首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three enrichment techniques were evaluated for their efficiency in improving the dietary value of Artemia nauplii to striped bass larvae. Newly hatched Artemia nauplii from the Great Salt Lake (GSL) were enriched for 24 h using the following diets: 1) gelatin-acacia microcapsules containing menhaden oil rich in omega-3 polyunsaturated fatty acids (PUFA), primarily 20:5ω3 eicosapen-taenoic acid; 2) an emulsion of Baker's yeast and menhaden oil; and 3) marine Chlorella sp. Unfed San Francisco Bay (SFB) and GSL nauplii were used as controls. Enriched GSL (all three diets) and unfed SFB nauplii had significantly higher ( P < 0.05) levels of 20:503 than the unfed nauplii from GSL. Seven days post-hatched (day 0) striped bass larvae were reared for 21 d on enriched or unfed nauplii. On day 21, wet weight and total length of striped bass larvae fed enriched GSL nauplii and unfed SFB nauplii were significantly greater ( P < 0.05) than those fed unenriched GSL nauplii. The enrichment of the GSL nauplii appeared to increase the eicosapentaenoic acid content and enhance the growth of the striped bass larvae.  相似文献   

2.
A study was conducted to compare fatty acid composition, hatching quality, and size of nauplii from four commercial sources of brine shrimp (Artemia spp.) cyse: China (CH), Colombia (COL), Great Salt Lake (GSL), and San Francisco Bay (SFB). The CH brine shrimp had a comparatively high percentage of 20:5(n-3) fatty acid (eicosapentaenoic acid or EPA), an essential fatty acid for most Iarval fishes, which was 10.4% of the total lipids. The COL, GSL, and SFB sources of cysts contained comparatively low percentages of EPA, 2.9, 1.2, and 1.6%. respectively. Hatching quality was determined by hatching cysts in salt (NaCl) water with a specific gravity of 1.02 at 27 C for 42 h. The COL cysts had the fastest hatching rate, with 50% of the cysts hatching in 13.4 h, while CH cysts hatched at the slowest rate, requiring 25.6 h for 50% of the cysts to hatch. Total percentage hatch was not significantly different among the SFB, COL, and GSL sources, with an average hatching percentage of 84.5, while CH cysts had a significantly lower total percentage hatch of 67.5. The SFB source produced the greatest number of nauplii (1.6 ± 105 per g of cysts) with the smallest length (382 μm), while CH produced the smallest number (8.7 ± 104) with the greatest length (500 μm). These results indicate that there is great variation in nutritional quality, hatching quality, and size of nauplii among commercial sources of brine shrimp cysts, and each of these criteria should be considered in selecting brine shrimp in a development of a feeding strategy for larval culture of a particular species.  相似文献   

3.
Importance of Docosahexaenoic Acid in Marine Larval Fish   总被引:28,自引:0,他引:28  
Marine finfish require n-3 HUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as essential fatty acids (EFA) for their normal growth. But it remained unclear as to which of the n-3 HUFA, either EPA or DHA, was important. Unlike the freshwater species, the EFA efficiency of EPA and DHA may vary in marine fish. The developing eggs rapidly utilize DHA either for energy or for production of physiologically important substances like prostaglandin.
This report reveals that in marine larval fish DHA is superior to EPA as EFA. In the case of red seabream, feeding rotifers incorporating EPA and DHA or an n-3 HUFA mixture prevented many of the ill-effects observed when the rotifers were low in n-3 HUFA. Apart from the best growth and survival in an activity test for the larvae fed on DHA-rotifer, the incidence of hydrops seemed to be totally prevented dietetically by DHA. Similar results were obtained in larval yellowtail, striped jack, striped knifejaw and flounder. There seems to exist a functional difference between EPA and DHA.  相似文献   

4.
Retentions of total n-3 and n-6 essential fatty acids (EFAs) were assessed in Atlantic salmon (Salmo salar L.) parr held at 8 °C and 2 °C until they increased in weight from ca. 19 g to 38 g. Feeds contained sandeel oil or a rapeseed:linseed oil blend at 21 and 34% dietary fat. EFA retention efficiencies [(g EFA gained g EFA ingested-1) × 100] were estimated by the 'mass balance method' from measurements of feed intake, changes in biomass for each tank of fish, and fatty acid compositions of the feeds and fish. The n-3 EFA retentions were higher (overall mean 71%) across feed treatments and temperatures than the n-6 EFA retentions (overall mean 63%). Retentions of the n-3 fatty acids were higher in the fish given the feeds with the lower fat content (77% vs. 65%), implying improved retention with reduced n-3 EFA availability. n-3 EFA retention tended to be higher at 2 °C than at 8 °C, although this was not consistent across feeds. At low temperature there was very high retention of the n-3 EFAs in feeds containing sandeel oil (80%). Such high retention may represent an adaptation response to low temperature. Lower n-6 EFA retentions imply that more n-6 fatty acids were metabolized than n-3 EFAs. Feed oil influenced retention of the n-6 fatty acids, retention being lower for the salmon parr given the feeds containing sandeel oil (56% vs. 71%). This could indicate a higher tissue deposition of n-6 fatty acids when they are freely available via the diet. Abbreviations: AA – arachidonic acid (C20:4 n-6); DHA – docosahexaenoic acid (C22:6 n-3); EFA – essential fatty acid; EPA – eicosapentaenoic acid (C20:5 n-3); HUFA – highly-unsaturated fatty acid (\ge4 double bonds); MUFA – monounsaturated fatty acid (1 double bond); PL – phospholipid; PUFA – poly-unsaturated fatty acids (\ge2 double bonds); SFA – saturated fatty acid (no double bond); TAG – triacylglycerol. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
This study aimed to evaluate the effect of enriching Artemia nauplii with vitamin C (ascorbyl-6 palmitate) or vitamin E (α-tocopherol acetate), 20% w/w, together with a mixture of concentrated eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) on the growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae. Either cod liver oil (CLO) or EPA/DHA ethyl esters concentrate was used as lipid sources in the Artemia enrichment. Walleye larvae were fed ad libitum for 40 days. At day 40, submersion in salt water (25 g L−1) was performed to evaluate larvae resistance to stress. EPA and DHA levels in walleye juveniles fed EPA/DHA-enriched Artemia increased significantly, by an average of 650% compared with fish fed non-enriched Artemia . A significant increase was found for vitamins C (71.8 ± 1.0 and 42.7 ± 1.2 μg g−1 wet weight (WW)) and E (17.0 ± 3.7 and 6.5 ± 0.9 μg g−1WW) concentrations in fish fed enriched and unenriched Artemia , respectively. Growth was comparable throughout treatments, whereas survival was significantly higher in fish fed CLO-enriched Artemia nauplii compared with fish fed Artemia nauplii enriched with EPA/DHA concentrate. The addition of vitamin C increased fish survival by 1.4-fold compared with fish fed Artemia enriched with only EPA/DHA concentrate. The survival of the latter was similar to control fish ( Artemia without enrichment). The supplementation of vitamin E did not affect fish survival significantly. Stress tests revealed that the resistance of walleye larvae to salinity changes increased when Artemia enrichment was supplemented with vitamin C. However, walleye larvae fed CLO-enriched Artemia had the best performances in the stress test.  相似文献   

6.
European sea bass juveniles (14.4±0.1 g mean weight) were fed diets containing different levels of fish oil then of n-3 highly unsaturated fatty acids (n-3 HUFA) for 12 weeks. The fish performance as well as fatty acid (FA) composition of neutral and polar lipids from whole body after 7 and 12 weeks feeding were studied. The requirements of juvenile sea bass for n-3 highly unsaturated fatty acids (n-3 HUFA) were studied by feeding fish diets containing six different levels of n-3 HUFA ranging from 0.2% to 1.9% of the diet, with approximately the same DHA/EPA ratio (1.5:1).

The growth rate at the end of the trial showed significant differences. Fish fed low dietary n-3 HUFA (0.2% DM of the diet) showed significantly lower growth than the diet 3 (0.7%), then no further improvement (P>0.05) of growth performance was seen by elevating the n-3 HUFA level in the diet up to 1.9% (diet 6). No difference in feed efficiency, protein efficiency ratio or protein retention was observed among treatments, nor in protein and total lipid content. However, the n-3 HUFA levels in diets highly influenced fish fatty acid composition in neutral lipid, while polar lipid composition was less affected. Comparison of polar lipid content after 7 or 12 weeks indicated that DHA remained stable at the requirement level, while arachidonic acid decreased with time. Results of this experiment suggest that the requirement for growth of n-3 HUFA of juvenile sea bass of 14 g weight is at least 0.7% of the dry diet.  相似文献   


7.
Four dietary groups of juvenile Atlantic salmon, Salmo salar L., each with three replicates, were fed diets with increasing levels of docosahexaenoic acid (22:6n-3; DHA) and eicosapentaenoic acid (20:5n-3; EPA). Fatty acid composition of brain and eye was determined at the start and approximately every 3 weeks during the experimental period, and fatty acid composition of liver and fillet was determined in fish from the final sampling. Lipid class composition of brain and eye, and fatty acid composition of these lipid classes was determined at the end of the experiment. There was no effect of increasing dietary DHA content on fatty acid composition, lipid class composition or DHA levels in the lipid classes in the juvenile Atlantic salmon brain. The increasing dietary EPA content, however, was reflected in both the total fatty acid composition and in the EPA content in neutral lipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). A minor effect of the increasing dietary DHA content was found in the lipid composition of the juvenile salmon eye. Both EPA and 18:2n-6 levels in eye, however, clearly reflected the increasing and decreasing, respectively, dietary levels of these two fatty acids. The dietary EPA levels also affected the EPA levels in neutral lipids, PC, PE, PI and PS (phosphatidylserine) in the juvenile salmon eye. The results demonstrate that these dietary levels of DHA had no effect on brain lipid composition and only a minor effect on eye lipid composition. Furthermore, the dietary EPA levels significantly affected the lipid composition of both brain and eye. The fillet fatty acid composition reflected the dietary fatty acid composition, except for the DHA/EPA ratio, which was reversed in fillet compared with that in the diets. The liver fatty acid composition was also affected by the increasing dietary EPA and DHA levels.  相似文献   

8.
A docosahexaenoic acid (DHA), 22:6(n-3), rich strain of Schizochytrium sp. was used in a spray-dried form to evaluate the enhancement of highly unsaturated fatty acids (HUFAs) in Artemia franciscana nauplii (Utah biotype) and the rotifer Brachionus plicatilis . This heterotrophic microalga was selected because of its high concentration of the longest chain HUFAs in the n-3 and n-6 series, DHA and docosapentaenoic acid (DPA), 22:5(n-6), respectively. When 24-h-old Artemia nauplii were fed 400 mg/L of the algae for 24 h, the DHA content of the nauplii went from undetectable levels to 0.8% of dry weight and the omega-3 HUFA eicosapentaenoic acid (EPA), 20:5n-3, content went from 0.1% to 0.5% of dry weight in the nauplii. Similarly, 22:5(n-6) increased in the nauplii from undetectable levels to 0.4% of dry weight, with a concomitant increase in arachidonic acid, (20:4n-6), from trace to 0.3% of dry weight even though there was no arachidonic acid in the algal biomass. Similar enrichment patterns were observed in rotifers. The results suggest that spray-dried cells of Schizochytrium sp. are effective in enriching Artemia naupli and rotifers in both n-3 and n-6 HUFAs. The results also suggest that Artemia nauplii and rotifers are capable of readily retroconverting 22:6(n-3) to 20:5(n-3) and 22:5(n-6) to 20:4(n-6) through the process of β-oxidation, a well-known process in mammals.  相似文献   

9.
Abstract. A feeding experiment was conducted in aquaria to evaluate growth, survival and food consumption by paddlefish, Polyodon spathula (Walbaum), fry fed live Daphnia pulex, brine shrimp nauplii, Artemia sp. (L.), from two different geographical sources, or one of three commercial dry diets. Fry were fed from first feeding (day 8 post-hatch) to day 17 post-hatch. All diets had similar percentages of crude protein and lipid. Fatty acid composition was similar in all diets except for Great Salt Lake brine shrimp nauplii which had a higher percentage of linolenic acid, 18:3 (n-3), and a lower percentage of eicosapentaenoic acid, 20:5 (n-3). Paddlefish fed live food organisms were significantly (P<0·05) larger than those fed non-living diets. Survival was significantly higher (P<0·05) for fish consuming live Daphnia (95·3%) than all other treatments. Percentage of fish with food in the digestive tract did not significantly differ (P>0·05) among treatments. Poorer growth and survival by fish fed prepared diets may have been due to limited digestibility of the dry diets by paddlefish.  相似文献   

10.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

12.
Five purified diets containing AA (20:4n-6) at 0.02–0.78% dry weight and DHA (22:6n-3) at 0.93–0.17% dry weight were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 0.87 g for a period of 11 weeks. The dietary DHA:AA ratio ranged from 62 to 0.2. Incorporation of AA into liver phospholipids increased with increasing dietary AA input. Phospholipids from fish fed diets containing 0.02, 0.06 and 0.11% of dry weight as AA generally contained less AA compared to fish fed fish oil while those fed diets containing 0.35 and 0.78% of dry weight as AA had higher AA levels in their phospholipids. The highest levels of AA were found in PI but the greatest percentage increase in AA incorporation was in PE and PC. Brain phospholipid fatty acid compositions were less altered by dietary treatment than those of liver but DHA content of PC and PE in brain was substantially lower in fish fed 0.93% pure DHA compared to those fed fish oil. This suggests that dietary DHA must exceed 1% of dry weight to satisfy the requirements of the developing neural system in juvenile turbot. In both tissues, (20:5n-3) concentration was inversely related to both dietary and tissue PI AA concentration. Similar dietary induced changes in AA, EPA and DHA concentrations occurred in the phospholipids of heart, gill and kidney. PGE2 and 6-ketoPGF1 were measured in homogenates of heart, brain, gill and kidney. In general, fish fed the lowest dietary AA levels had reduced levels of prostaglandins in their tissue homogenates while those fed the highest level of AA had increased prostaglandin levels, compared to fish fed fish oil. In brains, the PGE2 concentration was only significantly increased in fish fed the highest dietary AA.Abbreviations AA arachidonic acid - DHA docosahexaenoic acid - EFA essential fatty acid - EPA eicosapentaenoic acid - HPTLC high performance thin-layer chromatography - HUFA highly unsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PGE prostaglandin E - PGE prostaglandin E - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

13.
牙鲆幼鱼对EPA和DHA的营养需求   总被引:5,自引:2,他引:5  
薛敏 《水产学报》2004,28(3):285-291
研究了EPA和DHA水平对牙鲆生长的影响,饲料中含0.5%EPA和1.0%~1.5%DHA能保证牙鲆幼鱼最适生长,鱼体水分最低,肝体指数最小,脂肪含量有较大幅度提高,肝脏极性脂中EPA和DHA达到最大积累;在肝脏和肌肉的非极性脂部分,各组间的脂肪酸组成没有显著变化,而极性脂部分能体现出饲料中n-3 HUFA含量对鱼体脂肪酸组成的影响,极性脂中的EPA和DHA含量远高于非极性脂;在肌肉和肝脏的极性脂和非极性脂中都含有较高的16:0和18:1n-9; 18:1n-9/n-3HUFA可以作为必需脂肪酸满足程度的一个判据,18:1n-9值的升高往往是缺乏必需脂肪酸的表现,在生长最佳时18:1n-9/n-3HUFA比值下降,为0.62和0.74.  相似文献   

14.
Long-chain polyunsaturated fatty acids (LCPUFA) with 20 or 22 carbons are considered important to the development of infants and sometimes added to infant formulae. In this study, two characteristic sources of n-3 LCPUFA (fish oil and microalgal oil) were orally administrated to rat pups of mildly n-3 PUFA — deficient dams to compare the consequences of the administration. The milk from the dams fed a n-3 PUFA — restricted diet contained less n-3 LCPUFA than that of the dams fed a control diet. Pups were administered 1 mg/g weight of the test oil at the age of 5–7 days. At the age of 7 days, they were sacrificed before or after the administration and fatty acid compositions of the stomach and serum lipid were studied. The administration changed docosahexaenoic acid (DHA; 22:6n−3) levels in the stomach contents and serum lipids with time. Eicosapentaenoic acid (EPA; 20:5n−3) levels increased immediately after the administration of fish oil. The administration of microalgal oil also affected the serum lipid EPA level, in spite of a lack of EPA. In this study, both oils effectively supplemented DHA. Fish oil returned the serum EPA level close to the control value while microalgae oil had little effect.  相似文献   

15.
Abstract.— The aim of this study was to compare the levels of docosahexaenoic acid (DHA, 22:6n-3) in three different bisexual and one parthenogenetic strains of Artemia after enrichment. Freshly-hatched nauplii from A. franciscana (Great Salt Lake, USA), A. sinica (Yimeng, P. R. China), A. persimilis (Argentina), and A. parthenogenetica (Tanggu, P. R. China) were enriched with a purified lipid emulsion containing 95% DHA ethyl esters (% total fatty acids) and subsequently starved. All strains had very low initial DHA levels (< 0.3 mg/g dry weight). Initial eicosapentaenoic acid, 20:5n-3 (EPA) levels were high in A. parthenogenetica (18.2 mg/g dry weight) as compared to those in the other strains (4.6-8.5 mg/g dry weight). After 24-h enrichment, A. sinica contained the highest DHA level (37.0 mg/g dry weight) as well as the highest DHA/ EPA ratio (3.7). The lowest DHA enrichment levels were found in A. franciscana and A. parthenogenetica (26.3 and 22.7 mg/g dry weight, respectively). During the subsequent 24-h starvation period, the contents of DHA decreased rapidly in all strains, whereas EPA levels remained relatively stable. This indicates the high catabolism of DHA for energy production, the relative conservation of EPA, and possibly a partial bioconversion of DHA to EPA during the starvation period in each species.  相似文献   

16.
Sunshine bass, a hybrid of female white bass Morone chrysops (Rafinesque) and male striped bass M. saxatilis (Walbaum), fingerling production occurs almost exclusively in ponds. To increase production and maintain year‐round production in temperate climates, indoor tank culture is required. While tank production of fingerlings has been demonstrated, little is known about feeding requirements. Sunshine bass larvae, stocked at 75 L?1 in 100 L of brackish water, were fed sequentially with rotifers Brachionus plicatilis cultured with a Nannochloropis algae paste and enriched with highly unsaturated fatty acids, decapsulated Artemia nauplii, and a microencapsulated commercial diet. The larvae in one treatment (three replicates) were initially fed rotifers at a daily rate of 20 mL?1, then nauplii at an initial rate of 2 mL?1, and then the commercial diet at 1 g. Larvae in two other treatments received two and three times as much food daily. The highest feeding rate resulted in a survival (52.9%) that was significantly higher than the survival rate (22.4%) of larvae fed the least. The total biomass produced was the highest in the treatment receiving the most food. The lowest feeding rate produced the least fish, but they were the heaviest. The intermediate feeding rate produced the shortest fish (11.3 mm).  相似文献   

17.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

18.
The aim of the present study was to determine the combined effect of both stress and EFA deficiency on several biological and biochemical parameters. Fish were fed during 15 weeks two isocaloric and isoproteic diets: a control diet based on fish oil and formulated to meet the n-3 HUFA requirements for this species (1.5% of n-3 HUFA) and a deficient diet containing beef tallow and formulated to be deficient in n-3 HUFA. Each experimental diet was evaluated both at high and low stocking densities (10 and 3.2 kg m–3 of initial density, respectively).High stocking density produced a chronic stress situation with elevation of plasma cortisol levels. It also caused a reduction in hepatosomatic index and liver lipid contents, increasing the oleic acid/n-3 HUFA ratios in the polar lipids. Fish fed the EFA deficient diet at low stocking density showed common deficiency symptoms. High stocking density in fish fed the EFA deficient diet induced a higher degree of EFA deficiency symptoms leading to mortality, liver steatosis, liver lipid deposition, reduced muscle lipid and reduced n-3 HUFA contents, which particularly affected EPA, but not DHA, suggesting a preferential retention of the latter fatty acid, specially in the phosphoglycerides fraction.  相似文献   

19.
The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth, and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA)/ eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements, and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5, and 15 ppt), and the metabolism of 1?C-labeled 18:3n-3 was determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LC-PUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared with fish at 5 ppt. The activity was around fivefold higher in hepatocytes compared with enterocytes; although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes, the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA/EPA ratios observed in the tissue lipids of C. estor.  相似文献   

20.
The purpose of this study was to evaluate the effect of varying dietary levels of highly unsaturated fatty acids (HUFAs) in live prey (Artemia nauplii and a calanoid copepod, Schmackeria dubia) on the growth performance, survival, and fatty acid composition of the lined seahorse, Hippocampus erectus, juveniles. Artemia nauplii were enriched with a commercial product (SS? 50DE‐microcapsule as HUFA source, 2/3 DHA, 1/3 EPA. Shengsuo Fishery Feed Research Center of Shandong Province, Qingdao, China) at four concentrations of 0.0, 14.0, 28.0, and 56.0. Newly hatched juveniles were cultured for 35 days. The content of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n‐3 HUFAs in the Artemia nauplii was positively related to the enrichment concentration. At the end of the trials, growth performance of the juveniles was positively related to the enrichment concentration as well. However, the juveniles fed prey enriched with the highest concentration of enrichment (56.0 μL/L) had the significantly lower (P < 0.05) survival rate. The juveniles fed the copepod had the best growth performance and the highest survival rate, suggesting that the copepod, S. dubia, is suitable for feeding the seahorse juveniles. The comparisons between the growth, survival, and fatty acid profiles of the juveniles fed Artemia and copepods indicate that the seahorse juveniles require dietary levels of DHA beyond those achieved by enriching prey with the HUFA enrichment. Surplus EPA resulted from an imbalance between DHA and EPA in the enriched Artemia nauplii probably caused an adverse effect on the seahorse juveniles. This study suggests that DHA and EPA requirement of the lined seahorse juveniles is roughly 32% of total fatty acid, and the optimal DHA/EPA ratio for the species is circa 4:1. To avoid an adverse effect resulting from excessive EPA, maximum proportion of EPA in enriched Artemia nauplii should not exceed 13% of total fatty acid, and a recommended minimum DHA/EPA ratio in the enriched Artemia nauplii is 1.46. Arachidonic acid (20:4n‐6) might not be an essential fatty acid for the seahorse juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号