首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Laboratory experiments were conducted to compare the physiological effects of two herbicides: fluazifop-butyl {butyl ( RS )-2-[4-(5-trifluoromethyl-2-pyridyloxy)phenoxy]-propionate} and sethoxydim {(±)-2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} on oat ( Avena sativa L. cv. Zenshin). The herbicides strongly inhibited growth of oat and induced chlorosis at the basal part of shoots and ethylene production from the seedlings. The phytotoxicity of these herbicides in oat seedlings was alleviated by 2,4-D (2,4-dichlorophenoxyacetic acid), but not by IAA (indole-3-acetic acid). Coleoptile elongation induced by 2,4-D or IAA was inhibited by fluazifop-butyl and sethoxydim, suggesting both herbicides possess the activity to inhibit this auxin action. Fluazifop (free acid) and sethoxydim inhibited proton excretion from oat roots but fluazifop-butyl did not. This proton excretion was not restored by 2,4-D or IAA. Furthermore, cellular electrolyte leakage in oat shoots was increased by both herbicides, indicating that the membrane permeability was increased. We conclude that fluazifop-butyl and sethoxydim may have the same mechanism of action which leads to disruption of membrane integrity, although fluazifop-butyl acts as a free acid after hydrolysis (fluazifop).  相似文献   

2.
In order to clarify the action mechanism of fluazifop-butyl, an aryloxyphenoxypropionate (AOPP) herbicide in bristly starbur (Acanthospermum hispidum DC.), a unique fluazifop-butyl-susceptible broad-leaved weed, ethylene evolution and membrane lipid peroxidation in the plant seedlings were investigated. Foliar application of fluazifop-P-butyl induced ethylene evolution only from bristly starbur, but not from oat (Avena sativa L.), another fluazifop-butyl-susceptible species, and two tolerant species, pea (Pisum sativum L.) and hairy beggarticks (Bidens pilosa L.). The other AOPP herbicides, quizalofop-ethyl and fenoxaprop-ethyl, and a cyclohexanedione (CHD) herbicide, sethoxydim, did not enhance ethylene production from bristly starbur. This fluazifop-butyl-induced ethylene production in bristly starbur was completely suppressed by aminoethoxyvinylglycine (AVG), a 1-aminocyclopropane-1-carboxylic acid (ACC) synthase inhibitor, but not by p-chlorophenoxyisobutyric acid (PCIB), an anti-auxin compound, suggesting this evolved ethylene was not auxin-induced. Phytotoxic action by fluazifop-P-butyl (5 μM) in bristly starbur was reduced markedly by two lipid-soluble antioxidants, vitamin E, and ethoxyquin. The ethylene production from the plant was also inhibited by these two antioxidants. Content of malondialdehyde, an indicator of lipid peroxidation, increased only by fluazifop-P-butyl in bristly starbur seedlings but not in oat, and this increase was inhibited by ethoxyquin. These results strongly suggest that the primary site of action for fluazifop-butyl in bristly starbur is on the membranes and active oxygen species and/or free radicals are involved in peroxidation. Ethylene evolution is probably induced by these reactive oxygen species.  相似文献   

3.
Resistance to aryloxyphenoxypropionate (AOPP), cyclohexanedione (CHD) and phenylurea herbicides was determined in UK populations of Alopecurus myosuroides Huds. Two populations (Oxford AA1, Notts. A1) were highly resistant (Resistance indices 13-->1000) to the AOPP and CHD herbicides fenoxaprop, diclofop, fluazifop-P and sethoxydim, but only marginally resistant to the phenylurea, chlorotoluron. Analyses of acetyl coenzyme A carboxylase (ACCase) activity showed that an insensitive ACCase conferred resistance to all the AOPP/CHD herbicides investigated. Another population, Oxford S1, showed no resistance to sethoxydim at the population level, but contained a small proportion of plants (<10%) with an insensitive ACCase. Genetic studies on the Notts A1 and Oxford S1 populations demonstrated that target site resistance conferred by an insensitive ACCase is monogenic, nuclearly inherited with the resistant allele showing complete dominance. Investigations of the molecular basis of resistance in the Notts A1 population showed that sethoxydim resistance in A myosuroides was associated with the substitution of an isoleucine in susceptible with a leucine in resistant plants, which has also been found in three other resistant grass-weed species (Setaria viridis (L) Beauv, Avena fatua L, Lolium rigidum Gaud).  相似文献   

4.
Resistance to acetyl-coenzyme A carboxylase (ACCase) inhibitors has developed in at least 10 grass weed species in recent years. In most instances, resistance is conferred by an ACCase alteration in the resistant biotypes that reduces sensitivity to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides. Analysis of ACCase from many of these resistant weed biotypes suggests the presence of different mutations, each conferring a different pattern and level of resistance to various AOPP and CHD herbicides. In all cases analyzed to date, resistance is controlled by a single dominant or semi-dominant nuclear gene. In several weed biotypes, resistance is conferred by enhanced herbicide detoxification, primarily through elevated expression or activity of cytochrome P450 monooxygenase(s). This mechanism can confer cross-resistance to herbicides from other chemical classes with different modes of action. Finally, multiple herbicide resistance, i.e. the acquisition of several different resistance mechanisms, has been reported in some weed biotypes. ©1997 SCI  相似文献   

5.
A single dominant mutation conferring resistance to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides was incorporated into a quantitative model for the population development of Alopecurus myosuroide s Huds. The model predicts that from an initial seedbank of 100 seed m–2, 10–6 of which mutate to resistance each generation, and annual use of AOPP/CHD herbicides which kill 90% of susceptible but no resistant plants, a threshold of 10 plants m–2 surviving herbicides ('field resistance') will develop: in 9–10 years if all tillage is by tine cultivation to 10 cm deep; after 28–30 years of annual ploughing; in 12 years if tine cultivations are interspersed with ploughing once every 4 years. If AOPP/CHD herbicides are alternated with herbicides with different modes of action, outcomes depend on the annual kill rate: with 95% kill (of susceptible plants by AOPP/CHDs and all plants by alternative herbicides) and tine cultivation, field resistance develops in 22 years; however, resistance can be delayed for 45 years if AOPP/CHDs are rotated with two additional herbicides, each with a different mode of action. The model predictions on the number of years required for field resistance to develop are not highly sensitive to the density of the seedbank or the initial frequency of resistance.  相似文献   

6.
The mechanisms of AOPP herbicide resistance in twoAlopecurus myosuroidesbiotypes were investigated. Resistant biotype Peldon A1, which is highly resistant to the phenyl-urea chlorotoluron, is moderately resistant to the AOPP herbicides diclofop-methyl, fenoxaprop-ethyl, fluazifop-P-butyl, and the CHD tralkoxydim. Resistant biotype Lincs. E1, which is only moderately resistant to chlorotoluron, is highly resistant to the AOPP herbicide fenoxaprop-ethyl, and moderately resistant to diclofop-methyl, fluazifop-P-butyl, and the CHD tralkoxydim. There is no clear evidence of resistance to the CHD sethoxydim in either biotype. Both Peldon A1 and Lincs. E1 exhibited moderately enhanced metabolism of diclofop-methyl. The approximate half life of diclofop was 8 and 9 HAT, respectively, compared to 17 HAT for the susceptible Rothamsted biotype. Peldon A1 showed moderately enhanced metabolism of fenoxaprop-P-ethyl. However, in the highly resistant Lincs. E1, fenoxaprop-P-ethyl metabolism rates were intermediate between Peldon A1 and the susceptible biotype. Fenoxaprop-P-ethyl metabolism inA. myosuroideswas not significantly reduced by inhibitors of cytochrome P450: PBO, tetcyclasis, or ABT. While enhanced herbicide metabolism can account for the moderate AOPP/CHD resistance observed in Peldon A1in vivo, it cannot account in total for fenoxaprop-ethyl resistance in Lincs. E1. Lincs. E1 may possess one or more additional resistance mechanism.  相似文献   

7.
In greenhouse studies, the efficacy of the herbicide safeners NA(1,8-naphthalic anhydride), R-25788 (N,N-diallyl-2,2-dichloroacetamide), cyometrinil and CGA-92194 [N-(1,3-dioxolan-2-yl-methoxy)imino-benzeneaceto-nitrile] in protecting grain sorghum (Sorghum bicolor (L.) Moench, cv. ‘Funk G623’) against injury from pre-emergence or early post-emergence applications of the herbicides chlorsulfuron, fluazifop-butyl and sethoxydim was examined. NA as a seed dressing at 0·5 or 1·0% (w/w) was the most effective of the four safeners and offered partial to good protection to sorghum against injury from the lower rates of pre-emergence applications of all three herbicides. R-25788 was totally ineffective as a sorghum protectant against fluazifop-butyl injury but it did antagonize partially the injurious effects of the lower rates of sethoxydim and chlorsulfuron on sorghum. Cyometrinil and CGA-92194 offered partial protection to sorghum against injury from the lowest rate of all herbicides but their efficacy against higher rates of the three herbicides was very limited. None of the four safeners was effective in protecting grain sorghum against injury from post-emergence applications of the three herbicides tested.  相似文献   

8.
乙酰辅酶A羧化酶抑制剂的构效关系和抗性研究进展   总被引:1,自引:0,他引:1  
衣克寒  付颖  叶非 《植物保护》2012,38(1):11-17
乙酰辅酶A羧化酶(ACCase)抑制剂是以乙酰辅酶A羧化酶为作用靶标的一类除草剂.这类除草剂通过抑制真核型乙酰辅酶A生成丙二酰辅酶A的羧化反应,进而抑制植物脂肪酸的合成,多用于苗后有选择性地防除一年生禾本科杂草.本文综述了该类除草剂的作用机理、构效关系及在应用中的抗性研究进展.  相似文献   

9.
乙酰辅酶A羧化酶抑制剂的研究进展   总被引:5,自引:0,他引:5  
乙酰辅酶A羧化酶(ACCase)是除草剂的作用靶标之一,此类除草剂主要有两类:芳氧苯氧丙酸类(APP)和环己烯酮类(环己二酮,环己烯二酮,CHD)。本文就ACCase抑制剂的发展历史、合成方法、结构与活性和除草机制等方面作了概述。  相似文献   

10.
Fluazifop-butyl, haloxyfop and sethoxydim with adjuvant oil were applied for three successive growing seasons to established strawberries infested with Elymus repens. The weed was virtually eradicated by three applications of haloxyfop (0.8 kg a.e. ha?1) in successive years. A similar effect was given by five applications of haloxyfop (0.4 kg a.e. ha?1) and fluazifop-butyl (1.6 kg AI ha?1) in three growing seasons. Lower rates of haloxyfop and fluazifop-butyl, and a high rate of sethoxydim (1.6 kg AI ha?1) applied five times were less effective, the ground cover of E. repens shoots not being reduced by the end of the experiment although weight of living rhizome was only 10-30% of that on untreated plots. Fruit yields on treated plots generally reflected the level of E. repens control, but there was some evidence of crop phytotoxicity from herbicide treatments. During the experiment E. repens untreated plots increased from about 30-100% ground cover and reduced yield 13, 28 and 68% in successive years compared with weed-free plots.  相似文献   

11.
C. FEDTKE 《Weed Research》1987,27(3):221-228
inhibitory activities of existing graminicides on root regeneration from monocotyledonous (oat) and dicotyledonous (soybean) plant cuttings in the light, in the dark and on algal growth were compared with the respective inhibitory activities of the new herbicide 2-(2-benzothiazo-lyl-oxy)-N-methyl-N-phenylacetamide (mefenacet). The mefenacet activity spectrum resembled that of the α-chloroacetamide herbicides. Herbicide groups of other structure-activity can be distinguished by their distinct activity spectrum. The mono-oxygenase inhibitors piperonyl but-oxide (PBO) and 1-aminobenzotriazole (ABT) were found to antagonize the inhibitory activities of herbicides from the thiolcarbamate, α-chloroacetamide, and oxyacetic acid amide structure groups in the oat rooting and leaf growth tests. The critical evaluation of the presently available information on graminicide and safener mode of action suggests the concept that lipid biosynthesis on the physiological level and mono-oxygenase type enzymes on the biochemical level may hold the target sites for many of the graminicides and safeners discussed.  相似文献   

12.
Japanese foxtail is one of the most common and troublesome weeds infesting cereal and oilseed rape fields in China. Repeated use during the last three decades of the ACCase-inhibiting herbicide fenoxaprop-P-ethyl to control this weed has resulted in the occurrence of resistance. Dose–response tests established that a population (AHFD-1) from eastern China had evolved high-level resistance to fenoxaprop-P-ethyl. Based on the resistance index, this resistant population of A. japonicus is 60.31-fold resistant to fenoxaprop-P-ethyl. Subsequently, only a tryptophan to cysteine substitution was identified to confer resistance to fenoxaprop-P-ethyl in this resistant population. ACCase activity tests further confirmed this substitution was linked to resistance. This is the first report of the occurrence of Trp-2027-Cys substitution of ACCase in A. japonicus. From whole-plant pot dose–response tests, we confirmed that this population conferred resistance to other APP herbicides, including clodinafop-propargyl, fluazifop-P-butyl, quizalofop-P-ethyl, haloxyfop-R-methyl, cyhalofop-butyl, metamifop, DEN herbicide pinoxaden, but not to CHD herbicides clethodim, sethoxydim. There was also no resistance observed to ALS-inhibiting herbicides sulfosulfuron, mesosulfuron-methyl, flucarbazone-sodium, pyroxsulam, Triazine herbicide prometryne and glyphosate. However, this resistant population was likely to confer slightly (or no) resistant to Urea herbicides chlortoluron and isoproturon.  相似文献   

13.
布顿大麦草为麦田入侵杂草, 为尽早建立对该杂草的化学防除技术, 本研究采用室内盆栽法测定了布顿大麦草对21种除草剂的敏感性?结果表明:土壤处理剂41%氟噻草胺悬浮剂对布顿大麦草具有良好的防除效果, 42%氟啶草酮悬浮剂?60%丁草胺乳油?40%砜吡草唑悬浮剂?960 g/L精异丙甲草胺乳油对布顿大麦草的防除效果一般, 50%扑草净可湿性粉剂?50%异丙隆可湿性粉剂?45%二甲戊灵微囊悬浮剂?50%吡氟酰草胺可湿性粉剂防除效果不理想; 茎叶处理剂7.5%啶磺草胺水分散粒剂?12.5%烯禾啶乳油?41%草甘膦异丙胺盐水剂对布顿大麦草防除效果好, 5%咪唑乙烟酸水剂?8%炔草酯水乳剂?30 g/L甲基二磺隆可分散油悬浮剂?8%烟嘧磺隆可分散油悬浮剂?7%双唑草腈颗粒剂?70%氟唑磺隆水分散粒剂对布顿大麦草的防除效果一般, 5%唑啉草酯乳油?7.5%双环磺草酮颗粒剂?69 g/L精噁唑禾草灵水乳剂防除效果不理想?氟噻草胺?在推荐剂量492 g/hm2下, 处理21 d后对布顿大麦草的鲜重抑制率为75.40%; 啶磺草胺?草甘膦异丙胺盐?烯禾啶在推荐剂量14?1 500?187.5 g/hm2下, 处理21 d后对布顿大麦草的鲜重抑制率分别为73.96%?60.60%?65.07%?综合本研究结果及除草剂使用特性, 麦田布顿大麦草可采用氟噻草胺土壤封闭或者啶磺草胺茎叶喷雾处理进行有效防除; 油菜田布顿大麦草可采用烯禾啶进行防除; 非耕地布顿大麦草可采用草甘膦异丙胺盐进行防除?  相似文献   

14.
A field experiment was conducted in the low country of Sri Lanka, during the period 1994–1995 to investigate the severity of weed infestation and tea growth in relation to weed management methods in newly established tea ( Camellia sinensis [L.] Kuntze). Manual weeding (hand and slash weeding) at various intervals was compared with various herbicides, with or without mulching. Weed control with herbicides was superior to that of hand weeding at 6-week intervals or more. Weed control with oxyfluorfen at 0.29 kg ai ha−1 + paraquat at 0.17 kg ai ha−1 or glyphosate at 0.99 kg ai ha−1 + kaolin at 3.42 kg ha−1 were superior. Plots unweeded for 12 weeks or more produced significantly greater ( P  < 0.05) weed biomass than plots unweeded for 6 weeks. Although the least weed dry weight ( P  < 0.05) and the greatest number of weed species were recorded with hand weeding at 2 week intervals, there was no particular benefit on tea growth when compared with hand weeding at 6 and 12 week intervals. Inter row mulching in chemically treated plots was more favorable for tea growth than no mulching, while living weed cover in unmulched slash weeded plots suppressed tea growth. A combination of mulching and herbicides, particularly oxyfluorfen and paraquat, followed by hand weeding at least every 6–8 weeks was considered the most appropriate weed management system for young tea.  相似文献   

15.
Avena fatua (wild oat) populations with resistance (R) to one or more herbicides have been described in numerous cropping systems worldwide. We previously reported that the R3 and R4 wild oat populations from Montana, USA, were resistant to four herbicides representing three different modes of action: tralkoxydim [acetyl‐CoA carboxylase (ACCase] inhibitor), imazamethabenz and flucarbazone [acetolactate synthase (ALS) inhibitors] and difenzoquat (growth inhibitor). We now quantify resistance levels of these populations to triallate [very long chain fatty acid (VLCFA) biosynthesis inhibitor], pinoxaden (ACCase inhibitor) and paraquat (photosystem I inhibitor). Glasshouse dose–response experiments showed that, compared with the means of two susceptible (S) populations, the R3 and R4 populations were 17.5‐ and 18.1‐fold more resistant to triallate, 3.6‐ and 3.7‐fold more resistant to pinoxaden, respectively, and 3.2‐fold (R3) more resistant to paraquat. Pre‐treatment of R plants with the cytochrome P450 inhibitor malathion partially reversed the resistance phenotype for flucarbazone (both populations), imazamethabenz (R4), difenzoquat (R4) and pinoxaden (R3), but not for tralkoxydim, fenoxaprop‐P‐ethyl or triallate. Target site point mutations known to confer resistance to ALS or ACCase inhibitors were not detected via DNA sequencing and allele‐specific PCR assays in R plants, suggesting the involvement of non‐target site resistance mechanism(s) for these herbicides. Together, our results complete the initial characterisation of wild oat populations that are resistant to seven (R3) or six (R4) herbicides from five or four mode of action families respectively.  相似文献   

16.
Experiments were conducted to evaluate the plant emergence and seed production of Chloris polydactyla and the efficacy of herbicides for its control. The plants emerged mainly when the seeds were placed on the soil surface at ≤ 3 cm depth. Isolated plants produced a great amount of seeds. The pre-emergence herbicides, acetochlor, atrazine + simazine, s-metolachlor, alachlor, and trifluralin, were effective for C. polydactyla control. The postemergence herbicides, clodinafop-propargil, haloxyfop-methyl, clethodim, fluazifop- p -butil, tepraloxydim, sethoxydim, and quizalofop- p -tefuril showed satisfactory control of the plants at a 20 cm height with six leaves. During the flowering stage (85 cm plant height), only glyphosate was effective in controlling C. polydactyla .  相似文献   

17.
农田杂草严重影响作物的产量和品质,对除草剂的过度依赖和长期使用,使杂草对除草剂的抗性问题日益突出。目前已有262种杂草(152种双子叶和110种单子叶)的512个生物型对23类中的167个除草剂产生抗性。激素类除草剂作为除草剂的重要成员,为禾谷类作物田的杂草防除提供了保障,然而在使用了几十年后,44种杂草对此类除草剂产生了抗药性。本文对激素类除草剂的分类应用、除草机理、抗性现状、抗性机理等进行了综述,以期为激素类除草剂的应用和抗激素类除草剂杂草的防除提供参考。  相似文献   

18.
Cyclohexane-1,3-diones such as the herbicides cycloxydim, sethoxydim, alloxydim and clethodim are known to be specific inhibitors of the plastid-located acetyl-CoA carboxylase (ACCase) in Poaceae, a key enzyme of de-novo fatty acid biosynthesis in higher plants. Using several new cyclohexane-1,3-dione derivatives and known herbicides, the relationships between chemical structure and enzyme inhibition have been studied. The basic cyclohexane-1,3-dione structure was modified at three different positions. These compounds were tested for inhibition of the de novo fatty-acid biosynthesis in test systems of etioplasts isolated from Avena sativa L. and Hordeum vulgare L. seedlings and also for inhibition of the isolated barley ACCase. The I50 values of these cyclohexane-1,3-diones were determined. The influence of the modification of alkyl chains (length and type of substituent) on the degree of ACCase-inhibition is discussed. Several new compounds were found that were about two orders more active than the known herbicides cycloxydim or sethoxydim in the etioplast and ACCase test systems but not necessarily on the level of whole plants.  相似文献   

19.

Background

The prevalent and repeated use of acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides for Bromus tectorum L. control in fine fescue (Festuca L. spp) grown for seed has selected ACCase-resistant B. tectorum populations. The objectives of this study were to (1) evaluate the response of nine B. tectorum populations to the ACCase inhibitors clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl and the acetolactate synthase (ALS) inhibitor sulfosulfuron and (2) characterize the resistance mechanisms.

Results

Bromus tectorum populations were confirmed to be resistant to the ACCase-inhibiting herbicides tested. The levels of resistance varied among the populations for clethodim (resistance ratio, RR = 5.1–14.5), sethoxydim (RR = 18.7–44.7), fluazifop-P-butyl (RR = 3.1–40.3), and quizalofop-P-ethyl (RR = 14.5–36). Molecular investigations revealed that the mutations Ile2041Thr and Gly2096Ala were the molecular basis of resistance to the ACCase-inhibiting herbicides. The Gly2096Ala mutation resulted in cross-resistance to the aryloxyphenoxypropionate (APP) herbicides fluazifop-P-butyl and quizalofop-P-ethyl, and the cyclohexanedione (CHD) herbicides clethodim, and sethoxydim, whereas Ile2041Thr mutation resulted in resistance only to the two APP herbicides. All B. tectorum populations were susceptible to sulfosulfuron (RR = 0.3–1.7).

Conclusions

This is the first report of target-site mutations conferring resistance to ACCase-inhibiting herbicides in B. tectorum. The results of this study suggest multiple evolutionary origins of resistance and contribute to understanding the patterns of cross-resistance to ACCase inhibitors associated with different mutations in B. tectorum. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

20.
Optimizing the herbicide dose by the addition of adjuvants is an acceptable way to reduce the risk of side-effects from herbicides. Therefore, to detect a suitable adjuvant for diclofop-methyl, cycloxydim, and clodinafop-propargyl against littleseed canarygrass ( Phalaris minor ) and wild oat ( Avena ludoviciana ), six dose–response experiments were conducted. The treatments consisted of diclofop-methyl at 0, 112, 225, 450, 675, and 900 g ai ha−1, cycloxydim at 0, 15, 30, 60, 90, and 120 g ai ha−1, and clodinafop-propargyl at 0, 8, 16, 32, 48, and 64 g ai ha−1 with and without the adjuvants of Frigate, olive oil, and castor oil at 0.2% (v/v) in order to control both littleseed canarygrass and wild oat. Tested herbicides performance was enhanced by all adjuvants against littleseed canarygrass and wild oat. The addition of Frigate and the vegetable oils had the lowest and the highest effect on the performance of all of the herbicides on both littleseed canarygrass and wild oat, respectively, which confirms the solubilizing nature of the cuticular waxes by vegetable oils. A comparison between the two vegetable oils revealed that olive oil exerted a greater control of littleseed canarygrass than did the castor oil. In contrast, castor oil exerted a greater control of wild oat than did the olive oil, which can be related to differences in the leaf surface micromorphology of the weeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号