首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of 5% oleic or palmitic acid, based on amylose. The cooked product was rapidly cooled in an ice bath and then freeze‐dried or drum‐dried. Amylose was removed from solution by forming helical inclusion complexes with the fatty acid, and the inclusion complexes formed submicron spherical particles upon cooling. The dried material was reconstituted to form a paste that exhibited gel‐like properties upon standing, but that flowed readily when shear was applied. The rheological properties of these pastes were measured to determine the effects on the flow properties of 1) the solids concentration in the reconstituted paste, 2) the method of sample drying and reconstitution, and 3) the fatty acid used. The materials were very spreadable, and at the highest concentrations their flow properties were similar to a commercial shortening. The pasting properties of the dried solids were also examined.  相似文献   

2.
The effect of processing conditions in an excess steam jet cooker on the degradation of waxy maize starch was studied. The temperature of the steam, the flow rate of the starch slurry, and the concentration of starch were determined to influence the extent of degradation. The viscosity of concentrated solutions of the jet‐cooked product and the intrinsic viscosity of dilute solutions were used as measures of the extent of molecular degradation. The viscosity decreased at higher reaction temperatures, and at higher team‐to‐starch ratios. Multiple passes through the jet cooker decreased the viscosity dramatically for the first two passes, but little additional change was observed for further passes. The results show that mechanical and thermal degradation effects are both important in the jet cooking of waxy maize starch, although the primary effect is due to mechanical degradation.  相似文献   

3.
The objective was to study the influence of jet‐cooked Prowashonupana barley flour on total phenolic contents, antioxidant activities, water‐holding capacities, and viscoelastic properties. Barley flour was jet‐cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxidant activity decreased after jet‐cooking, while the bound phenolic content and antioxidant significantly increased regardless of pH. Detectable levels of gallic acid, caffeic acid, ferulic acid, and p‐coumaroyl‐pentose in the jet‐cooked barley flour hydrolysates along with vitexin were found among 21 phenolics by LC‐ESI‐Q‐TOF‐MS analysis. Jet‐cooking at an elevated pH resulted in increased pasting viscosities. The oil content was decreased after jet‐cooking and continued to decrease with increased pH values. Jet cooking dramatically increased water holding capacity from 179% for unprocessed flour to 643% for jet‐cooked flour without pH adjustment, and water‐holding capacity was greatly increased to 914% by jet‐cooking at pH 11. The combination of jet‐cooking and pH adjustment had tremendous influence on water‐holding and pasting properties. This increase in functionality should contribute to food applications such as bakery and frozen products because of the release of the bound phenolic content, antioxidant activities, and improved water‐holding and pasting abilities.  相似文献   

4.
Starch‐lipid composites are a new category of fat replacers. The physicochemical properties of reconstituted corn starch and soybean oil composites (CSSBOC) were evaluated and compared with the properties of reconstituted jet‐cooked corn starch (JCCS). Gel firmness, thermal properties, and hot pasting properties at two pH levels and two oil content levels were studied. Amylose content of CSSBOC was unaffected by processing. Buffer pH significantly affected the firmness of the gels made with JCCS. Gels appeared to have a more ordered structure and were firmer at pH 3.4 than at pH 6.0. The firmness of gels made with CSSBOC was not affected by pH or oil content. Retrogradation enthalpy of the gels made with JCCS was significantly affected by pH. Differences in the thermal characteristics of gels made with CSSBOC were attributed to pH and oil content. Peak viscosity, cold paste viscosity, and breakdown viscosity changed significantly when CSSBOC pastes were reconstituted in different pH buffers. Only hot paste viscosity and cold paste viscosity changed significantly when JCCS pastes were reconstituted in different pH buffers. Results establish critical parameters for processing decisions and for the understanding of the behavior of CSSBOC in food system models in which pH is an important factor.  相似文献   

5.
Pasting, rheological, and water‐holding properties of buckwheat (Fagopyrum esculentum) flour obtained from whole achenes separated into three particle sizes, and three commercial flours (Fancy, Supreme, and Farinetta) were measured with or without jet‐cooking. Fancy had instantaneous paste viscosity (measured using RVA) after jet‐cooking that was not observed for Supreme or Farinetta, and paste viscosity was lower for the latter two flours. Supreme jet‐cooked flour exhibited higher peak viscosity than flour without jet‐cooking, and paste exhibited high shear‐thinning. Fancy exhibited strongest viscoelastic properties (measured using a rheometer). Jet‐cooking damaged buckwheat flour structure, thereby reducing viscoelasticity. Buckwheat flour pastes experienced shear‐thinning over a wide range of shear rates. Jet‐cooking greatly enhanced water‐holding capacity. Buckwheat flour particle size did not greatly influence paste viscosity. Study showed buckwheat flours have unique pasting and rheological characteristics that have different food applications, which could especially be useful for people with celiac disease as buckwheat is gluten‐free.  相似文献   

6.
《Cereal Chemistry》2017,94(2):237-241
The effect of complexation temperature (30, 60, and 90°C) on the gelatinization properties, glass transition, enzymatic hydrolysis, and crystalline structure of high‐amylose corn starch–oleic acid (HACS‐OA) complexes created by a dimethyl sulfoxide (DMSO)‐based complexation method and of normal corn starch–oleic acid (NCS‐OA) complexes created by an alkaline‐based complexation method were investigated by using differential scanning calorimetry, thermogravimetric analysis, and X‐ray diffractometry. The results indicated that the highest complex indices were found in the complexes created at 30 and 60°C with the DMSO‐based complexation method and alkaline‐based complexation method, respectively. The X‐ray diffraction patterns of both HACS‐OA complexes and NCS‐OA complexes created at different complexation temperatures were the V‐type pattern. For the complexes created by the two methods, both the melting temperature and the glass transition temperature increased obviously with increasing complexation temperature. Complexation temperature also influenced the enzymatic hydrolysis rate of starch‐OA complexes.  相似文献   

7.
Flavored rice cakes are produced commercially by spraying a flavor coating on the cake surface. This study describes a method of making a flavored coating that is applied to individual rice grains before puffing and results in a more uniform flavor distribution. Rice was coated at 5% or 10% levels with coating materials made of jet‐cooked (JC) starch or starch cooked in a water bath (WB), corn starch powder, salt, and a flavor compound. The viscosity of coating materials made with WB starch was twice that of coatings made of JC starch. Rice coated at 10% level had decreased specific density of rice cakes. Rice cakes made from coated grain were similar in appearance to cakes made from uncoated rice but had higher flexural strength. Retention of flavor volatiles after puffing the coated grain was 82.8–56.8% for apple, 72.5–40.3% for anise, and 52.5–24.8% for onion flavor. The flavor volatiles measured in the rice cakes decreased during a three‐month storage period to 49.3% for apple, 25.8% for anise, and 10.1% for onion flavor. Slightly higher retention of flavor volatiles was observed in cakes made with WB starch than in cakes made with JC starch. The difference in retention of flavor volatiles between starch slurry or starch‐oil emulsion treatments was small.  相似文献   

8.
In this study, the formation of complexes between surfactants and the helical chains of amylopectins was confirmed. Nonionic surfactants with hydrophobic and hydrophilic groups of appropriate size and chemical structure enhanced the swelling and gelatinization processes of starch granules. Hydrophobic groups form complexes with the amylose and linear chains of amylopectin by becoming inserted into the hydrophobic inner area of the helical structures. The hydrophilic groups help the approach of the hydrophobic groups into the hydrated molecular chains and thus aid the formation of the complex. Among the anionic surfactants tested, SDS and sodium n‐decyl benzenesulfate caused maximum swelling and gelatinization peaks. The average length of the amylopectin exterior chains is almost the same as that of the hydrophobic chains of SDS (16.9 Å) and of sodium decyl benzenesulfate (18.2 Å). This suggests that these anionic surfactants form rigid complexes with the exterior of the amylopectin by fitting their hydrophobic chains to the hydrophobic inside of the helical structures of these short exterior chains. This process was clarified by NMR analysis and by a decrease in the complex with the addition of iodine. The hydrophobic alkyl chains of anionic and cationic surfactants fix to the edge of the starch molecular chains by forming inclusion complexes with the helical chains of the amylopectin. Cationic ions interact with the starch molecular chains, causing a negative charge that results in a more rapid and efficient swelling of the starch granules. A decrease in setback value occurs due to the inhibition of rearrangement among the starch molecular chains. With SDS, the complex molecular chains become more extensively developed through the repulsion effects of the anionic ions resulting in a larger swelling power and gelatinization peak.  相似文献   

9.
Near‐infrared reflectance (NIR) spectroscopy can be used for fast and reliable prediction of organic compounds in complex biological samples. We used a recently developed NIR spectroscopy instrument to predict starch, protein, oil, and weight of individual maize (Zea mays) seeds. The starch, protein, and oil calibrations have reliability equal or better to bulk grain NIR analyzers. We also show that the instrument can differentiate quantitative and qualitative seed composition mutants from normal siblings without a specific calibration for the constituent affected. The analyzer does not require a specific kernel orientation to predict composition or to differentiate mutants. The instrument collects a seed weight and a spectrum in 4–6 sec and can collect NIR data alone at a 20‐fold faster rate. The spectra are acquired while the kernel falls through a glass tube illuminated with broad spectrum light. These results show significant improvements over prior single‐kernel NIR systems, making this instrument a practical tool to collect quantitative seed phenotypes at high throughput. This technology has multiple applications for studying the genetic and physiological influences on seed traits.  相似文献   

10.
Forty‐three yellow dent corn samples of five different hybrids varying in test weight and moisture content were obtained from 14 different locations in 1993. The locations for acquired samples were selected randomly to cover a wide range of test weights based on preliminary data from eight states of the corn belt where 94% of the U.S. corn crop was produced in 1993. Samples were wet‐milled using a 100‐g standard laboratory‐scale wet‐milling procedure. Protein content in starch and starch viscosity were determined. Starch yield, protein content in starch, and starch viscosity were not affected significantly by test weight.  相似文献   

11.
Reduced fat (RF) mayonnaise was formulated by replacing part of the oil with gelatinized rice starch and xanthan gum, and the effect of their inclusion on the rheological properties was investigated. In the RF mayonnaise preparation, oil or fat was partially replaced by modified waxy rice starch paste at levels of 10, 30 (SP30), and 50% (SP50) of total oil used. Xanthan gum was added to SP30 and SP50 at the level of 0.2% each, designated SP30G and SP50G. Excellent emulsion stability was maintained until 30% of oil was replaced. The flow behavior of the RF mayonnaises was thixotropic, which indicates a decrease in viscosity with increased shear rate. Both yield stress and consistency index decreased with increasing starch paste content. The addition of xanthan gum increased the yield stress and consistency index. The elastic modulus (G′) of the RF mayonnaises was always greater than the loss modulus and decreased with increasing starch paste content. The SP30G sample exhibited a higher G′ value despite its low oil content. The SP30G mayonnaise formulated contained 23% lower total calories, compared with full‐fat mayonnaise, and exhibited similar rheological properties to that of commercial RF mayonnaise.  相似文献   

12.
The poor barrier and mechanical properties of biopolymer‐based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch‐clay nanocomposites were synthesized by a melt extrusion method. Natural (MMT) and organically modified (I30E) montmorillonite clays were chosen for the nanocomposite preparation. The structures of the hybrids were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Films were made through casting using granulate produced by a twin‐screw extruder. Starch/MMT composite films showed higher tensile strength and better water vapor barrier properties than films from starch/I30E composites, as well as pristine starch, due to formation of intercalated nanostructure. To find the best combinations of raw materials, the effects of clay content (0–21 wt% MMT), starch sources (corn, wheat, and potato), and amylose content (≈0, 28, 55, 70, 100%) on barrier and mechanical properties of the nanocomposite films were investigated. With increase in clay content, significantly higher (15–92%) tensile strength (TS), and lower (22–67%) water vapor permeability (WVP) were obtained. The barrier and mechanical properties of nanocomposite films did not vary significantly with different starch sources. Nanocomposite films from regular corn starch had better barrier and mechanical properties than either high amylopectin or high‐amylose‐based nanocomposite films. WVP, TS, and elongation at break (%E) of the films did not change significantly as amylose content increased beyond 50%.  相似文献   

13.
Starch, in particular the linear amylose, is able to form inclusion complexes with a wide spectrum of ligand molecules, among them flavor compounds. The complexing ability of a homologous series of gamma- and delta-lactones with potato starch was followed by amperometric iodine titration, differential scanning calorimetry, and wide-angle X-ray diffraction measurements. Lactones with a linear chain of a size > or = C(5) form inclusion complexes with starch, whereas lactones with a short linear chain, such as gamma-heptalactone, show poor complexing ability. The thermal stability of starch-lactone complexes increases with increasing chain length of the lactone. In general, lactones induce the formation of V(h) helices. Only delta-decalactone complexes with starch were not definitely identified as V(h) amylose helices. Complexation of starch dispersions with lactones induce turbidity and gelation or phase separation, both phenomena being the result of microphase separation.  相似文献   

14.
Objectives of this study were to compare thermal properties, swelling power, and enzymatic hydrolysis of a type 5 resistant starch (RS5) with that of normal corn starch (NCS) and high‐amylose corn starch (HA7). The RS5 was prepared by complexing debranched HA7 with stearic acid (SA). Because of amylose‐helical‐complex formation with SA, the RS5 starch granules showed restricted swelling at 95°C. The RS5 displayed a larger RS content (67.8%) than the HA7 (33.5%) and NCS (0.8%), analyzed following AOAC method 991.43 (AACC International Approved Method 32‐07.01). When the cooked RS5, HA7, and NCS were used to prepare diets for rats with 55% (w/w) starch content, RS contents of the diets were 33.7, 15.8, and 2.6%, respectively. After the diet was fed to the rats in week 1, ≈16% of the starch in the RS5 diet was found in the feces, substantially greater than that of the HA7 diet (≈6%) and NCS diet (0.1%). The percentage of starch not being utilized in the RS5 diet decreased to ≈5% in week 9, which could be partially attributed to fermentation of RS5 by gut microflora. Large proportions (68–99%) of the SA in the RS5 diet were unabsorbed and discharged in the rat feces. The results suggest that the interactions between starch and SA can be used to enhance resistance of starch to in vitro and in vivo digestion.  相似文献   

15.
Three experiments were conducted to determine the influence of hotplate surface temperature (250, 300, 350, and 400°C), pasta‐to‐water ratio, and beaker material (glass versus stainless steel) on the final quality of cooked spaghetti. In all the experiments, 13, 20, 27, 33, and 48 g of pasta were cooked and its final quality measured as cooking loss, cooked weight, and cooked firmness. Cooking time was greater when cooked at 250 than 400°C, with 48 than 13 g of pasta, and with a glass than with a stainless steel vessel. Cooking loss, cooked weight, and cooked firmness were greater when cooked at 400 than 250°C, with 13 than 48 g of pasta, and with a stainless steel than with a glass vessel. Evidence of the effects of hotplate surface temperature, pasta‐to‐water ratio, and beaker material on pasta cooking time and cooked quality suggests that these parameters should be addressed in AACC International Approved Method 66‐50.01.  相似文献   

16.
Dry waxy wheat starch granules were heat‐treated at 120°C for 5 hr, and then shaken vigorously in a biphasic system of oil and water. Non‐heat‐ treated starch remained in the aqueous phase, whereas the heat‐treated starch granules showed a strong oil‐binding ability that was lost by trypsin treatment. This result showed that the starch granule surface protein changed from hydrophilic to hydrophobic due to the heat treatment. The presence of starch granule surface protein was ascertained by staining with fluorescamine and fluorescence microscopic observation. Heat‐treated waxy wheat starch granules were incubated with a 25% KI/10% I2 (w/v) solution, which produced “ghosts” (exterior and interior) structures. The exteriors stained red‐brown, whereas the interiors stained black‐brown. Sonication (20 kHz for 255 sec) followed by centrifugation separated the structures, which were then shaken vigorously in an oil and water system. Only the exterior ghosts exhibited a remarkable emulsification property, which disappeared after trypsin treatment. The ghosts from unheated control granules did not show emulsification. The presence of protein in the exterior ghost fraction was further substantiated by fluorescamine treatment. No protein was detectable in the interior fraction with this dye. From these results, we suggest that the ghost fraction of the waxy wheat starch contained the starch granule surface protein that was made hydrophobic by heat treatment. Also, the nature of the induced emulsification property of the exterior fraction (ghosts) and the oil‐binding ability of the heat‐treated waxy wheat starch granules coincided. Both were due to the hydrophobic nature of the same starch granule surface protein, which showed that the ghosts were the swollen form of the outer region of the waxy starch granule.  相似文献   

17.
Fiber from wheat and flax is mostly insoluble, making addition in high amounts to a food difficult without adversely affecting product attributes. One approach to increasing the level of these fibers in food is to hydrolyze fiber to more soluble forms through processing. This study was designed to evaluate the impact of a steam pressure cooking process on physicochemical properties of ready‐to‐eat (RTE) cereal with 17.7% added unhydrolyzed flax fiber (a combination of arabinoxylans, rhamnogalacturonans, and pectins) or 15.4% added hydrolyzed wheat fiber (a purified arabinoxylan extract). Peak molecular weights of unhydrolyzed and hydrolyzed fibers were ∼2.9 × 106 and ∼800 g/mol, respectively, with a ∼400‐fold higher viscosity for unhydrolyzed fiber. Molecular weight of the unhydrolyzed fiber ingredient was reduced to approximately the molecular weight of the hydrolyzed fiber as a result of the low‐shear steam pressure cooking process used, and consistent with molecular weight results, there was only a twofold difference in viscosity of the cereal remaining. The low‐fiber control RTE cereal had the highest viscosity owing to starch content.  相似文献   

18.
Recently, we reported the development of an enzymatic corn wet‐milling process that reduces or eliminates sulfur dioxide requirements during steeping, considerably reduces steep time, and produces starch yields comparable to that of conventional corn wet‐milling. The best results so far, using the enzymatic corn wet‐milling procedure, were achieved when a particular protease enzyme (bromelain) was used. In this study, pasting properties and surface characteristics of starch obtained from six different enzyme treatments (three glycosidases [β‐glucanase, cellulase, and xylanase] and three proteases [pepsin, acid protease, and bromelain]) using the enzymatic corn wet‐milling procedure were evaluated and compared with those from starch obtained using the conventional corn wet‐milling procedure. Significant effects from enzymatic milling were observed on all the three starch pasting properties (peak, shear thinning, and setback). The setback viscosities of starch from all enzyme treatments were significantly lower compared with those of the control sample, indicating that starch polymers from enzymatic corn wet‐milling do not reassociate to the same extent as with the control. Comparison between bromelain treatment and the control sample showed that starch samples obtained from bromelain treatment are very similar to control starch in water‐binding capacity, molecular breakdown, and time to swell when cooked in water. Significant effects from enzymatic milling were observed on the surface characteristics of starch granules. The glycosidase treatments, especially the β‐glucanase samples, showed holes in the starch granules. No visual differences were observed in starch granules between bromelain and control samples.  相似文献   

19.
Doubled haploid wheat lines developed from a cross between a hard white winter wheat variety of normal starch endosperm and a waxy wheat variety were used to determine the effects of allelic variation in Wx‐1, Glu‐D1, Glu‐B3, and Pinb‐D1 loci on physiochemical properties of flour, noodle dough properties, and textural quality of cooked noodles. Milling yield, damaged starch content, protein content, and SDS sedimentation volume of flour were influenced the most by allelic composition of Pinb‐D1 loci, less by Wx‐1 loci, and least by Glu‐B3. Wheat lines carrying Pinb‐D1b or Glu‐B3h alleles exhibited higher milling yield and damaged starch content of flour than those with Pinb‐D1a and Glu‐B3d alleles. Wheat lines carrying the Pinb‐D1b allele were higher in protein content and SDS sedimentation volume than those carrying Pinb‐D1a. Mixograph water absorption was largely influenced by allelic composition of Wx‐1 loci, whereas mixograph mixing time and mixing tolerance were predominantly determined by allelic composition of Glu‐D1 loci. Amylose content and pasting properties of starch were mainly determined by allelic composition of Wx‐1 loci with little influence by allelic compositions of Glu‐D1, Glu‐B3, and Pinb‐D1 loci. Allelic composition of Wx‐1 loci contributed 53.4% of the variation in optimum water absorption of noodle dough and 26.7% of the variation in thickness of the noodle dough sheet. The variation of 7.8% in optimum water absorption of noodle dough was contributed by the allelic composition of Pinb‐D1 loci. Allelic composition of Wx‐1 loci was responsible for 73.2, 74.4, and 59.6% in the variation of hardness, springiness, and cohesiveness of cooked noodles, respectively. Cohesiveness of cooked noodles was also influenced by the allelic compositions of Glu‐B3 and Pinb‐D1 loci to a smaller extent.  相似文献   

20.
The origin of resistant starch (RS) in distiller's dried grains with solubles (DDGS) of triticale, wheat, barley, and corn from dry‐grind ethanol production was studied. A considerable portion of starch (up to 18% in DDGS) escaped from either granular starch hydrolysis or conventional jet‐cooking and fermentation processes. Confocal laser scanning microscopy revealed that some starch granules were still encapsulated in cells of grain kernel or embedded in protein matrix after milling and were thus physically inaccessible to amylases (type RS1). The crystalline structures of native starch granules were not completely degraded by amylases, retaining the skeletal structures in residual starch during granular starch hydrolysis or leaving residue granules and fragments with layered structures after jet‐cooking followed by the liquefaction and saccharification process, indicating the presence of RS2. Moreover, retrograded starch molecules (mainly amylose) as RS3, complexes of starch with other nonfermentable components as RS4, and starch–lipid complexes as RS5 were also present in DDGS. In general, the RS that escaped from the granular starch hydrolysis process was mainly RS1 and RS2, whereas that from the jet‐cooking process contained all types of RS (RS1 to RS5). Thus, the starch conversion efficiency and ethanol yield could be potentially affected by the presence of various RS in DDGS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号