首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
采用酸性大红GR染料和BL-阻燃剂同步处理杨木单板,通过改变浸渍温度、BL-阻燃剂浓度、酸性大红GR染液浓度等工艺参数,分析酸性染料和阻燃剂同步处理对杨木单板性能的影响。结果表明:BL-阻燃剂的添加明显提高了单板的上染率,且BL-阻燃剂浓度为10%时上染率最大为23.97%,氧指数和色差随BL-阻燃剂浓度的增加而增大,最大值分别达到46.3%和72.346;随着酸性大红GR染液浓度的增加,单板上染率在浓度为0.1%时达到峰值,而氧指数呈减小趋势,色差逐渐增大再减小;浸渍温度对单板性能影响显著,单板上染率、氧指数和色差随温度升高均增大,80℃最大值分别是34.18%、42.7%和73.257。  相似文献   

2.
采用在相对湿度为100%的环境中,测定材料因吸潮而增重的方法对6种橡胶木阻燃胶合板吸潮率、药剂吸潮率以及胶合板吸药率为15%时与未阻燃处理的橡胶木胶合板吸潮率进行了对比和评估。其中磷氮系阻燃剂的吸潮性明显高于WFR树脂型阻燃剂。所有阻燃处理的橡胶木胶合板吸潮性均高于未处理的普通橡胶木胶合板。  相似文献   

3.
阻燃剂WFRJ1改性木材的体积稳定性和涂饰性能   总被引:3,自引:0,他引:3  
用阻燃剂WFRJ1处理大青杨木材并对处理材的阻燃性能、涂饰性能和体积稳定性进行测定。结果表明:WFRJ1可用于木制品的阻燃处理。当WFRJ1浓度为10%时,氧指数可达到50%以上,与水溶性RF树脂复配,可大幅度提高处理材的抗胀缩率和阻湿率,增加体积稳定性。经WFRJ1处理后杨木单板的涂饰性能未受影响。  相似文献   

4.
采用在相对湿度为100%的环境中,测定材料因吸潮而增重的方法对6种橡胶木阻燃胶合板吸潮率,药剂吸潮率以及胶合板吸药率为15%时与未阻燃处理的橡胶木胶合板吸潮眩进行了对比和评估。其中磷-氮系阻 吸潮性明显高于WFR树脂型阻燃剂,所有阻燃处理的橡胶木胶合板吸潮性均高于未处理的普通橡胶木胶合板。  相似文献   

5.
毛逸群  徐伟  詹先旭 《林产工业》2020,57(5):7-10,20
研究微波预处理过程中辐射功率、时间和处理方式对杨木单板渗透性的影响规律,以获得后续杨木改性处理理想的微波预处理工艺。在本试验条件下,微波预处理可以使经过质量浓度20%的聚乙二醇2000(PEG-2000)浸渍后的杨木单板烘干后的增重率从26.8%提升至38.2%;随着微波预处理辐射时间的增加,杨木单板浸渍增重率的平均值先上升后下降,并在辐射时间为50 s时达到顶峰;随着微波源输出功率的增加,对杨木单板的渗透性提升效果逐渐上升。微波预处理含水率为10%~13%的杨木单板的优化组合工艺条件为:微波源输出功率100%、微波辐射时间50 s,可使杨木单板在短时间内达到平均温度135.5℃。在微波预处理过程中,需要注意谐振腔与试件接触部位的温度控制,以减小同组试件升温速率差异对微波处理效果的影响。  相似文献   

6.
高性能重组木制造技术可将速生材制造成具有高强度和天然木材纹理结构的新型木材,从而提高速生材的附加值。然而,采用此技术制备的重组木虽然尺寸稳定性显著高于传统工艺制备的重组木,但是仍不能满足室外用材的需求。为提高室外用重组木的尺寸稳定性,采用预压缩处理施胶技术对木单板施胶后制备高性能重组木,通过扫描电镜、压汞仪、激光共聚焦显微镜和超景深显微镜,研究了预压缩处理施胶技术对木单板和重组木的形貌和胶液分布的影响,及其对重组木尺寸稳定性和力学性能的影响。研究结果表明:预压缩处理施胶技术增大了木单板的比表面积,使胶液在单板和重组木中分布更均匀,而且显著降低了重组木的吸水厚度膨胀率(TSR)和吸水宽度膨胀率(WSR)。在63℃/24 h的水煮测试中,TSR和WSR相比未处理材分别降低43.34%和12.82%;在28 h循环测试中,TSR和WSR相比未处理材分别降低50.94%和51.48%。因此,采用预压缩处理施胶技术制备的重组木尺寸稳定性相比未处理材显著提高。同时,重组木的静曲强度、弹性模量和剪切强度相比未处理材分别提高1.63%,12.15%和21.34%。  相似文献   

7.
本文以速生杨木脲醛树脂强化材为研究对象,研究改性后强化材的饰面特性。测试3种不同极性液体在试件表面的接触角,并计算表面自由能;对不同增重率的杨木进行表面胶合质量检测,研究脲醛树脂浸渍处理杨木对其表面胶合质量的影响;利用傅里叶红外光谱分析杨木浸渍后表面官能团的变化。结果表明:经过浸渍后,杨木润湿性增强。3种液体在强化材表面的接触角均小于未处理材与液体的接触角,随着杨木强化材增重率的增加,表面自由能呈增加的趋势。杨木强化材表面胶合强度随着增重率的增加先增大后减小,在增重率为20%时表面胶合强度最大。红外图谱显示,在波数3 340、2 917、1 738、1 643~1 240 cm-1等处,经过脲醛树脂浸渍后强化材的波峰不同程度的强于未处理材。综上所述,脲醛树脂强化材的饰面性能与增重率相关,随着增重率的增加饰面性能先增加后下降。  相似文献   

8.
邢东  李坚  王思群 《林产工业》2020,57(3):15-18,24
利用锥形量热仪CONE对不同热处理工艺下的杨木燃烧行为进行研究。结果表明:热处理后杨木中亲水的羟基、羰基数量明显减少,大量半纤维素降解。木材试样从外部热源引燃到燃烧结束,出现两个主要放热峰。热处理后杨木引燃和燃烧过程的发烟量较大,且热处理杨木引燃时间更短。热处理材的热释放峰值pk-HRR、平均热释放速率av-HRR和总热释放量THR均低于未处理材,表明其燃烧强度低于未处理材。热处理杨木燃烧过程的总烟释放量TSP较未处理材有所增加,同时其引燃时间也有所缩短。因此,对用于家具和室内装饰的热处理木材,建议进行恰当的阻燃处理。  相似文献   

9.
FRW阻燃杨木胶合板物理力学性能和阻燃性能的研究   总被引:1,自引:0,他引:1  
选用新型木材阻燃剂FRW处理杨木单板,研制阻燃性能优异的FRW阻燃杨木胶合板,并对其各项物理力学性能和阻燃性能进行了测试.结果表明:FRW阻燃杨木胶合板的物理力学性能可达到GB 9846-2004《胶合板普通胶合板通用技术条件》的规定,阻燃性能达到日本标准JISD1322-77中规定的难燃一级品标准和中华人民共和国公共安全行业标准GA/T42.1-92《阻燃木材燃烧性能试验方法--木垛法》的规定.  相似文献   

10.
对单板进行阻燃处理,能使胶合板具有较好的阻燃效果。但是,胶合板材的树种不同,单板的厚度及处理液的浓度等因子都会对阻燃剂的注入效果产生影响。如果阻燃剂注入量过小,防火效果不佳;阻燃剂注入量  相似文献   

11.
采用杉木和泡桐为试材,对经过KY-FW阻燃剂处理的木材与未经处理的木材进行对比研究,分析KY-FW阻燃剂对木材力学性能的影响.结果表明,木材经KY-FW阻燃剂处理后,除冲击韧性降低外,其它主要力学性能指标(如抗弯强度、顺纹抗压强度及硬度)都有所提高.KY-FW阻燃木材的力学性能达到了一级水基型阻燃剂标准规定的相应指标.  相似文献   

12.
The use of multifunctional wood for decorative purpose has grown increasingly popular in recent years. In this study, fast-growing poplar wood was treated with dye (0.5%) and flame retardant (0, 10, 20, and 30%) simultaneously to enhance its visual characteristic and safety. The dynamic wettability and surface free energy of wood samples were studied using S-D wetting model and van Oss–Chaudhury–Good (vOCG) method, respectively. Dye uptake, drug load, color difference, and combustion performance were determined. The treated wood was also characterized by infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the proposed treatment yields favorable adhesive spreading and penetration ability at the wood surface. The surface free energy of treated wood was higher than that of untreated wood, and the dye uptake, drug load, color difference, and limited oxygen index all increased after the proposed combination treatment compared to dye-only treated wood. The results also indicated that the flame retardant reacted chemically with the wood as the dye and flame retardant molecules diffused into the cell cavity, wood vessel, and aperture.  相似文献   

13.
FR-1阻燃处理材的吸湿性与野外耐腐性   总被引:3,自引:0,他引:3  
对FR-1阻燃处理材的吸湿性与野外耐腐性进行了初步探讨,试验结果表明:处理材在高温条件下的吸温率未超过28%,达到ASTM技术标准,其效果较目前广泛使用的磷酸二氢铵/硼化物、磷酸氢二钠好。与CCA、ACQ-B处理材相比,FR-1处理材的野外耐腐性效果不佳,不宜在室外与地接触的条件下使用。  相似文献   

14.
以树脂型阻燃剂与低分子酚醛树脂复配作为药剂对大青杨进行改性处理,提高木材的阻燃性。研究表明,当阻燃剂浓度为10%时,其氧指数为51%;当浓度为25%时,氧指数可达到61%;对其进行红外分析,发现存在C=N键吸收峰;热重分析结果,其吸热量明显变小。  相似文献   

15.
The crystalline behavior of heat-treated wood cellulose treated at 85% relative humidity (RH), in water, or boiled in water after heat treatment was investigated. The normal increased crystallinity was significantly depressed for samples that were oven-dried and then treated in 85% RH or in water. In the case of boiling-water treatment, a more pronounced increased in crystallinity was initially observed, which then decreased gradually. The crystallinity decreased more than untreated wood for samples that were heat treated for long periods and was slightly higher than the decreased crystallinity from the beginning of the above two treatments. On the other hand, no significant change in crystallinity was observed for samples of increased crystallinity or decreased crystallinity that were treated under high-moisture conditions, for all three treatments. The results show that the crystalline state of wood cellulose heat treated under oven dry or high-moisture conditions behave differently if treated in water after heat treatment. Results suggested that the mechanism of crystallization might be different for samples that are subjected to heat treatment under oven-dry and high-moisture conditions.  相似文献   

16.
Chemical mechanism of fire retardance of boric acid on wood   总被引:5,自引:0,他引:5  
It is commonly accepted that the fire retardant mechanism of boric acid is a physical mechanism achieved by the formation of a coating or protective layer on the wood surface at high temperature. Although a char-forming catalytic mechanism has been proposed by some researchers, little direct experimental support has been provided for such a chemical mechanism. In this paper, new experimental results using thermal analysis, cone calorimetry (CONE), and gas chromatography–Fourier transform infrared spectroscopy (GC–FTIR) analysis are presented and the fire retardant mechanism of boric acid on wood is discussed. Basswood was treated with boric acid, guanylurea phosphate (GUP), and GUP–boric acid. Treated wood was then analyzed by thermogravimetry (TG/DTG), differential thermal analysis (DTA), CONE, and GC–FTIR analysis. Thermogravimetry showed that the weight loss of basswood treated with boric acid was about three times that of untreated or GUP-treated wood at 165°C, a temperature at which GUP is stable. The DTA curve showed that boric acid treated basswood has an exothermal peak at 420°C, indicating the exothermal polymerization reaction of charring. CONE results showed that boric acid and GUP had a considerable synergistic fire retardant effect on wood. The GC–FTIR spectra indicated that compounds generated by boric acid treated wood are different than those generated by untreated wood. We conclude that boric acid catalyzes the dehydration and other oxygen-eliminating reactions of wood at a relatively low temperature (approximately 100–300°C) and may catalyze the isomerization of the newly formed polymeric materials by forming aromatic structures. This contributes partly to the effects of boric acid on promoting the charring and fire retardation of wood. The mechanism of the strong fire retardant synergism between boric acid and GUP is due to the different fire retardant mechanisms of boric acid and GUP and the different activation temperatures of these two chemicals.The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

17.
High dimensional stable particlcboards could be produced by usisng saturatedsteam treated wood chip at elevated pressures.Sample Particleboards were made from woodchip of Birch(Platyphylla).The component changes of steam treated wood chip were analysedby infrared.Infrared spectra demonstrated that the hemicelluloses in steam treated chip wereless than those in untreated chip.This is one of the main reasons why steam treatment could im-prove particlcboard stability.The free radical concentration of steam treated chip surfaces wasanalysed by ESR spectroscopy.The results showed that free radical concentration of treatedchip surface was higher than that of untreated chip surface.The glueyness of chip increased andparticlcboard resin content decreased.  相似文献   

18.
In order to investigate the pyrolytic characteristics of the burning residue of fire-retardant wood, a multifunctional fire-resistance test oven aimed at simulating the course of a fire was used to burn fire-retardant wood and untreated wood. Samples at different distances from the combustion surface were obtained and a thermogravimetric analysis (TG) was applied to test the prrolytic process of the burning residue in an atmosphere of nitrogen. The results showed that: 1) there was little difference between fire-retardant wood and its residue in the initial temperature of thermal degradation. The initial temperature of thermal degradation of the combustion layer in untreated wood was higher than that in the no burning wood sample; 2) the temperature of the flame retardant in fire-retardant wood was 200°C in the differential thermogravimetry (DTG). The peak belonging to the flame retardant tended to dissipate during the time of burning; 3) for the burning residue of fire-retardant wood, the peak belonging to hemicellulose near 230°C in the DTG disappeared and there was a gentle shoulder from 210 to 240°C; 4) the temperature of the main peaks of the fire-retardant wood and its burning residue in DTG was 100°C lower than that of the untreated wood and its burning residue. The rate of weight loss also decreased sharply; 5) the residual weight of fire-retardant wood at 600°C clearly increased compared with that of untreated wood. Residual weight of the burning residue increased markedly as the heating temperature increased when burning; 6) there was a considerable difference with respect to the thermal degradation temperature of the no burning sample and the burning residue between fire-retardant wood and untreated wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(3): 133–138 [译自: 北京林业大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号