首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于Hough变换的农业机械视觉导航基准线识别   总被引:7,自引:0,他引:7  
提出了一种基于机器视觉技术识别农业车辆导航基准线的方法。该方法从农田环境的特点出发,主要用超绿特征灰度化方法对彩色农田图像灰度化,分割作物行和土壤背景。对灰度图像进行闭运算操作,缩小或消除作物行和背景中的孔洞。对灰度图像做垂直投影直方图,根据波峰位置初步确定导航作物行的基准线位置。将灰度图像分成若干个水平条,对每个水平条用垂直投影法找出导航定位点,并根据定位点的位置设置感兴趣区域。在感兴趣区域内,采用Hough变换对导航定位点拟合出导航基准线。通过与最小二乘拟合方法的对比可知,该算法精度较高,能够满足农业机械农田作业的要求。  相似文献   

2.
基于改进Hough变换的农田作物行快速检测算法   总被引:5,自引:0,他引:5  
选取苗期农田作为研究对象,采集了包含行栽作物和土壤背景的农田图像,针对现有作物行定位方法易受外界干扰和处理速度较慢的不足,提出将投影法和直接Hough变换法相结合检测作物行的算法.采用2G-R-B 法和OTSU法将图像二值化,通过快速中值滤波算法去除噪声,再利用垂直直方图投影将图像进行水平条划分获取作物垄平均定位点,最后通过Hough变换检测垄定位点,得到作物行中心线.试验结果表明:基于垂直直方图投影的Hough变换检测作物行中心线的算法在保证高定位精度的同时,算法处理速度比直接Hough变换检测法提高了3倍,得到的定位基准线能代表作物行走向.  相似文献   

3.
基于改进K均值特征点聚类算法的作物行检测   总被引:1,自引:0,他引:1  
精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依据点密度大小和邻域半径确定初始聚类中心,减少了迭代次数,提高了算法的执行效率和划分效果。首先,采用改进的超绿法(1.27G-R-B)进行灰度化和Otsu方法进行二值化,得到作物行的二值图像;然后,利用左右边缘中间线算法提取作物行特征点;最后,采用改进K均值算法和最小二乘法对作物行中心线特征点进行聚类和直线拟合。试验数据表明:提出的改进K均值特征点聚类算法识别效果好,精确度高,可为精准施药提供理论依据。  相似文献   

4.
基于机器视觉的玉米根茎导航基准线提取方法   总被引:6,自引:0,他引:6       下载免费PDF全文
提出一种在大田环境下快速、精确提取中晚期玉米行中心线作为农业机器人导航基准线的新方法。改进了传统的2G-R-B算法,实时地获取植株绿色特征。根据玉米垂直投影图生成根茎轮廓特点并采用峰值点检测算法生成玉米根茎候补定位点,再对候补定位点进行二次判别,提取玉米根茎定位点。利用最小二乘法对已知特征点进行拟合,得到作物行线。求取左右行斜率后,计算出实际需要的导航基准线。实验结果表明,与其它算法相比,处理一幅700像素×350像素的彩色图像平均耗时小于185 ms,实时性好。在多种环境下生成的导航基准线准确率在90%以上,有较强的鲁棒性,为农业自动导引车(Automated guided vehicle,AGV)在中后期玉米大田中的自主行走提供了一种可靠的导航方法。  相似文献   

5.
基于分区域特征点聚类的秧苗行中心线提取   总被引:4,自引:0,他引:4  
为了准确检测水稻秧苗行中心线,提出了基于分区域特征点聚类的秧苗行中心线提取方法。采用2G-R-B特征因子和Otsu法分割秧苗和背景;通过分区域统计秧苗像素点分布提取秧苗行的候选特征点,利用特征点间近邻关系对特征点进行聚类,确定秧苗行数和各秧苗行的起始点;基于秧苗成行栽植特点引入“趋势线”,利用点到该直线的距离与距离阈值作比较,筛选出远离各行趋势线的点,并将其去除;对筛选后的每一行特征点用最小二乘法进行直线拟合,获取秧苗行中心线。实验结果表明,该算法具有较强的抗噪性能,提取秧苗行中心线的准确率达95.6%,与标准Hough变换和随机Hough变换算法相比,处理一幅分辨率为320像素×237像素的彩色图像平均耗时短,能够实现水田秧苗行中心线的准确提取,可为插秧机自主行走提供可靠的导航信息。  相似文献   

6.
基于最小二乘法的早期作物行中心线检测方法   总被引:11,自引:0,他引:11  
提出了一种基于最小二乘法的早期作物行中心线检测算法.利用G-R颜色特征因子分割作物与背景.根据作物与杂草的长度属性去除部分杂草噪声,应用垂直投影法动态检测作物行数,并提取作物行中点为特征点,获得特征点图像.利用特征点间的邻近关系对特征点进行分类,对归类后的特征点进行两次最小二乘法拟合,得到作物行中心线.对于有作物缺失的作物行,采用统计条形区域内特征点数量的方法判别检测结果的可信度.实验结果表明,算法能克服杂草和作物缺失的影响,实时地提取小麦、玉米和大豆作物行,平均每幅图像处理时间小于150 ms.  相似文献   

7.
机器视觉的农业导航路径规划是精准施药的关键,而作物行提取是其准确识别作物行路径的基础。为此,以玉米为研究对象,提出了一种基于最小相切圆原理和形态学相结合的作物行检测算法。首先在室外田间环境下采集生长早中期的玉米作物行图像,选择作物行比较规整的图像进行处理;其次,利用改进的超绿灰度化(1.8R-G-B)算法对玉米作物行图像进行灰度化处理,大大减少了噪声的干扰,通过中值滤波基本消除了噪声;然后,运用Otsu阈值算法获取了玉米作物行的二值图像。由于作物行呈线型,在此基础上,采用5×1像素的线型结构元素和3×3像素的方形结构元素两者相结合的方法对二值图像进行腐蚀、膨胀运算,并采用提出的最小相切圆与形态学结合的方法提取中央玉米作物行的骨架并进行中央作物行直线的拟合。实验表明:该算法能提供准确的位置信息,且对作物行边缘噪声具有较强的抗干扰能力,对进一步研究精准施药提供了参考依据。  相似文献   

8.
自然光照下基于粒子群算法的农业机械导航路径识别   总被引:12,自引:0,他引:12  
针对农业机械视觉导航线提取易受光照变化影响及常规导航线识别算法实时性低、抗干扰能力差等问题,对自然光照条件下基于机器视觉的农业机械导航路径识别技术进行了研究。首先,在YCr Cb颜色模型的基础上构建与光照无关的Cg分量,选择2Cg-Cr-Cb特征因子对图像进行灰度化处理,以降低光照变化对图像分割的影响;然后,采用改进K-means聚类方法进行图像分割,将绿色作物信息从土壤背景中分离出来,并通过形态学滤波方法滤除二值图像中存在的杂草干扰信息;最后,根据图像中作物行的特点建立作物行直线方程约束模型,利用粒子群算法对作物行直线进行寻优求解,进而得到导航线。实验结果表明,不同光照条件下对2Cg-Cr-Cb灰度图像进行图像分割,可以清晰完整地将作物从土壤背景中分离出来,分割图像受光照变化影响较小并且不会引入背景噪声;基于粒子群算法的导航线检测方法可以快速准确地提取出导航路径,对于不同农田作物和作物不同生长阶段具有较高的适应性,相比于常规导航线识别算法具有实时性高、鲁棒性好等优点。  相似文献   

9.
针对一般烟叶宽度提取算法准确性不高及不适应烟叶随机摆放的问题,提出一种基于旋转矢量不变性的烟叶宽度提取算法。该方法首先使用最小外接矩形法获得烟叶的首尾端点,根据首尾端点确认的骨架直线,确定与其平行并与烟叶边缘相切的两条直线,两条切线间的距离为烟叶的宽度。实验结果为烟叶宽度测量误差率低于1%,各角度测量数据方差最高为0.0649,表明该算法具有旋转矢量不变性的特点,能够准确提取烟叶的宽度。  相似文献   

10.
基于模式识别的农田目标定位线检测   总被引:6,自引:3,他引:3  
根据农田图像的特点,采用K-means模式识别算法,实现农作物与背景的分离.通过对二值图像进行水平扫描.检测定位区域和定位点,利用定位点的坐标信息确定聚类判别函数,实现农田目标定位线的检测.多幅农田图像实验表明,定位线能够正确提取出来.该算法处理640×480像素的彩色图像蒂要0,12 s,在自动导航系统中是一种有效、快速的图像处理算法.  相似文献   

11.
一种快速剔除伪分枝的作物行骨架提取算法   总被引:1,自引:0,他引:1  
作物行骨架线的提取是机器视觉导航的基础,准确提取作物行骨架也是精准施药系统中一个至关重要的研究方向。为了克服传统骨架提取算法中的背景单一、存在较多的冗余分支及不连续等缺点,以农田作物行为研究对象,提出一种形态学细化和伪分支剔除相结合的实用型骨架提取算法。首先对采集到的作物行原图像通过灰度、滤波、阈值分割操作使其转化为二值图像;然后将二值化后的作物行图像先细化为单像素宽度的骨架线,再采用端点追踪法追踪伪分支骨架,而后剔除追踪的毛刺或无关枝杈,保证了骨架的单一性和圆滑性,提高了作物行检测的精度。通过与拓扑细化法和最大圆盘骨架提取算法比较,本文算法不但在去除冗余骨架的同时能保持自身良好的拓扑性和稳定性,而且能去除多余的毛刺状分支,同时表明该算法具有较强的稳定性和抗干扰能力。  相似文献   

12.
喷杆式施药机对行喷雾控制系统设计与试验   总被引:2,自引:0,他引:2  
针对现有大田喷杆式施药机喷雾过程中喷头无法精准对行喷施造成农药浪费的问题,基于机器视觉技术设计了喷杆式施药机对行喷雾控制系统。该系统包括作物行中心线位置提取上位机软件和电动喷杆控制系统,利用工业相机获取作物行RGB图像,采用G-RTG-BT算法及形态学处理实现作物行分割,基于改进的垂直投影法获取作物行中心线,利用坐标系转换实现将作物行中心线位置信息转化为喷杆横向偏移量,并经RS2 3 2串口传输至ATMega1 6控制器,控制推杆电机带动喷杆在滑轨上左右移动,借助位移传感器实时监测喷杆移动距离,以实现作物行追踪和对行喷雾控制。实验室和田间试验表明:改进的作物行中心线提取算法平均耗时12.51ms,喷杆横向偏移量计算误差小于0.44cm;电动喷杆右移最大误差0.3cm,左移最大误差0.5cm;小车速度为0.26m/s时,对倾角为5°、10°、15°模拟作物行的最大对行误差分别为3.22、2.86、2.51cm;小车速度为0.2 4 m/s,最大偏移1 4.0 2 cm时,对田间玉米幼苗的对行喷雾最大误差为4.8 6 cm,为实现作物行追踪和对行喷雾控制提供了一种有效的解决方案。  相似文献   

13.
基于RANSAC算法的植保机器人导航路径检测   总被引:2,自引:0,他引:2  
为实现植保机器人精准自主导航和提高路径检测的精度、可靠性,提出一种基于RANSAC算法的视觉导航路径检测方法。首先,采用超绿灰度化法和最大类间方差法进行图像分割;继而结合形态学操作与动态面积阈值滤波算法滤除干扰;最后,在垄行的边缘中,根据均值法提取特征点,采用RANSAC算法剔除离群点后由最小二乘法进行直线拟合,以提高导航路径的检测精度。实验表明,与Hough变换相比,本文垄行中心线检测方法具有更高的检测精度,导航路径的检测率可达93.8%,比未使用RANSAC算法提高了18.8个百分点。  相似文献   

14.
机器视觉在农业车辆导航系统中的研究进展   总被引:5,自引:2,他引:3  
机器视觉是农业自动车辆获得导航信息的一种方式,其基本任务是从图像中识别出作物行,然后提取作物线。目前有两种分析图像的模式:基于2D图像信息的边缘特征分析法,基于1D灰度信息的特征分析法。综述了国内外在这个领域的研究进展,并提出一些符合我国农业现代化发展趋势的机器视觉研究思路。  相似文献   

15.
机器视觉技术和GPS在农业车辆自动导航中的应用   总被引:3,自引:0,他引:3  
机器视觉和GPS是农业自动车辆获取导航信息的两种主要方式,其主要任务是获得作物行或犁沟的信息。为此,介绍了基于以上两种导航技术的农业车辆研究现状,重点对比了机器视觉与GPS的技术特点及其优缺点,并指出了研究中存在的问题;最后讨论了两种导航方式的发展趋势。  相似文献   

16.
基于位置特征的行间杂草识别方法   总被引:2,自引:0,他引:2  
研究了利用条播作物的位置特征识别行间杂草的方法。根据条播作物成行排列的位置特征,利用像素位置直方图法识别作物中心行。根据多数杂草位于作物行之间裸土中的位置特征,以每条作物行左右边界线段的起始点作为种子,运用种子填充算法填充与其相连通的作物行区域,从而识别行间杂草。试验表明:行间杂草的准确识别率平均为80%,错误识别率平均为4.2%,适用于早期作物田间杂草识别。  相似文献   

17.
基于纹理和位置特征的麦田杂草识别方法   总被引:14,自引:5,他引:14  
以化学防除适期麦田杂草为研究对象,对利用条播作物的位置和纹理特征识别田间杂草的方法进行了研究。根据条播作物小麦作物行的间距相对固定等位置特征,利用植物像素直方图法确定作物行的中心线和行宽,并识别行间杂草。然后,以作物行中心为基准来选取纹理块,计算量化级数为8级的H颜色空间的共生矩阵,提取5个纹理特征参数,利用K均值聚类法判别分析各块的类别来识别行内杂草。研究结果表明,杂草的正确识别率约为93%,作物的错误识别率约为7%。  相似文献   

18.
作物行识别算法的虚拟试验方法   总被引:1,自引:0,他引:1  
针对作物行识别算法的传统开发过程对田间作物生长周期依赖性较强,错过适当的田间图像采集时期将直接导致算法开发周期延长等问题,提出一种基于虚拟场景的作物行识别算法测试方法,即在虚拟环境下模拟农田作物行场景和图像采集系统,运用虚拟作物行图像测试作物行的识别算法。该方法在虚拟现实环境下建立作物行场景模型;提出一种融合建模法,根据作物和杂草的几何特征建立对应的三维几何模型;根据实际田间作物的空间分布特征,建立株距、行距可调的田间作物行模型;以Vega Prime为视景仿真工具,通过配置投影模式、渲染模式、视点位姿和图像采集规格,构建图像采集系统,输出作物行场景图像。以苗期棉花作物行为建模对象,对一种经过田间试验验证的双目视觉作物行识别算法进行测试试验。对比实际棉田图像对应的试验结果,同一作物行识别算法的识别正确率、偏差角和图像处理时间均相近。结果表明,本文建立的虚拟棉田作物行与实际棉田作物行场景相近,能够用于作物行识别算法的测试。  相似文献   

19.
智能锄草机器人系统设计与仿真   总被引:9,自引:1,他引:8  
针对锄草机器人田间运动及锄刀避苗锄草等作业问题,阐述了智能锄草机器人系统工作原理,研究了移动机器人平台,平台为四轮驱动、四轮独立转向,可实现运动速度在0~1.5 m/s内连续可调,每组转臂可绕其自身Z轴360°自由旋转.设计了三指手爪锄草机械手,三指公转,其中一指为活动手指可同时自转,锄草机器人工作时两个固定指的割刀连续入土锄草,系统根据机器视觉苗草位置信息,通过控制活动手指的旋转速度与方位角实现瞬时位置调整,进而通过拟合指端旋移曲线即可完成锄草和避苗等作业任务.苗间锄草仿真分析表明,在有效避苗基础上,作物行两侧各布置一组锄草机械手时锄草率可达90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号