首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Pharmacokinetics and milk levels of ceftriaxone were studied in healthy and endometritic cows following single intravenous administration. The drug was detected up to 8 h of dosing in plasma of healthy and endometritic cows and the drug disposition followed three-compartment open model. The values of Vdarea, AUC, t1/2β, ClB, MRT and P/C ratio were 0.50 ± 0.19 L.kg−1, 62.2 ± 23.3 μg.ml−1.h, 1.02 ± 0.07 h, 0.30 ± 0.09 L.kg−1.h−1, 1.55 ± 0.25 h and 0.52 ± 0.27, respectively, in healthy and 1.55 ± 0.52 L.kg−1, 37.0 ± 17.1 μg.ml−1.h, 1.56 ± 0.25 h, 0.56 ± 0.14 L.kg−1.h−1, 2.14 ± 0.34 h and 1.44 ± 0.60, respectively, in endometritic cows. The drug was detected in milk for 36 h after administration. For MIC90 of 0.5 μg.ml−1 the most appropriate dosage for ceftriaxone, would be 9.0 mg.kg−1 repeated at 6 h intervals for the treatment of endometritis in cows.  相似文献   

2.
Two commercially available long-acting oxytetracycline hydrochloride formulations (Primamycin LA (Pfizer) and Terralent 20% LA (İ.E. Ulagay)) were administered by the intramuscular route to 20 clinically healthy sheep at a dose of 20 mg/kg. The study was performed in a two-period crossover design. Plasma samples were analysed by high-pressure liquid chromatography. The mean maximum concentrations (C max) was 8.00 ± 2.05 μg/mland 8.61 ± 1.42 μg/ml, respectively. The mean area under the concentration time curve (AUC) values were 154.95 ± 50.37(μg h)/ml and 161.70 ± 47.02(μg h)/ml, respectively. The 90%confidence intervals for the ratio of C max and AUC values for the test and reference product are with in the interval 70−143% for C max and interval 80-−125% for AUC proposed by EMEA. It was concluded that Primamycin LA and Terralent 20% LA formulations are bioequivalent in their rate and extent of drug absorbtion. Ozdemir N. and Yıldırım, M., 2006. Bioequivalence study of two long-acting oxytetracycline formulations in sheep. Veterinary Research Communications, 30(8), 929–934  相似文献   

3.
The pharmacokinetics of difloxacin (Dicural) was studied in a crossover study using three groups (n = 4) of male and female Friesian calves after intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations of 5 mg/kg body weight. Drug concentration in plasma was determined by high-performance liquid chromatography using fluorescence detection. The plasma concentration–time data following i.v. administration were best fitted to a two-compartment open model and those following i.m. and s.c. routes were best fitted using one-compartment open model. The collected data were subjected to a computerized kinetic analysis. The mean i.v., i.m. and s.c. elimination half-lives (t 1/2β) were 5.56 ± 0.33 h, 6.12 ± 0.42 h and 7.26 ± 0.6 h, respectively. The steady-state volume of distribution (V dss) was 1.12 ± 0.09 L/kg and total body clearance (ClB) was 2.19 ± 0.1 ml/(min. kg). The absorption half lives (t 1/2ab) were 0.38 ± 0.027 h and 2.1 ± 0.09 h, with systemic bioavailabilities (F) of 96.5% ± 6.4% and 84% ± 5.5% after i.m. and s.c. administration, respectively. After i.m. and s.c. dosing, peak plasma concentrations (C max) of 3.38 ± 0.13 μg/ml and 2.18 ± 0.12 μg/ml were attained after (t max) 1.22 ± 0.20 h and 3.7 ± 0.52 h. The MIC90 of difloxacin for Mannheimia haemolytica was 0.29 ± 0.04 μg/ml. The AUC/MIC90 and C max/MIC90 ratios for difloxacin following i.m. administration were 120 and 11.65, respectively and following s.c. administration were 97.58 and 7.51, respectively. Difloxacin was 31.7–36.8% bound to calf plasma protein. Since fluoroquinolones display concentration-dependent activities, the doses of difloxacin used in this study are likely to involve better pharmacodynamic characteristics that are associated with greater clinical efficacy following i.m. administration than following s.c. administration.  相似文献   

4.
A bioavailability and pharmacokinetics study of powder and liquid tilmicosin formulations was carried out in 18 healthy chickens according to a single-dose, two-period, two-sequence, crossover randomized design. The two formulations were Provitil and Pulmotil AC. Both drugs were administered to each chicken after an overnight fast on two treatment days separated by a 2-week washout period. A modified rapid and sensitive HPLC method was used for determination of tilmicosin concentrations in chicken plasma. Various pharmacokinetic parameters including area under plasma concentration–time curve (AUC0−72), maximum plasma concentration (C max), time to peak concentration (t max), elimination half-life (t 1/2β), elimination rate (k el), clearance (ClB), mean residence time (MRT) and volume of distribution (V d,area) were determined for both formulations. The average means of AUC0−72 for Provitil and Pulmotil AC were very close (24.24 ± 3.86, 21.82 ± 3.14 (μg.h)/ml, respectively), with no significant differences based on ANOVA. The relative bioavailability of Provitil as compared to Pulmotil AC was 111%. In addition, there were no significant differences in the C max  (2.09 ± 0.37, 2.12 ± 0.40 μg/ml), t max  (3.99 ± 0.84, 5.82 ± 1.04 h), t 1/2β (47.4 ± 9.32, 45.0 ± 5.73 h), k el (0.021 ± 0.0037, 0.022 ± 0.0038 h−1), ClB (19.73 ± 3.73, 21.37 ± 4.54 ml/(min/kg)), MRT (71.20 ± 12.87, 67.15 ± 9.01 h) and V d,area (1024.8 ± 87.5, 1009.8 ± 79.5 ml/kg) between Pulmotil AC and Provitil, respectively. In conclusion, tilmicosin was rapidly absorbed and slowly eliminated after oral administration of single dose of tilmicosin aqueous and powder formulations. Provitil and Pulmotil AC can be used as interchangeable therapeutic agents.  相似文献   

5.
Pharmacokinetics, urinary excretion and plasma protein binding of danofloxacin was investigated in buffalo calves following intravenous administration at the dose rate of 1.25 mg/kg to select the optimal dosage regimen of danofloxacin. Drug concentrations in plasma and urine were measured by microbiological assaying. In vitro plasma protein binding was determined employing the equilibrium dialysis technique. The distribution and elimination of danofloxacin were rapid, as indicated by values (mean ±SD) of distribution half-life (t1/2α = 0.16 ± 0.07 h) and elimination half-life (t1/2β = 4.24 ± 1.78 h), respectively. Volume of distribution at steady state (Vss) = 3.98 ± 1.69 L/kg indicated large distribution of drug. The area under plasma drug concentration versus time curve (AUC) was 1.79 ± 0.28 μg/mlxh and MRT was 8.64 ± 0.61 h. Urinary excretion of danofloxacin was 23% within 48 h of its administration. Mean plasma protein binding was 36% at concentrations ranging from 0.0125 μg/ml to 1 μg/ml. On the basis of pharmacokinetic parameters obtained, it is concluded that the revision of danofloxacin dosage regimen in buffalo calves is needed because the current dosage schedule (1.25 mg/kg) is likely to promote resistance.  相似文献   

6.
The pharmacokinetic behavior of cefepime was studied in healthy and febrile cross-bred calves after single intravenous administration (10 mg/kg). The fever was induced with E. coli lipopolysaccharide (1 μg/kg, IV). The drug concentration in plasma was detected by microbiological assay method using E. coli (MTCC 739) test organism. Pharmacokinetic analysis of disposition data indicated that intravenous administration data were best described by 2 compartment open model. At 1 min the concentration of cefepime in healthy and febrile animals were 55.3 ± 0.54 μg/ml and 50.0 ± 0.48 μg/ml, respectively and drug was detected up to 12 h. The elimination half-life of cefepime was increased from 1.26 ± 0.01 h in healthy animals to 1.62 ± 0.09 h in febrile animals. Drug distribution was altered by fever as febrile animals showed volume of distribution (0.27 ± 0.02 L/kg) higher than normal animal (0.19 ± 0.01 L/kg). Total body clearances in healthy and febrile animals were 104.4 ± 2.70 and 114.2 ± 1.20 ml/kg/h, respectively. To maintain minimum therapeutic concentration of 1 μg/ml, a satisfactory dosage regimen of cefepime in healthy and febrile cross-bred calves would be 15.5 mg/kg and 8.2 mg/kg body weight, respectively, to be repeated at 8 h intervals. The T>MIC values (8 h) of cefepime suggested that this agent is clinically effective in the treatment of various infections.  相似文献   

7.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

8.
The pharmacokinetics and urinary excretion of gatifloxacin were investigated after a single intravenous injection of 4 mg/kg body weight in buffalo calves. The therapeutic plasma drug concentration was maintained for up to 12 h. Gatifloxacin rapidly distributed from blood to tissue compartments, which was evident from the high values of the distribution rate constant, α1 (11.1 ± 1.06 h−1) and the rate constant of transfer of drug from central to peripheral compartment, k 12 (6.29 ± 0.46 h−1). The area under the plasma drug concentration–time curve and apparent volume of distribution were 17.1 ± 0.63 (μg.h)/ml and 3.56 ± 0.95 L/kg, respectively. The elimination half-life (t 1/2 β), total body clearance (ClB) and the ratio of drug present in tissues and plasma (T/P) were 10.4 ± 2.47 h, 235.1 ± 8.47 ml/(kg.h) and 10.1 ± 2.25, respectively. About 19.7% of the administered drug was excreted in urine within 24 h. A satisfactory intravenous dosage regimen for gatifloxacin in buffalo calves would be 5.3 mg/kg at 24 h intervals. Abbreviations for pharmacokinetic parameters are given in the footnote of Table I  相似文献   

9.
Enrofloxacin, a key antimicrobial agent in commercial avian medicine, has limited bioavailability (60%). This prompted its chemical manipulation to yield a new solvate‐recrystallized enrofloxacin hydrochloride dihydrate entity (enroC). Its chemical structure was characterized by means of mass spectroscopy, Fourier transformed infrared spectroscopy, X‐ray powder diffraction, and thermal analysis. Comparative oral pharmacokinetics (PK) of reference enrofloxacin (enroR) and enroC in broiler chickens after oral administration revealed noticeable improvements in key parameters and PK/PD ratios. Maximum serum concentration values were 2.61 ± 0.21 and 5.9 ± 0.42 μg/mL for enroR and enroC, respectively; mean residence time was increased from 5.50 ± 0.26 h to 6.20 ± 0.71 h and the relative bioavailability of enroC was 336%. Considering Cmax/MIC and AUC/MIC ratios and the MIC values for a wild‐type Escherichia coli O78/H12 (0.25 μg/mL), optimal ratios will only be achieved by enroC (Cmax/MIC = 23.6 and AUC/MIC = 197.7 for enroC; vs. Cmax/MIC = 10.4 and AUC/MIC = 78.1 for enroR). Furthermore, enroC may provide in most cases mutant prevention concentrations (Cmax/MIC ≥ 16). Ready solubility of powder enroC in drinking water at concentrations regularly used (0.01%) to provide an additional advantage of enroC in the field. Further development of enroC is warranted before it can be recommended for clinical use in veterinary medicine.  相似文献   

10.
Genetic parameters were estimated for production traits and primary antibody response (Ab) against Newcastle diseases virus (NDV) vaccine among two Tanzania chicken ecotypes viz. Kuchi and Tanzania Medium (Medium). Production traits studied were body weights at 8 (Bwt8), 12(Bwt12), 16(Bwt16), and 20 (Bwt20) weeks of age, age at first egg (AFE), egg number in the first 90 days after sexual maturity (EN-90), egg weight (EW), egg shell thickness (STH), and egg shape index (ESI). Heritability estimates for Bwt8, Bwt12, Bwt16, Bwt20, AFE, EN-90, EW, STH, ESI and Ab for Kuchi chicken were 0.38 ± 0.10, 0.41 ± 0.07, 0.44 ± 0.08, 0.45 ± 0.09, 0.42 ± 0.10, 0.31 ± 0.05, 0.43 ± 0.08, 0.53 ± 0.11, 0.48 ± 0.13 and 0.27 ± 0.06, respectively. Corresponding estimates for Medium ecotype were 0.39 ± 0.09, 0.43 ± 0.10, 0.42 ± 0.08, 0.43 ± 0.07, 0.52 ± 0.11, 0.32 ± 0.06, 0.50 ± 0.07, 0.61 ± 0.13, 0.52 ± 0.10 and 0.29 ± 0.05, respectively. Genetic (r g) and phenotypic (rp) correlations in both ecotypes were highest among body weights (i.e. rg = 0.60 to 0.93 and rp = 0.54 to 0.78), and were lowest (around 0.10 and below, ranging from positive to negative) among primary antibody response against NDV vaccine and production traits, and among eggshell thickness, egg shape index and other production traits. The magnitudes of heritability estimates obtained in this study indicate good prospects of improving these traits in both ecotypes through selection.  相似文献   

11.
Three sweet potato varieties (TIS-87/0087; TIS-8164; TIS-2532.OP.1.13) and Green panic (Panicum maximum) were evaluated for forage quality in a completely randomized design (CRD) using 12 sole-fed lactating White Fulani cows for 21 days, and 12 growing White Fulani and White Fulani x Brown Swiss calves for 77 days. Dry matter intake of cows ranged (p < 0.05) between 131 g/Wkg 0.734 in TIS-87/0087 and 152 g/Wkg 0.734 in TIS-8164. Daily milk yields increased (p < 0.05) in TIS-87/0087 (2%) and TIS-8164 (5%), but decreased in TIS-2532.OP.1.13 (5%) and Green panic (19%). Mean (±SEM) milk total solids (13.16 ± 0.05 g/100 g), ash (0.78 ± 0.01 g/100 g), protein (3.79 ± 0.07 g/100 g), fat (3.98 ± 0.06 g/100 g), and lactose (4.62 ± 0.14 g/100 g) were significantly different (p < 0.05) among treatments. The White Fulani x Brown Swiss calves recorded about 10, 25 and 29% higher birthweight, milk intake and bodyweight gains respectively, but about 3% lower dry matter intake than the purebred White Fulani calves. The rumen degradation rates were similar (p > 0.05), while the rest rumen dry matter degradation characteristics were lowest (p < 0.05) for Green panic. Sweet potato forage could be used as sole feed or supplement for dry-season Green panic.  相似文献   

12.
Forty bitches in anoestrus for more than six months from the last heat, with a serum progesterone level less than 1 ng/ml were subjected to oestrus induction trials using anti-prolactin drugs and levothyroxine, once daily orally for 20 consecutive days. The mean serum progesterone level among them was found to be 0.57 ± 0.03 ng/ml. Out of 10 animals treated in each group, five (50%) in Group I (bromocriptine @ 50 μg/kg body weight), nine (90%) in Group II (cabergoline @ 5 μg/kg body weight), eight (80%) in Group III (thyroxine @10 μg/kg body weight) and seven (70%) in Group IV (thyroxine @ 5 μg/kg body weight) responded by evincing proestrual bleeding. The mean (±SEM) time taken from initiation of treatment to onset of proestrual bleeding in Groups I, II, III and IV was 28 ± 3.39, 13.44 ± 3.12 (P < 0.05), 24.50 ± 3.18 and 33 ± 2.21 days respectively. The mean (±SEM) duration of proestrus and oestrus in the treatment groups was 9.80 ± 0.86, 10.11 ± 0.68, 11.25 ± 0.88 and 10.71 ± 0.68 days and 7.60 ± 0.24, 8 ± 0.29, 8.5 ± 0.63 and 7.85 ± 0.46 days respectively. The conception rate in relation to the number of animals responding to oestrus induction in the treatment groups was 80%, 78%, 63% and 57%, respectively. The mean (±SEM) gestation length calculated from the last breeding date and litter size in the treatment groups varied from 60.50 ± 1.55 to 64.00 ± 0.82 days and 5.14 ± 0.34 to 6.40 ± 0.40 respectively.  相似文献   

13.
The purpose of this study was to describe and compare the pharmacokinetic properties of different formulations of erythromycin in dogs. Erythromycin was administered as lactobionate (10 mg/kg, IV), estolate tablets (25 mg/kg p.o.) and ethylsuccinate tablets or suspension (20 mg/kg p.o.). After intravenous (i.v.) administration, the principal pharmacokinetic parameters were (mean ± SD): AUC(0–∞) 4.20 ± 1.66 μg·h/mL; Cmax 6.64 ± 1.38 μg/mL; Vz 4.80 ± 0.91 L/kg; Clt 2.64 ± 0.84 L/h·kg; t½λ 1.35 ± 0.40 h and MRT 1.50 ± 0.47 h. After the administration of estolate tablets and ethylsuccinate suspension, the principal pharmacokinetic parameters were (mean ± SD): Cmax, 0.30 ± 0.17 and 0.17 ± 0.09 μg/mL; tmax, 1.75 ± 0.76 and 0.69 ± 0.30 h; t½λ, 2.92 ± 0.79 and 1.53 ± 1.28 h and MRT, 5.10 ± 1.12 and 2.56 ± 1.77 h, respectively. The administration of erythromycin ethylsuccinate tablets did not produce measurable serum concentrations. Only the i.v. administration rendered serum concentrations above MIC90 = 0.5 μg/mL for 2 h. However, these results should be cautiously interpreted as tissue erythromycin concentrations have not been measured in this study and, it is recognized that they can reach much higher concentrations than in blood, correlating better with clinical efficacy.  相似文献   

14.
South Africa currently loses over 1000 white rhinoceros (Ceratotherium simum) each year to poaching incidents, and numbers of severely injured victims found alive have increased dramatically. However, little is known about the antimicrobial treatment of wounds in rhinoceros. This study explores the applicability of enrofloxacin for rhinoceros through the use of pharmacokinetic‐pharmacodynamic modelling. The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were evaluated in five white rhinoceros after intravenous (i.v.) and after successive i.v. and oral administration of 12.5 mg/kg enrofloxacin. After i.v. administration, the half‐life, area under the curve (AUCtot), clearance and the volume of distribution were 12.41 ± 2.62 hr, 64.5 ± 14.44 μg ml?1 hr?1, 0.19 ± 0.04 L h?1 kg?1, and 2.09 ± 0.48 L/kg, respectively. Ciprofloxacin reached 26.42 ± 0.05% of the enrofloxacin plasma concentration. After combined i.v. and oral enrofloxacin administration oral bioavailability was 33.30 ± 38.33%. After i.v. enrofloxacin administration, the efficacy marker AUC24: MIC exceeded the recommended ratio of 125 against bacteria with an MIC of 0.5 μg/mL. Subsequent intravenous and oral enrofloxacin administration resulted in a low Cmax: MIC ratio of 3.1. The results suggest that intravenous administration of injectable enrofloxacin could be a useful drug with bactericidal properties in rhinoceros. However, the maintenance of the drug plasma concentration at a bactericidal level through additional per os administration of 10% oral solution of enrofloxacin indicated for the use in chickens, turkeys and rabbits does not seem feasible.  相似文献   

15.
The pharmacokinetics of erythromycin was studied in five lactating dairy cows following single intramammary infusion of 300 mg erythromycin in each of two quarters per cow with specific mastitis. Levels of erythromycin in plasma and quarter milk samples were measured by agar plate diffusion assay using Micrococcus luteus (ATCC 9341) as the test organism. Erythromycin level in plasma reached a peak concentration value (C max) of 0.07 ± 0.01 μg/ml at 30 min; thereafter, levels declined gradually to reach 0.05 ± 0.00 μg/ml 12 h post drug administration. The pharmacokinetic profile of the drug revealed mean absorption half life (t 1/2ka) as 0.26 ± 0.05 h. The drug was eliminated slowly with elimination half-life (t 1/2β) of 13.75 ± 0.35 h and elimination rate constant (k el) of 0.04 ± 0.00 h−1. The volume of distribution based on the zero-time plasma concentration intercept of the least-squares regression line of the elimination phase (V d(B)) was 0.032 L/kg. The drug crossed to untreated quarters also; mean drug levels of 0.20 ± 0.07, 0.23 ± 0.07, 0.17 ± 0.04, and 0.17 ± 0.04 μg/ml were found at 3, 6, 8 and 12 h, respectively. The mean drug concentration for treated quarters was measured as 22.97 ± 2.31 μg/ml milk at first milking (12 h) following drug infusion. No apparent adverse reaction was seen in cows administered erythromycin. It is concluded that following intramammary infusion erythromycin diffuses readily and extensively in various body fluids and tissues and adequate concentration is maintained in udder tissues for at least 12 h post intramammary administration. Thus, erythromycin may be recommended for local therapy of acute mastitis caused by Gram-positive bacteria in lactating dairy cows.  相似文献   

16.
The biopharmaceutical properties of four fuced trimethoprim/sulfonamide combinations were investigated in the horse. Eight fasted horses were dosed at 1 week intervals in a sequentially designed study with one intravenous (i.v.) and three oral trimethoprim/sulfadiazine (TMP/SDZ) formulations (1, 2 and 3) administered at a dose of 5 mg/kg trimethoprim (TMP) and 25 mg/kg sulfadiazine (SDZ). Plasma concentrations of each compound were monitored for 48 h. Pharmacokinetic parameters (volume of distribution, bioavailability and total body clearance) for TMP and SDZ were calculated and compared. After oral administration plasma concentrations of TMP and SDZ increased rapidly. With all three paste formulations, TMP peak plasma concentrations were attained within 2 h. SDZ mean peak plasma concentrations were reached at 2.59 ± 0.48 h for a commercial paste (l), and at 1.84 ± 0.66 h and 1.95 ± 0.61 h for the two self-made formulations (2 and 3). Mean peak plasma TMP concentrations (± SD) were 1.72 ± 0.36 μg/ml, 1.42 ± 0.37 μg/ml and 1.31 ± 0.36 μ g/d, and mean peak plasma SDZ concentrations 12.11 ± 4.5 5 μg/ml, 12.72 ± 3.47 μg/ml and 15.45 ± 4.74 μg/ml for preparations 1, 2 and 3. The bioavailability of TMP was 67.0 ± 20.3%, 57.7 ±21.6% and 60.9 f 18.9% and of SDZ 57.6 ± 14.8%, 59.3 ± 19.5% and 65.9 ± 5.8% for SDZ for 1, 2 and 3, respectively. Following i.v. administration TMP/SDZ plasma concentration ratios approached the optimal 1:20 ratio (It 10%) for about 5 h, but following the oral administrations this ratio was only achieved for a very short time-span. No adverse effects were seen following i.v. and oral administration. In considering the pharmacokinetic data in combination with in vitro antibacterial sensitivity data, it is concluded that treatment at a dose of 5 mg/kg TMP and 25 mg/kg SDZ with a dosing interval of 12 h can be regarded as therapeutically effective for susceptible bacteria (MIC90 0.25/4.75) for all three oral formulations. It is concluded that neither the formulation nor the addition of different excipients result in significantly different bioavailabilities.  相似文献   

17.
Ciprofloxacin was administered intravenously @ 5 mg/kg body weight to six healthy dogs. After a washout period of two weeks, fever was induced by injecting Escherichia (E) coli endotoxin. Ciprofloxacin was administered again. Blood samples were collected at various time intervals and analyzed for ciprofloxacin with HPLC. The kinetic analysis revealed the volume of distribution in healthy vs. febrile dogs as 2.12 ± 0.32 vs. 1.79 ± 0.43 L/Kg, respectively. The elimination half life was 2.23 ± 0.78 and 2.07 ± 0.74 hours in healthy and febrile dogs, respectively. Similarly, dogs under healthy and febrile conditions showed comparable total plasma clearance of 0.66 ± 0.06 and 0.60 ± 0.07 L/Kg/h, respectively. All these and other investigated kinetic parameters were statistically non significant. This study concludes that the pharmacokinetic behavior of ciprofloxacin is similar under healthy and febrile conditions. Thus, the kinetic studies of fluoroquinolones conducted in normal/healthy animals may be used to depict the pharmacokinetic parameters in diseased animals.  相似文献   

18.
Kumar, V., Madabushi, R., Lucchesi, M. B. B., Derendorf, H. Pharmacokinetics of cefpodoxime in plasma and subcutaneous fluid following oral administration of cefpodoxime proxetil in male beagle dogs. J. vet. Pharmacol. Therap. 34 , 130–135. Pharmacokinetics of cefpodoxime in plasma (total concentration) and subcutaneous fluid (free concentration using microdialysis) was investigated in dogs following single oral administration of prodrug cefpodoxime proxetil (equivalent to 5 and 10 mg/kg of cefpodoxime). In a cross over study design, six dogs per dose were utilized after a 1 week washout period. Plasma, microdialysate, and urine samples were collected upto 24 h and analyzed using high performance liquid chromatography. The average maximum concentration (Cmax) of cefpodoxime in plasma was 13.66 (±6.30) and 27.14 (±4.56) μg/mL with elimination half‐life (t1/2) of 3.01 (±0.49) and 4.72 (±1.46) h following 5 and 10 mg/kg dose, respectively. The respective average area under the curve (AUC0–∞) was 82.94 (±30.17) and 107.71 (±30.79) μg·h/mL. Cefpodoxime was readily distributed to skin and average free Cmax in subcutaneous fluid was 1.70 (±0.55) and 3.06 (±0.93) μg/mL at the two doses. Urinary excretion (unchanged cefpodoxime) was the major elimination route. Comparison of subcutaneous fluid concentrations using pharmacokinetic/pharmacodynamic indices of fT>MIC indicated that at 10 mg/kg dose; cefpodoxime would yield good therapeutic outcome in skin infections for bacteria with MIC50 upto 0.5 μg/mL while higher doses (or more frequent dosing) may be needed for bacteria with higher MICs. High urine concentrations suggested cefpodoxime use for urinary infections in dogs.  相似文献   

19.
The aim of this work was to study the pharmacokinetic behaviour and the inhibitory effect on acetylcholinesterase and butyrylcholinesterase activities of chlorpyrifos in male and female cattle after pour-on administration. Determination of cholinesterase activity in plasma and erythrocyte was carried out according to Ellman kinetic method. The mean baseline activities were 9338.39 ± 1331.61 and 13220.69 ± 2274.18 to acetylcholinesterase and 624.65 ± 39.32 and 641.68 ± 88.08 IU/L to butyrylcholinesterase in females and males, respectively. Acetylcholinesterase was the predominant form of cholinesterase analyzed, with low levels of butyrylcholinesterase. The basal acetylcholinesterase activities of the bulls were significantly greater than those of cows. The inhibitory effect of topical chlorpyrifos administration was lower on butyrylcholinesterase than on acetylcholinesterase. Chlorpyrifos peak plasma concentration (male:10.920 ± 4.18; female:12.12 ± 3.88 μg/L) were reached at 11.92 ± 9.19 and 8.17 ± 7.67 h in male and female, respectively. The values of area under curve were 185.96 ± 168.45 and 278.89 ± 270.00 μg·h/L and mean residence time were 13.95 ± 8.10 and 14.90 ± 9.80 h in male and female, respectively.  相似文献   

20.
The pharmacokinetics of enrofloxacin (EFL) was investigated in turkeys (6 male and 6 female; 7-month-old at the start of the experiment), after intravenous and oral administration at a dose of 10 mg/kg body weight. The serum concentrations of EFL and its active metabolite ciprofloxacin (CFL) were determined by high-performance liquid chromatography. The serum concentrations vs time were analysed by a compartmental analysis. The mean values of EFL pharmacokinetic parameters showed differences only between values of Vd,ss (3.46±0.19 for the females and 4.53±0.11 L/kg for the males, p>0.05). The metabolite CFL was eliminated more slowly than its parent compound. There were no statistically significant differences between the values of the CFL pharmacokinetic parameters calculated for both sexes, excluding the higher values (p>0.05) of Cmax in the females. The ratio AUCCFL/AUCEFL×100 was 4.4% in the male and 6.84% in the female birds. After oral administration of EFL the values of F(%) were 77.83 in the female and 79.61 in the male turkeys. Higher CFL serum concentrations were measured in females (p>0.05). The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in turkeys can be characterized as similar to that in chickens and very similar between both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号