times and 4–88 times higher than those of cultivated fish. Mangrove snapper had the overall highest nutrient release rate, followed by sea perch, abalone, scallops, and mussels for nitrite and nitrate; and followed by abalone, sea perch, mussels, and scallops for orthophosphate and ammonium. Among mollusks, abalone had the highest orthophosphate (162 μg P g−1 day−1), nitrate (1.4 μg N g−1 day−1), nitrite (1.6 μg N g−1 day−1) and ammonium (25.0 μg N g−1 day−1) release rates per gram wet weight per day. Abalone released large amounts of orthophosphate, nitrite and nitrate in the experiment. Scallops and green mussels had low nutrient release rates.  相似文献   

3.
Temperature is recognized to be the most important environmental factor affecting growth in fish. Barramundi are cultured over a wide range of temperatures some of which approach the upper thermal tolerance for this species. A growth trial was conducted on juvenile barramundi to examine the effects of high temperatures ranging from the minimum optimal temperature (27 °C) for growth efficiency to the extreme upper thermal limits (39 °C) for feed intake, growth and growth efficiency. Juveniles (4.87 ± 0.32 g) were held at four different temperatures 27, 33, 36 and 39 °C and fed twice daily to satiation (503.5 g kg− 1 crude protein, 182.5 g kg− 1 lipid, 150.1 g kg− 1 ash, 20.52 GE MJ kg− 1). Feed intake (g·day− 1) and SGR (%·day− 1) increased with increasing temperature up to 36 °C. At 39 °C feed intake, growth, feed efficiency ratio, protein efficiency ratio and productive energy value were significantly lower than at the other temperatures. This demonstrates that growth was optimized at temperatures from 27 to 36 °C and that barramundi have a much wider range for maximum growth efficiency than previously thought.  相似文献   

4.
This study examined the efficacy of bithionol as an oral treatment for Atlantic salmon Salmo salar affected by amoebic gill disease (AGD). The current commercial management strategy of AGD is a costly 3 h freshwater bath. It is labour intensive and the number of baths needed appears to be increasing; hence, there is an effort to identify alternative treatments. Efficacy was examined by feeding AGD-affected Atlantic salmon twice daily to satiation with bithionol, an antiprotozoal, at 25 mg kg− 1 feed. Three seawater (35‰, 17 °C) re-circulation systems were used each consisting of three tanks containing 32 Atlantic salmon smolts with an average (± SEM) mass of 90.4 g (± 5.2). Three feeds were examined in the trial including bithionol, plain commercial control and oil coated commercial control. Feeding commenced 2 weeks prior to exposure to Neoparamoeba spp. at 300 cells L− 1 and continued for 28 days post-exposure. Efficacy was determined by examining gross gill score and identifying percent lesioned gill filaments twice weekly for 4 weeks post-exposure. Bithionol when fed as a two-week prophylactic treatment at 25 mg kg− 1 feed delayed the onset of AGD pathology and reduced the percent lesioned gill filaments by 53% and halved the gill score from 2 to 1 when compared with both the plain and oil controls during an experimental challenge. There were no palatability problems observed with mean feed intake of bithionol over the trial duration with fish consuming higher levels of the bithionol diet compared to both the oil and plain controls. This study demonstrated that bithionol at 25 mg kg− 1 feed, when fed as a two-week prophylactic treatment for Neoparamoeba spp. exposure, delayed and reduced the intensity of AGD pathology and warrants further investigation as an alternative to the current freshwater bath treatment for AGD-affected Atlantic salmon.  相似文献   

5.
The starvation tolerance of post-larval abalone (Haliotis iris) was determined by examining post-larval growth and survival after various periods of starvation. Competent larvae (10 days old at 16°C) were induced to attach and metamorphose with 2 μM GABA. Post-larvae were either fed diatoms (Nitzschia longissima) or starved. In Experiment 1, post-larvae were starved immediately after metamorphosis for periods of 1, 2, 4, 8, 15, 20, 25 and 30 days. Starved post-larvae grew relatively well for several days after metamorphosis despite the absence of food (averages of 10.4 and 17.8 μm shell length (SL) per day after 8 days for two batches). Subsequent growth was minimal, averaging 1.7 and 0.7 μm day−1 over 6–7 days for the two batches. There was no clear relationship between period of starvation and growth rate when fed. Mean daily growth rate over 3 weeks when fed ranged from 15–22 μm day−1. However, the duration of starvation did have a significant effect on survival. Survival of post-larvae fed after 1–2 days of starvation was 90–100% after 3 weeks of feeding. Longer starvation periods gave progressively lower survival and post-larvae starved for 30 days all died within a week of being fed. In Experiment 2, post larvae were fed for 3 weeks after metamorphosis, then starved for 0, 3, 7, 14 or 21 days. Growth rates of starved post-larvae averaged only 5–6 μm day−1 in the first week (vs. 30 μm day−1 in controls), and later declined to zero. Growth resumed within a week following return to food, but the 14- and 21-day starvation treatments took 2 weeks to reach growth rates comparable to controls. The no-starvation controls and the 3- and 7-day starvation treatments all had >70% survival over 4 weeks after return to food. Survival in the 14- and 21-day starvation treatments was 15–20%, with almost all mortalities occurring in the first week after return to food. These data suggest that Haliotis iris post-larvae are relatively tolerant of starvation, so abalone farmers have a week or so to remedy food shortages before major post-larval mortality begins.  相似文献   

6.
In order to develop a simple and accurate index of the salinity resistance of tilapia, batches of 10 juveniles (5 to 20 g) of two different species Oreochromis niloticus and Sarotherodon melanotheron reared in freshwater were subjected to gradual increases in salinity until 100% mortality. Seven daily increments of salinity were tested with 4 replicates: 2, 4, 6, 8, 10, 12 and 14 g l−1 day−1, while control batches were kept in fresh water. The temperature was maintained at 27 °C. The concentration of oxygen, ammonia and the pH were not limiting factors. The mortality, monitored on a daily basis, appeared after 2–51 days and was spread out over 1–20 days, depending on the increment of salinity. The higher the daily rate in salinity increase, then the shorter the time lapse before total mortality occurred. The cumulative mortality as a function of salinity fit well with simple linear regressions. The criterion of the resistance to salinity was the index MLS (median lethal salinity) defined at each daily rate as the salinity at which 50% of fish died. For S. melanotheron, the mean MLS was 123.7±3.5 g l−1 whatever the daily rate in salinity. For O. niloticus, the MLS was 46.3±3.4 g l−1 for daily increases in salinity ranging from 2 to 8 g l−1 day−1 and decreased significantly (P<0.05) above this level. The MLS-8 g l−1 day−1 ,which takes into account the full capacity of the fish to adapt to the increasing salinity, appeared to be a simple, optimized and efficient criterion for assessing the resistance to salinity for O. niloticus and S. melanotheron. This criterion can be a useful tool for ranking the different parental strains and hybrids of different genus and species of tilapia used in programmes of genetic selection for growth and salinity tolerance.  相似文献   

7.
The duration of efficacy of emamectin benzoate in the oral treatment of sea lice, Lepeophtheirus salmonis, infesting Atlantic salmon, Salmo salar L., was evaluated in a tank study. One group of salmon was treated at a nominal dose of 50 μg kg?1 biomass day?1 for 7 consecutive days and a second group was untreated. Fish were then redistributed to 16 tanks, each holding 17 control and 17 treated fish. On days 34, 41, 48, 55, 62, 69, 76 and 83, two tanks were challenged with L. salmonis copepodites. Eight to 14 days after each challenge, fish were anaesthetized and numbers of lice recorded. Treatment with emamectin benzoate prevented development of copepodites for up to 62 days from the start of treatment, and chalimus numbers remained low for 69 days. Treated fish, challenged from days 34 to 69, had significantly (P<0.01) fewer lice than control fish. Treated fish challenged at days 76 and 83 still had fewer lice than control groups, although differences were not statistically significant for both replicates. When chalimus appeared on treated fish challenged at days 69–83, survival of chalimus to adult stages was lower than on control fish. Louse egg production on treated fish challenged at days 62–83 was not reduced compared to control groups.  相似文献   

8.
The effect of an 80-day maintenance-feeding period on the acute stress response of common carp, Cyprinus carpio, to net confinement was determined. Fish were raised on an optimal feeding level of 20 g food/kg of metabolic fish weight per day (g/kg0.8 day−1) until 124 days post-hatch (dph). Feeding in group one (L>H) was then reduced to maintenance levels, i.e. 5 g/kg0.8 day−1 until 204 dph, when the feeding was again increased to 20 g/kg0.8 day−1. In group two (H>L), the feeding level was reduced from 20 to 5 g/kg0.8 day−1 on day 146. All fish were sampled at 226 dph. Food ration had significant effects on the growth rate and food conversion values with fish fed the high ration performing better than those on a lower level. Prior to the application of the stressor, only plasma levels of triglycerides were lower in fish fed a low food ration (H>L). Feeding history influenced the onset of the stress response with stressor-induced elevations of plasma cortisol, glucose and free fatty acids being higher in fish fed a high ration compared with those fed a low ration prior to sampling. These results suggest that feeding history through modification of the energy reserves can influence the onset of the acute stress response.  相似文献   

9.
Florida red tilapia (Oreochromis sp.) were reared in 23 m3 seawater (37 ppt) pools. Monosex males (1.3 g mean weight) were stocked at a density of 25 fish/m3 and reared to fingerling size (>10 g) in pools receiving either chicken manure applied at a rate of 105 kg/ha day−1 or pelletized feed (30% protein) administered ad libitum. Following the nursery period, fingerlings in fed pools were reared through adult, marketable sizes.

After 20 days of nursery rearing, mean fish weights (5.7–9.6 g) and survival (77.5–98.6%) in manured pools ranged from less than to greater than values in fed pools (7.9–9.4 g and 95.5–98.2%). By day 33, while mean weights (11.3±0.4 g) and survival (84.5±5.2%) in manured pools were significantly less than those in fed pools (18.0±0.6 g and 95.9±1.4%), fingerling-size fish were obtained from manured pools at an overall productivity of 55 kg/ha day−1.

After 170 days in fed pools, mean fish weight was 467±9 g, survival was 89.7±0.9%, and food conversion was 1.6±0.2. Daily weight gain achieved a maximum of 4.4 g day before a rapid decline in water temperature from 28–29°C to 24–25°C caused a loss of fish appetite and evidence of disease.

The results suggest that while nursery rearing of Florida red tilapia in seawater pools fertilized with chicken manure is feasible, considerable variability in fish performance among pools can be expected, despite identical management methods. In pools receiving prepared feed, high growth rates and survival through adult, marketable sizes suggests a potential for commercial production of Florida red tilapia in seawater.  相似文献   


10.
The potential of bacteriophage therapy to control bacterial disease in farmed fish was tested using, as an example, furunculosis of Atlantic salmon, caused by Aeromonas salmonicida subsp. salmonicida.

In vivo testing with Atlantic salmon and rainbow trout (Oncorhynchus mykiss Walbaum) showed no adverse effects, with bacteriophage generally cleared within 96 h of administration by either intraperitoneal (i.p.) injection or oral in-feed.

Juvenile Atlantic salmon were administered a combination of bacteriophage O, R and B (1.9 × 108 pfu fish− 1) by i.p. injection, after they had been challenged with A. salmonicida subsp. salmonicida 78027, also by i.p. injection. The fish that were injected with bacteriophage immediately after challenge died at a significantly slower rate then those that were either not treated with bacteriophage, or treated 24 h post-challenge. However, the end result (100% mortality) was not affected.

In further experiments the effects of oral (1.88 × 105 pfu g− 1 fish− 1 daily for 30 days), bath (1.04 × 105 ml− 1 daily for 30 days) and i.p. (6.25 × 107 pfu fish− 1) phage treatment to control furunculosis in experimentally infected Atlantic salmon were compared with antibiotherapy (treatment with 10 mg kg− 1 bw− 1 day− 1 oxolinic acid for 10 days), using an indirect cohabitation challenge. No protection was offered by any of the bacteriophage treatments, compared to the positive challenge group, although significant protection was offered by the oxolinic acid treatment. Analysis of samples taken from the trials demonstrated that bacteriophage were correctly administered to the fish and, on occasion, were isolated from fish that had succumbed to furunculosis. It was also shown that bacteriophage resistant A. salmonicida subsp. salmonicida isolates could be recovered from mortalities in all the treatment groups.

The results suggest that, although there were no safety problems associated with the approach, furunculosis in Atlantic salmon is not readily controllable by application of bacteriophage.  相似文献   


11.
Atlantic halibut, Hippoglossus hippoglossus L., eat larger satiation meals (mean 11.7% body weight) than lemon sole, Microstomus kitt (Walbaum), (2.6% body weight). Total gut clearance time was about 120 h for halibut and 72 h for lemon sole. There are marked differences in feeding behaviour between the two species; halibut feed in midwater and require several body lengths of approach swimming before taking large items of food, while lemon sole eat only off the bottom. In shared tanks, no aggressive interaction was observed. A duoculture system holding small numbers of lemon sole with the more valuable halibut is recommended as a means of minimizing food waste and tank fouling. Oxygen uptakes of 0.07-0.11 ml O2 g fish wt−1 h−1 (depending on nutritional state) were recorded for the two species. Ammonia nitrogen outputs were also similar. Starved halibut excreted 2.32 μg N g−1 h−1, fed animals 5.08 μg N g−1 h−1. The corresponding values for lemon sole were 3.26 μg N g−1 h−1 and 6.37 μg N g−1 h−1, respectively.  相似文献   

12.
The nutritional response of Litopenaeus schmitti larvae to substitution of Chaetoceros muelleri by Spirulina platensis meal (SPM) was evaluated. The substitution levels (S) were 0%, 25%, 50%, 75% and 100%, dry weight basis. Final larval length (FL) ranged from 1.98 to 3.16 mm for the different substitution levels. There was a significant relationship between S and FL, described by the following quadratic equation: FL = 2.853 + 0.01598S − 0.000233S2. The substitution level (S) yielding maximum FL was 34.2%. Development index (DI) values ranged from 2.84 to 3.93 and were dependent on substitution level. The corresponding equation was DI = 3.799 + 0.00945S − 0.000189S2 (P < 0.01). Maximum DI was obtained at 25.0% substitution. Survival was high (82–87%) and no significant differences were found between treatments. Protein digestibility of either microalgae was high, with 92% for SPM and 94% for C. muelleri, with no significant differences between them. The results in this study indicate that an adequate balance of nutrients in relation to the requirements of the species is critical. To simultaneously improve FL and DI, a 30% substitution of C. muelleri by SPM is suggested. This is equivalent to feeding 0.15 mg larvae− 1 day− 1 dry weight basis of a 70% C. muelleri/30% SPM diet, representing 0.078 mg protein larvae− 1 day− 1, 0.026 mg lipids larvae− 1 day− 1 and 2.732 J larvae− 1 day− 1.  相似文献   

13.
The effect of lipid supplementation and algal ration on growth and fatty acid composition of juvenile clams, Tapes philippinarum was investigated. A diet of Tetraselmis suecica was supplemented with a lipid emulsion and fed at a daily ration of 0.5, 1.0 and 1.5% WW DW−1 day−1. A mixed algal diet of Isochrysis galbana (clone T-Iso) and T. suecica (1:1 on DW basis) and starvation functioned as positive and negative control treatments, respectively. T. suecica, which contains eicosapentaenoic acid (20:5n−3) but no docosahexaenoic acid (22:6n−3), was supplemented with 50% (% of algal dry weight) of a 22:6n−3-rich emulsion. Higher growth rates of T. philippinarum were associated with higher T. suecica feeding rations. Lipid supplementation resulted in significantly better growth rates of T. philippinarum at a T. suecica ration of 0.5, 1.0 and 1.5% WW DW−1 day−1. The growth promoting effect of lipid supplementation was significantly reduced during 4 consecutive weeks or by increasing the algal feeding ration. Increasing T. suecica rations were associated with a decrease in the % composition of 22:6n−3 while the 20:5n−3% composition was hardly affected in the total lipids of T. philippinarum. On the contrary, the absolute concentration of 22:6n−3 (μg per gram dry weight, μg g DW−1) in the total lipids of T. philippinarum was similar at all T. suecica rations while the 20:5n−3 concentration significantly increased. The major effect of lipid supplementation on the fatty acid composition of the clams, was a significant increase of the 22:6n−3% composition in the total lipids, polar lipids and triglycerides. In contrast with 20:5n−3, the effect of lipid supplementation on the absolute 22:6n−3 content (μg g DW−1) was more pronounced at a higher T. suecica ration. After a starvation period of 4 weeks, the concentration (μg g DW−1) of all fatty acids was significantly reduced, except the n−7 monoenoic fatty acids (MUFA) and the non-methylene interrupted dienoic fatty acids (NMID). The concentration (μg g DW−1) of the NMID in starved clams and clams fed different diets was similar to the concentration in the initial sample. This indicated that growing spat was actively synthesising NMID and they were selectively retained in unfed animals. The results indicated that either dietary lipid or 22:6n−3 was a growth-limiting factor when T. suecica was fed at a ration of 0.5, 1 and 1.5% WW DW−1 day−1. A selective retention in starved clams and a preferential accumulation in fed clams was observed for 22:6n−3 but not for 20:5n−3 which indicated a greater importance of 22:6n−3 compared to 20:5n−3.  相似文献   

14.
Tambaqui (48%) was reared in polyculture with grass carp (27%) and curimbatá (25%) from 75 g mean weight for a period of 164 days. Ponds of 1200 m2 were stocked at a total density of 12720 ha−1. Fish were fed with an experimental diet made from soybean and maize at a daily rate calculated as 3% of the tambaqui biomass. Grass carp received chopped angola grass at a daily rate of 15% of live weight. Ponds were weekly manured with 120 kg of mixed cattle and goat manure. Tambaqui reached a final weight of 492 g. Survival rate was 83%. The experimental polyculture had a mean net yield of 7·5 t ha−1 year−1, with apparent conversion rates of 1·13, 5·5 and 7·7 kg kg−1 of diet, grass and manure, respectively. All three species had a high growth rate (from 1·2 to 2·1 % day−1). Tambaqui's growth was affected by the fall in water temperature in the second part of the experiment. Cost/benefit calculations proved the high profitability of the tested semi-intensive polyculture system.  相似文献   

15.
Several studies have shown that food ration can affect the growth of cultured fish. Determining the optimal food ration would help to achieve better growth and also provide direct economic benefits due to reduced food wastage, which would lead to commercial success. Therefore, we studied the effects of ration levels on growth performance of 0+ juvenile yellowtail flounder to determine the optimal food ration. Two experiments were conducted; the first experiment as a preliminary using ration levels of 1%, 2%, 4%, 6% body weight per day (% bw day−1) held at 7.0 °C with a stocking density of 0.95 kg m−2 (45% bottom coverage). Results of this preliminary experiment indicated that fish fed with 1% bw day−1 had significantly lower growth (weight, length, body depth and specific growth rates (SGR)) than those fed with 2%, 4% and 6% ration. However, fish fed with rations of 1% and 2% showed significantly lower gross food conversion ratios (GFCR) than fish fed with 4% and 6% rations. Survival was not significantly affected by different ration levels. Based on these preliminary results, we used ration levels of 1%, 1.5%, 2% and 3% for the main experiment. Fish were held at 10 °C with a stocking density of 1.45 kg m−2 (34% bottom coverage). Results indicated that fish fed with 1%, 1.5% and 2% bw day−1 had significantly lower growth than fish fed with 3% bw day−1. GFCR was significantly different for all four rations. It was lower for 1% than 1.5%, 2% and 3% rations. Survival was not significantly different between any treatments. We discuss our results with emphasis on growth and economics (i.e., feed wastage) and stress the need to balance both components in a commercial operation.  相似文献   

16.
A study was conducted to evaluate the effect of partial replacement of dietary fish meal by crystalline amino acids on growth performance, feed utilization, body composition and nitrogen utilization of turbot juveniles.

Four diets were formulated to be isolipidic (12% DM) and isonitrogenous (8% DM). A fish meal based diet was used as control. In the experimental diets, a crystalline amino acid (AA) mixture was used to partially replace fish meal, corresponding to a non-protein nitrogen content of 19, 37 and 56%, respectively (diets 19AA, 37AA and 56AA, respectively). The overall amino acid profile of the experimental diets resembled that of the whole-body protein of turbot. Each experimental diet was fed to triplicate groups of 20 fish (initial body weight of 31.8 g) twice daily to apparent satiation for 42 days. During the trial water temperature averaged 18 °C.

Final body weight, weight gain (g kg ABW− 1 day− 1) and specific growth rate were not different between the control and 19AA diet but significantly decreased with the increase of crystalline-AA inclusion from 19 to 56%. Feed intake and feed efficiency of fish fed the control and diet 19AA were similar and significantly higher than those of fish fed the 56AA diet. At the end of the growth trial, there were no significant differences in whole-body composition among groups. Hepatosomatic index was also unaffected by dietary treatments.

Nitrogen retention (g kg ABW− 1 day− 1) of fish fed the control and the 19AA diets were similar and significantly higher than that of fish fed the other diets. Expressed as a percentage of the nitrogen intake, N retention was significantly higher with the control than with the 37AA and 56AA diets.

Daily ammonia excretion (mg kg ABW− 1 day− 1) of fish fed the control diet was significantly higher than that of fish fed the 37AA and 56AA diets, while daily urea excretion (mg kg ABW− 1 day− 1) did not significantly differ among treatments. Non-fecal nitrogen (ammonia + urea) excretion (mg kg ABW− 1 day− 1) was significantly higher for fish fed the control diet than in those fed the 37AA and 56AA diets. However, as percent of N intake, ammonia excretion and non-fecal N excretion were significantly higher in fish fed the 56AA diet than in those fed the control and 19AA diets.

Specific activity of glutamate dehydrogenase, alanine and aspartate aminotransferases did not significantly differ among experimental groups.

In conclusion, in diets with an overall amino acid profile resembling that of the whole-body protein of turbot, crystalline-AA may replace 19% of dietary protein without negatively affecting growth performances or feed utilization efficiency. However, higher protein replacement levels of protein-bound-AA by crystalline-AA severely depressed growth performance.  相似文献   


17.
Atlantic salmon smolts (Salmo salar L.) of wild (Namsen) and farmed (AquaGen) strains were transferred to full-strength seawater (33‰) for 0 (initial control group), 0.5, 1, 2, 4, 8, 14, 30, 42 and 60 days at three different temperatures (4.3, 9.4 and 14.3 °C). Freshwater temperature in each tank was adjusted to test conditions 10 days prior to transfer. Physiological adaptation was monitored as changes in plasma growth hormone levels, gill Na+,K+-ATPase activity, plasma chloride levels and survival in seawater. Overall, smolts from the wild strain were better able to tolerate transfer to seawater than smolts from the hatchery strain. A delay in the osmotic disturbance and a prolonged period of osmotic stress were observed at the low temperature. Circulating GH levels increased transiently in all groups during the first 12–48 h in seawater and long-term GH levels were positively correlated with seawater temperature. Growth rates were influenced by temperature and strain, with the farmed smolts showing a higher growth than the wild smolts. Food Conversion Efficiency (FCE) was higher in smolts from the farmed strain, whereas no differences in daily food consumption were observed. Optimum temperature for FCE was calculated to be 10.5 °C, whereas the optimal temperature for growth in seawater was calculated to be 13.0 °C. We suggest that the observed differences in seawater tolerance, growth and food conversion probably are genetic and may reflect the fact that the hatchery fish have been bred for rapid growth for several generations.  相似文献   

18.
L. vannamei postlarvae are normally raised with a protein dense diet (50% protein) rich in fishmeal. Part of the protein is utilized for energy purpose instead of protein synthesis. Based on a previous energy partitioning study, the effects of two isoenergetic compounded feed treatments – animal protein (AP) and vegetable protein and carbohydrates (VPC) – upon growth efficiency and energy budget of shrimp postlarvae and early juveniles were determined. Recovered energy (RE) or production (P) after 50 days trial was similar (2 J day 1) in both treatments, from PL14 to PL19. However, early juveniles discriminated between animal protein (116 J day 1) and vegetable protein and carbohydrates (88 J day 1). The difference in respiration indicated a higher heat increment with AP compared to VPC. At maintenance level, energy used was lower with AP than VPC treatment. Postlarvae and early juveniles employed protein as a main energy substrate (O:N < 20). Differences in the efficiencies observed in the calculated energy budget were attributed to the presence of carbohydrates in diet and not to the protein source. The advantage of incorporating vegetable protein source in the diet of harvesting shrimp may eventually contribute towards a reduction of fishmeal costs and waste products as well as to achieve sustainable shrimp farming.  相似文献   

19.
This study investigated the effects of serotonin (5-hydroxytryptamine or 5HT) on ovarian development in Macrobrachium rosenbergii de Man. Adult female prawns at the ovarian stage I (spent) were injected with 5HT at 1, 5, 10, 20 and 50 μg g− 1 body weight (BW) intramuscularly on days 0, 5 and 10, and sacrificed on day 15. The doses as related to the effect could be categorized into three levels: low (1 and 5 μg g− 1 BW of 5HT), medium (10 and 20 μg g− 1 BW of 5HT) and high (50 μg g− 1 BW of 5HT). The low-dose, especially at 1 μg g− 1 BW, caused prawns to exhibit a significant increase in ovarian index (ovarian weight/body weight × 100) (5.79 ± 0.09%) as compared to the control (1.49%). The ovaries of most of these prawns could develop to stage IV (mature) and contained synchronously mature oocytes while most of the control ovaries remained at stage I and II (proliferative), and contained only oogonia to previtellogenic (Oc1, Oc2) and early vitellogenic oocytes (Oc3). The medium- and high-dose treated prawns exhibited ovaries that could reach stages III and IV and contained various types of oocytes of different maturity. Pretreatment with 5HT receptor antagonist, cyproheptadine (CYP), at 10 μg g− 1 BW before 5HT injection significantly suppressed the effect of 5HT. Intramuscular injection of the 5HT-primed thoracic ganglion culture medium into CYP-pretreated prawns resulted in the increase of ovarian index about 5–6 times more than in the control, and in the groups injected with 5HT-primed media from muscle strip, eyestalk and brain. The ovaries of most prawn could develop up to stage IV and contained synchronously developed vitellogenic (Oc4) and mature oocytes (Oc5). These findings suggest that 5HT indirectly induces ovarian development and oocytes maturation in M. rosenbergii, probably via a putative ovarian stimulating factor released from the thoracic ganglia.  相似文献   

20.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号