首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effects of different salinities (0, 2, 4, 6 and 10‰) on food intake, growth, food conversion, and body composition of the freshwater catfish Mystus vittatus (Bloch) were studied. Under a restricted feeding schedule daily intake of food was found to be salinity dependent. Fish reared in 10‰ consumed more Tubifex tubifex, converted less efficiently and displayed poor growth as compared to individuals reared in fresh water. Fish flesh production decreased from 483 g (fresh water) to 177 g (10‰ salinity) as the salinity was increased. Water content of the fish was found to decrease with increase in salinity, while maximum ash (25.56%) and fat (42.25%) were exhibited by fish reared in 10‰ salinity.  相似文献   

2.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

3.
The effect of abrupt and 5-day gradual salinity transfers from freshwater (FW) to 11 ‰ Caspian Sea brackish water (BW) was investigated in juvenile Persian sturgeon Acipenser persicus with three different weight groups: 1–2 g (1.62 ± 0.27 g), 2–3 g (2.55 ± 0.41 g) and 3–5 g (4.28 ± 0.76 g). Mortality rates, blood osmotic pressure, gill morphology and branchial Na+, K+-ATPase (NKA) activity were measured 4 and 10 days after abrupt transfer and 9 and 15 days after the initial gradual transfer (i.e. 4 and 10 days after reaching Caspian Sea salinity). Fish under 3 g could not survive increased salinity, and the blood osmotic pressure of the remaining surviving fish increased and remained elevated. However, heavier fish were able to survive and successfully acclimate, even to rapid salinity change with osmotic pressure reduced to Caspian Sea osmolality levels. At the gill level, the developmental increase in chloride cell volume and a higher NKA content most probably allow juveniles weighing more than 2 g to sharply increase NKA activity if the fish are transferred to BW. The rapid chloride cell proliferation occurring with increased salinity should strengthen this acclimation response. Therefore, a drastic physiological change occurs when fish weigh more than 2 g that allows migration to higher salinities. The triggering signal on chloride cells must be further investigated in order to optimize this functional step.  相似文献   

4.
The giant freshwater prawn, Macrobrachium rosenbergii, is a species with a high commercial value in aquaculture. Two experiments were performed to determine the effects of salinities on the osmoregulation, growth and molting cycles of M. rosenbergii during growout. The first experiment was designed to determine whether these animals are capable of adapting to the changes in salinity seen in salinity intrusions in tropical deltas, with an incremental increase in salinity of 3‰ per day from 0‰ to 30‰ Haemolymph osmolality was rapidly regulated up to salinities of 15‰ , whereas animals conformed at higher salinities. The second experiment determined the growth, moulting cycle, osmolality, muscle water content and mortality during a 4‐month experiment at 0‰, 15‰ or 25‰ salinity. The weight gains in 0‰ and 15‰ were not significantly different and were comparable to the growth rates achieved in production farms with body mass increases of 2.6 and 2.3‐fold their initial body mass, respectively, after 4 months. The 25‰ group suffered from low growth, high mortality and a significantly lower moulting frequency. These data show that this species can be reared in brackish water up to 15‰, allowing for farming in the large areas impacted by salt water intrusions in tropical deltas.  相似文献   

5.
赵峰  张涛  侯俊利  刘鉴毅  章龙珍  庄平 《水产学报》2013,37(12):1795-1800
为了研究长江口中华鲟幼鱼盐度适应过程及其调节规律,将7月龄幼鱼直接转入0(淡水对照),5,10,15等4个盐度组中养殖32天,分别在0.5,1,2,4,8,16,和32 d 检测幼鱼血液水分、血清渗透压和血清Na 、Cl-、K 的浓度,结果显示:试验过程中,淡水和盐度5组中华鲟幼鱼血液各项指标始终保持一致,未呈现显著性差异。盐度10和15组,中华鲟幼鱼血液水分含量呈先下降后上升趋势,下降程度与盐度呈正相关,16 d时各组幼鱼血液水分无显著性差异。中华鲟幼鱼转入盐度10和15条件下,其血清渗透压与Na 和Cl-浓度的变化趋势一致,表现为先上升后下降,最后达到新的平衡;12 h是其上升和下降的拐点。而血清K 浓度的变化趋势与血清渗透压和Na 、Cl-离子不同,呈现先下降后趋于平稳的趋势。从结果可以看出,中华鲟幼鱼与其他广盐性鱼类一样,其盐度适应过程可分为2个阶段,即临界期和调整期。  相似文献   

6.
The aim of the present study was to investigate the effects of different salinities (0‰, 6‰ and 12‰) and temperatures (23, 27 and 31 °C) on the food consumption, growth, blood biochemistry and haematocrit of Goldfish. After 45 days of exposure to different salinities and temperatures, Goldfish showed a good adaptation to these salinities and temperatures in terms of blood biochemistry (glucose and triglyceride) and haematocrit. Salinities (0‰ and 6‰) and temperatures (23 and 27 °C) did not affect the weight gain, specific growth rate, final biomass and feed conversion rates, but these parameters were significant (P<0.05) at 12‰ salinity and 31 °C temperature. Plasma total protein levels decreased with the increase in salinity (P<0.05), while they were independent of temperature. In conclusion, Carassius auratus, a freshwater stenohaline fish, showed good growth in saline waters with maximum 12‰ salinity and 31 °C temperature.  相似文献   

7.
ABSTRACT

Juvenile T. rendalli were evaluated for 10 weeks to determine the effect of salinity on growth, feed utilization, and survival in tanks. Fish weighing 3.94 ± 0.44 g were stocked into twelve 50-L rectangular tanks at 15 fish /tank. The fish were raised in three salinity levels (5, 10, 15‰, and freshwater as a control). There were three replicate tanks per treatment. After the feeding experiment, a digestibility trial was conducted for two weeks. After 70 days, fish in the 10‰ treatment grew significantly larger (P < 0.05) than those in 5‰, 15‰, and freshwater. T. rendalli cultured in 10‰ had significantly lower feed conversion ratios and higher feed conversion efficiency and protein efficiency ratios. Survival of the fish was significantly (P < 0.05) different and depended on salinity level. The apparent digestibilities of crude protein, fat, ash, and gross energy were significantly higher (P < 0.05) in T. rendalli cultured in the 10‰ salinity treatment. However, apparent digestibility of dry matter did not differ significantly (P < 0.05) between 10‰ and 5‰. The results obtained indicate that 10‰ is optimal for T. rendalli in tank culture.  相似文献   

8.
The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater ‘tra’ catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities >14 g/L gave poorer survival rates (p < 0.05). Salinity levels from freshwater to 10 g/L did not have any negative effects on fish weight gain, daily weight gain, or specific growth rate. Food conversion ratio, however, was lowest in the control treatment (p < 0.05) and highest at the maximum salinities tested (18 g/L treatment). Cortisol levels were elevated in the 14 and 18 g/L treatments after 6 h and reached a peak after 24-h exposure, and this also led to increases in plasma glucose concentration. After 14 days, surviving fish in all treatments appeared to have acclimated to their respective conditions with cortisol levels remaining under 5 ng/mL with glucose concentrations stable. Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.  相似文献   

9.
The suitability of inland saline groundwater as a medium to culture juvenile cobia, Rachycentron canadum, was assessed. In the first experiment, juvenile cobia stocked in raw (unamended) saline groundwater at salinities of 5, 10, and 15 g/L exhibited complete mortality after 108, 176, and 195 hr, respectively. The second experiment evaluated the rearing of juvenile cobia (mean weight ~9.23 ± 0.12 g) in potassium (K+)‐amended saline groundwater (100% K+ fortified) and reconstituted seawater at salinities of 5, 10, and 15 g/L to assess growth and osmoregulation in distinct culture media. Following 60 days of culture, all fish survived the experimental period. Final mean bodyweight of cobia reared in K+‐amended saline groundwater (103.2–115.8 g) and seawater (111.2–113.8 g) of different salinities did not vary significantly (p > .05). No differences (p > .05) were observed in specific growth rate, weight gain (%), and feed conversion ratio between treatment groups. Serum osmolality increased with salinity and was significantly higher (p < .05) for fish in K+‐amended saline groundwater (353–361 mOsmol/Kg) than in reconstituted seawater (319–332 mOsmol/Kg), although differences were not observed between salinities by water type. Cobia stocked in saline groundwater of different salinities were osmoregulating normally, and the higher values observed may be because of variations in ionic composition and other interfering ions in saline groundwater. Trial results suggest that juvenile cobia can achieve optimal growth in K+‐amended saline groundwater of low and intermediate salinities.  相似文献   

10.
Grouper have to face varied environmental stressors as a result of drastic changes to water conditions during the storm season. We aimed to test the response of brown-marbled grouper to drastic and gradual changes in temperature and salinity to understand the grouper’s basic stress response. The results can improve the culture of grouper. Brown-marbled grouper, Epinephelus fuscoguttatus (6.2 ± 0.8 g) were examined for temperature and salinity tolerances at nine different environmental regimes (10, 20, and 33 ‰ combined with 20, 26 and 32 °C), in which the fish were subjected to both gradual and sudden changes in temperature and salinity. The critical thermal maximum (50 % CTMAX) and the upper incipient lethal temperature (UILT) were in the ranges of 35.9–38.3 and 32.7–36.5 °C, respectively. The critical thermal minimum (50 % CTMIN) and the lower incipient lethal temperature (LILT) were in the ranges of 9.8–12.2 and 14.9–22.3 °C, respectively. The critical salinity maximum (50 % CSMAX) and the upper incipient lethal salinity (UILS) were in the ranges of 67.0–75.5 and 54.2–64.8 ‰, respectively. Fish at temperature of 20 °C and a salinity of 33 ‰ tolerated temperatures as low as 10 °C when the temperature was gradually decreased. Fish acclimated at salinities of 10–33 ‰ and a temperature of 32 °C tolerated salinities of as high as 75–79 ‰. All fish survived from accumulating salinity after acute transfer to 20, 10, 5, and 3 ‰. But all fish died while transferred to 0 ‰. Relationships among the UILT, LILT, 50 % CTMAX, 50 % CTMIN, UILS, 50 % CSMAX, salinity, and temperature were examined. The grouper’s temperature and salinity tolerance elevated by increasing acclimation temperature and salinity. On the contrary, the grouper’s temperature and salinity tolerance degraded by decreasing acclimation temperature and salinity. The tolerance of temperature and salinity on grouper in gradual changes were higher than in drastic changes.  相似文献   

11.
The Brazilian flounder, Paralichthys orbignyanus, is a promising candidate for aquaculture, especially due to the euryhalinity demonstrated experimentally for large juveniles (3 g) and sub-adults. Flounder are observed in estuaries and were already reared in fresh and salt water, however little is known with respect of salinity tolerance during their early development. The objective of this work was to evaluate the effects of salinity from fertilization to juvenile settlement. Three experiments were conducted to evaluate the effects of salinity. In trial 1 adult flounder were captured in the wild, transferred to the laboratory and induced to spawn. The gametes were hand striped, split in four samples and fertilized with water at 10, 15, 25, and 35‰. Eggs were considered fertilized when the first cell divisions were observed under the microscope. For the trial 2 newly hatched larvae were reared in four salinities (5, 10, 20, and 30‰) and their growth and survival were observed until metamorphosis. In trial 3 larvae and juvenile of different ages (6, 16, 30, 45, and 60 dah — days after hatching) were evaluated for their tolerance to fresh water. Although the fertilization rate was directly proportional to salinity, hatching was successful only in full salt water. Larvae did not survive in low salinity water (5‰) longer than 6 days, whereas growth was improved when larvae were reared at 20 and 30‰. Young larvae cannot survive in salinities below 4‰, but at 30 dah juvenile presented 100% survival in fresh water. The present findings demonstrate the need for high salinity water (30–35‰) for the successful reproduction and incubation of P. orbignyanus eggs. Flounder can be reared successfully at intermediate salinities (20‰) during larviculture, but at lower salinities (5 and 10‰) their survival and growth are impaired. However, immediately after flounder metamorphose into juveniles they survive even in fresh water, demonstrating the strong euryhalinity of this species even at early stages of development.  相似文献   

12.
Salinity has been proven to have a significant effect on the growth and survival of anadromous fish species; however, there is a paucity of information regarding its effect on euryhaline marine species. Experiments were conducted to examine the effect of hyposalinity on the osmoregulation and growth of juvenile spotted grunter, Pomadasys commersonnii (Lacépède). Although the spotted grunter is considered to be a strong osmoregulator, growth performance and survival was compromised below isosmotic concentrations. The growth rate, condition and food conversion of fish in low salinity (5‰) were lower than in either isosmotic (12‰) or hyperosmotic (25‰ and 35‰) conditions. Mortality was also significantly higher at 5‰. From these results, it is concluded that P. commersonnii can be successfully cultured in salinities ranging from 12‰ to full-strength sea water (35‰).  相似文献   

13.
The goal is to determine the requirements allowing cultured Salvelinus alpinus to thrive in seawater, as they do in the wild. In late-June, eight families of individually identified 1+ year-old charr (mean wt: 427 g) of a domesticated strain derived from the Fraser River population were directly transferred from freshwater (9 °C) to salinities of either 0, 10, 20 and 30 ppt at 10 °C, then on-grown in tanks until December. Cumulative mortality was 16% in 30 ppt salinity, and < 4% in the lower salinities. Repeated measures analysis revealed somatic growth was inhibited by both elevated salinity and sexual maturation. Among immature fish, final mean weight and condition factor in 30 ppt salinity was 490 g and 1.2, compared to nearly 1 kg and > 1.7 in 0 and 10 ppt. In 20 ppt salinity, growth was initially similar to that in ≤ 10 ppt salinity but deteriorated from September onwards. Sexually maturing fish in ≤ 10 ppt salinity attained a final mean weight about 35% less than immatures. Plasma osmolality was only slightly elevated in the 30 ppt salinity, remaining < 340 mOsm kg− 1. Food intake and conversion were affected by the interaction between salinity and time, being optimum in 0 and 10 ppt treatments. Family effects on final body size were large, but the effect of salinity on growth was independent of family. In conclusion, despite their large body size, direct transfer of this strain from freshwater to seawater does not appear viable for commercial aquaculture.  相似文献   

14.
Abstract.— Weight gain and metabolic rates, as determined by oxygen consumption rates, were examined in juvenile Australian red-claw crayfish Cherax quadricarinatus exposed to different temperatures (16–32 C in 2 C increments) or salinities (0–30 ppt in 5 ppt increments). Mean weight gain, molting frequency, and survival (%) were dependent on temperature and salinity. In freshwater (0 ppt), maximal weight gain and molting frequency were observed at 28 C with maximal survival observed over the temperature range of 24–30 C. Metabolic rates in freshwater were temperature dependent (mean Q10= 2.44). Maximal weight gain and molting frequency were observed at salinities of 0 and 5 ppt (28 C); however, survival was reduced at salinities ≥ 5 ppt. Metabolic rates were not salinity dependent and did not differ significantly over the salinity range from 0–20 ppt. Growth efficiencies, calculated by dividing weight gain by total metabolic energy expenditure (i.e., weight gain + metabolic rate), were highest at a temperature of 20 C (0 ppt) and at salinities of 0 and 5 ppt (28 C). These data suggest that, at higher culture temperatures, maximal weight gain of red-claw juveniles may be reduced when food resources are limited. Maximal weight gain, at optimal temperatures (28 C) with unlimited food supply, does not appear to be effected by low salinity conditions. Because of the potential commercial value of red-claw, culturists, should be aware of the relationship between environmental condition and metabolic energy requirements to ensure maximal weight gain and survival of juveniles.  相似文献   

15.
The study was conducted to assess the effects of salinity on growth and biochemical composition of freshwater catfish, Clarias batrachus. A static nonrenewable acute toxicity bioassay test was conducted and LC50 of salinity for 96-h exposure to the fingerling (14.5 cm) was 12.52 ‰. Based on these results, two sublethal salinity levels, viz. 4 and 8 ‰ were selected to study the long-term effects of salinity on C. batrachus for a period of 90 days. From the study, it was found that growth and survival rate were less in saline water (4 and 8 ‰). Maximum growth and survival were recorded in freshwater (0 ‰ salinity) and subsequently at 4 and 8 ‰. To assess the biochemical alteration, few important biomarkers were estimated. At the end of 90 days rearing period, glucose level in the brain and blood of C. batrachus was found to decrease with salinity. The level of liver and muscle glycogen in the fish reared at 4 ‰ was lower than that of control. Ascorbic acid in all organs under study was found to decrease with increasing salinity, which was attributed to stress mitigation effect of vitamin C. Acetylcholine esterase (AchE) activity recorded a gradual decrease with increasing salinity. Metabolic enzymes, alkaline phosphatase (ALP) activity and adenosine triphosphosphtase (ATPase) activity also reduced both in liver and muscle tissues with increasing salinity. From the present investigation, it can be concluded that exposure to higher salinity significantly (P < 0.01) affects the growth and physiological response of Clarias batrachus.  相似文献   

16.
Abstract – Fragmented populations of freshwater fish may develop genotypic and phenotypic differences as adaptations to local habitat conditions. These differences contribute significantly to biological diversity and may lead to speciation. In the Murray–Darling Basin, Australia, the Murray hardyhead Craterocephalus fluviatilis, listed as ‘endangered’ by the World Conservation Union, has a wide but fragmented distribution that is apparently related to salinity. To determine whether this pattern has a physiological basis, we compared osmoregulation in fish from two isolated populations in different salinity regimes (Wyndgate: 0.4–1.5‰; Disher Creek: c. 1.0–45‰). In laboratory trials, fish from both populations remained healthy at high salinities (5–65‰). The Disher Creek population maintained a significantly lower blood osmotic concentration than the Wyndgate population at salinities ≤1‰, suggesting that there is a physiological difference between them. The findings have implications for the conservation of C. fluviatilis and other fish populations whose distributions are fragmented by salinity.  相似文献   

17.
Cobia Rachycentron canadum juveniles (119.7 mm TL, weight 8.5 g) were reared for 10 wk at three salinity levels: 5 ppt, 15 ppt. and 30 ppt. Growth and survival were determined through biweekly sampling. Blood samples obtained at termination of the study were analyzed to determine hematocrit, blood osmolality, and total protein. Results indicated that the overall growth of fish was significantly affected by salinity. Mean (± SE) total length (TL) and weight of fish reared at a salinity of 30 ppt were 201.7 ± 2.6 mm and 47.6 ± 1.9 g, respectively, followed by fish reared at 15 ppt (182.2 ± 1.7 mm, 34.1 ± 1.6 g). and 5 ppt (168.3 ± 5.8 mm TL, 28.3 ± 2.3 g). Differences in specific growth rates among treatments for the 10-wk period were also significant. No differences were detected in mean survival among fish reared at salinities of 5, 15, and 30 ppt (84, 94, and 94%, respectively). However, fish reared at salinity 5 ppt appeared to be in poor health as skin lesions, fin erosion, and discoloration were evident. Analysis of blood revealed that, while no differences existed among treatments with respect to plasma total protein, fish reared at a salinity of 5 ppt exhibited significantly reduced hematocrit (25% vs. > 30%) and plasma osmolality values (318 vs. > 353 mmolkg) relative to fish reared at higher salinities. Cobia can tolerate exposure to low salinity environments for short periods of time without mortality; however, moderate to high salinities are required for sustained growth and health of this species.  相似文献   

18.
ABSTRACT:   To study the adaptability of juvenile fugu Takifugu rubripes to low-salinity environments, fish were transferred from full-strength seawater (100% SW) to freshwater (FW) and 25, 50, 75 and 100% SW, and checked for mortality over 3 days. No mortality was observed in 25–100% SW, whereas all fish died in FW. In fish transferred to 25–100% SW, blood osmolality was maintained within a physiological range. To further explore the lower limit of salinity that fugu could tolerate, fish were transferred from 100% SW to FW and 1, 5, 10, 15 and 25% SW. All fish survived in 5–25% SW, but fish died in FW and 1% SW. In fish surviving transfer to FW and 1 and 5% SW, blood osmolality was decreased to a near sublethal level of approximately 300 mOsm/kg·H2O. Therefore, the lower limit of salinity tolerance is estimated to lie between 5 and 10% SW. Preacclimation in 25% SW for 7 days did not essentially affect the survival salinity range. Although survival rates and blood osmolality were slightly improved by preacclimation in 25% SW, blood osmolality was markedly decreased in salinities less than 10% SW, as was seen in the direct transfer. Neither chloride cell morphology nor sodium-potassium adenosinetriphosphatase activity in the gills showed a significant change following transfer to low salinities. These findings indicate that fugu can be adapted to hypoosmotic environments to some extent, exerting hyperosmoregulatory ability, although chloride cells are less likely to absorb ions in hypoosmotic environments.  相似文献   

19.
Water salinity affects survival, growth and metamorphosis of anuran tadpoles. Hoplobatrachus rugulosus is considered not only as a freshwater amphibian but is also found in brackish wetlands. However, whether salinity change interferes with hatching, survival, body mass and development of H. rugulosus tadpoles is unknown. We found that salinity levels of <4‰ did not affect of survival or hatching of H. rugulosus eggs. At an early larval stage, tadpoles could tolerate up to 9‰ salinity for 96 h; however, body water content decreased when salinity was >5‰. After a 3‐week experiment, body weights of tadpoles exposed to 2‰ and 4‰ salinities were higher but that of the 6‰ group was lower compared with the 0‰ group. More than 90% of tadpoles exposed to 2‰ and 4‰ salinity showed complete metamorphosis. Salinity levels <4‰ promoted survival of tadpoles better than 0‰, whereas none of tadpoles in the 6‰ group became juvenile frogs in 50 days. Time taken to reach metamorphosis was shorter for 2‰ and 4‰ (47.22 ± 0.28 and 47.26 ± 0.33 days, respectively) than for 0‰ (49.31 ± 0.35 days). Juvenile frogs in the 2‰ group had greater body weight than the control. It could be concluded that salinity of <4‰ increased survival and body weight of H. rugulosus tadpoles, and shortened the time taken to reach metamorphosis.  相似文献   

20.
The effects of salinity on the growth and energy budget of juvenile cobia, Rachycentron canadum, were evaluated. Triplicate tanks with ten fish per tank (initial weight 17.58 ± 0.26 g/fish, mean ± SD) reared at salinities of 5, 10, 15, 20, 25, 30, and 35 ppt were fed with fresh squid to satiety for 15 d. Results indicated that there were no significant differences in daily ration level in wet weight (RLw), dry weight (RLd), and energy (RLe) of the fish. There were also no significant variations in daily fecal production (fe) and apparent digestibility coefficient of energy (ADCe) among salinity treatments. Specific growth rates (SGRs) in wet weight (SGRw), dry weight (SGRd), and energy (SGRe) showed domed curves relative to salinity. Quadratic regression analyses of SGRw, SGRd, and SGRe against salinity indicated that the optimal salinity for maximal growth of juvenile cobia was 29.9, 29.9, and 28.5 ppt, respectively. Similar to the trend of SGR, food conversion efficiency for juvenile cobia in wet weight (FCEw), dry weight (FCEd), and energy (FCEe) increased with the increases in salinity, maximized at 30 ppt, and then decreased when salinity reached 35 ppt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号