首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the energy budget of the Manila clam, Ruditapes philippinarum, was evaluated after one-week acclimation periods at 5, 10, 15, 20, and 25°C. Small clams (151 ± 12 mg DW) and large clams (353 ± 16 mg DW) were fed with the microalgae, Isochrysis galbana. Filtration rate, ingestion rate, assimilation efficiency, oxygen-consumption rate, and ammonia excretion rate were measured. Both filtration rate and ingestion rate of small and large clams were found to be related to temperature. The highest Q 10 values were measured in the range 15–20°C for both small and large clams. Assimilation efficiency of both small and large clams was not significantly influenced by temperature, although the maximum mean values were detected at 20°C. Oxygen consumption rate and ammonia excretion rate of small and large clams were found to be related directly to temperature over the entire range, with a maximum being detected at 25°C. The highest Q 10 value was estimated in the range 10–15°C with regard to oxygen consumption rate, and in the range of 15–20°C with regard to ammonia excretion rate. Scope for growth (SFG) was positive at all temperatures, achieving a maximum value at 20°C in both small and large clams, primarily as a consequence of the enhanced ingestion rate which offset the concomitant elevation in the metabolic rate. In this study we have estimated the thermal optimum for this species at 20°C.  相似文献   

2.
Carp undergo temperature acclimation of respiratory function by altering mitochondrial ATP synthase (FoF1-ATPase) both quantitatively and qualitatively (Itoi et al. 2003). To address such acclimation temperature-dependent changes of FoF1-ATPase activity, we investigated in this study the correlation between the fatty acid composition and FoF1-ATPase activity in fast muscle of thermally acclimated carp. The quantities of saturated fatty acids of mitochondria from carp acclimated to 10 °C were significantly lower than those of carp acclimated to 30 °C. While mono- and poly-unsaturated fatty acids tended to increase with cold acclimation of carp, the molar concentration of 16:0 aldehyde in mitochondria from the 10 °C-acclimated carp were less than those from the 30 °C-acclimated fish. The specific activities of FoF1-ATPase in the 10 °C- and 30 °C-acclimated fish mitochondria were calculated to be 167±22 and 56±10 nmol/min ⋅ mg mitochondrial protein, respectively, the difference being significant at P<0.005. Taken together, the increase in FoF1-ATPase activity in fast muscle mitochondria of carp after cold temperature acclimation may be closely related to the increase of unsaturated fatty acids in mitochondria. Abbreviations: BSA - bovine serum albumin; DHA - docosahexaenoic acid; EGTA - ethyleneglycol bis(2-aminoethylether)tetraacetic acid; EPA - eicosapentaenoic acid; FoF1-ATPase - mitochondrial ATP synthase; α-F1-ATPase - FoF1-ATPase α-subunit; β-F1-ATPase - FoF1-ATPase β-subunit; HEPES - 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid; SDS - sodium dodecyl sulfate; SDS-PAGE - SDS-polyacrylamide gel electrophoresis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

4.
Understanding the forces that drive habitat selection of species in communities is important in both ecology and evolution. In nature, species face variation in competition, predation and physical characters among habitats. Vendace (Coregonus albula (L.)) is a specialised zooplanktivorous fish predominantly using deeper water in lakes during summer, while roach (Rutilus rutilus (L.)) uses mainly the shallow littoral zone as well as the upper layer of the pelagic zone. To understand mechanisms behind habitat use of these species, I first conducted a predation experiment to investigate their sensitivity to predation by perch (Perca fluviatilis L.). Second, I performed a foraging experiment using different temperature and light treatments. I then used metabolic calculations to estimate energetic costs when foraging. I found no difference between species regarding sensitivity to predation. Vendace was the most efficient forager on zooplankton but also swam faster spending more energy compared to roach. Roach had a comparatively high metabolic rate in the lowest temperature, where their foraging efficiency was lowest. The energy gain ratio at 6°C was highest for vendace, while it was lowest for roach. In the highest temperature (18°C) and the lowest light level (1 lux), both species were similar in their energy gain ratio. The relative energy gain ratio provides a mechanism to explain habitat distribution for the two species. An increased understanding of the role of metabolism in combination with biotic interactions and habitat use may help to foresee effects of environmental change for different species.  相似文献   

5.
Serum thyroid hormone concentrations were measured during the seven stages of metamorphosis (1–7) of the southern hemisphere lamprey, Geotria australis. The respective mean concentrations ± SEM of serum thyroxine (T4) and triiodothyronine (T3) fell from 31.73 ± 4.09 and 5.06 ± 0.70 nM in large ammocoetes sampled in February, at the time when metamorphosis was initiated, to 4.54 ± 0.36 and 1.03 ± 0.12 nM at stage 5. Although there was a small, but significant, recovery of serum T4 concentrations during stages 6 and 7, no such corresponding statistically significant rise occurred in serum T3 concentrations. Serum thyroid hormone concentrations in ammocoetes sampled during the period when metamorphosis was taking place, exhibited a marked seasonal increase between February and May–June (late autumn/early winter); serum T3 and T4 concentrations peaked in May–June and were, respectively, > 2 fold and > 8 fold higher than those recorded for samples in late February (mid summer). By mid-July the serum T4 and T3 levels had declined from the peak values. Ammocoetes taken from streams at 16°C in June and acclimated to aquaria water at 25°C or 6°C had significantly lower serum T3 and T4 concentrations at the higher temperature, and also a lower serum T4, but not T3 concentration, at the lower temperature. Treatment of separate groups of ammocoetes with either propylthiouracil or T3 for 70 days significantly depressed and raised respectively, the serum thyroid hormone and hepatic T3 concentrations and caused significant changes in the body weight, but did not induce the onset of metamorphosis.  相似文献   

6.
The metabolic physiological response to body mass, temperature (12–28 °C) and salinity (20–36 g L?1) was examined in this paper. Oxygen consumption rate, which is dependent on environmental conditions, was exponentially related to body mass and varied from 0.045 to 1.11 mg h?1 g?1. Oxygen consumption rate increased as salinity increased from 20 to 36 g L?1, and increased with increasing temperature. The effect of temperature gradient between experimental treatments on oxygen consumption rate was evaluated by calculating Q10 (the Arrehenius relationship for increase with temperature). The Q10 value within the temperature range from 12 to 16 °C was much higher than the value within the temperature range from 16 to 20 °C, 20 to 24 °C and 24 to 28 °C, indicating a reduced temperature dependence of ascidian metabolism at a high temperature.  相似文献   

7.
The effects of acclimation temperature and acute temperature change on the uptake and metabolism of the procarcinogen benzo[a]pyrene (BaP) by gill cells of the gulf toadfish, Opsanus beta, were examined. BaP was rapidly accumulated by isolated gill cells and uptake rates were directly proportional to BaP concentration in the medium (1 to 100 μg/ml). Uptake rates were higher in cells isolated from fish acclimated to 18°C when compared to cells from 28°C acclimated fish at all incubation temperatures. When cells were exposed to BaP at the respective acclimation temperatures of the fish, uptake rates were similar (0.14 ± 0.01 at 18°C and 0.12 ± 0.01 μg BaP/s/10 mg cells at 28°C). This finding is discussed in view of results which showed a partial compensation of membrane fluidity in plasma membranes isolated from fish from the two acclimation temperatures. At higher incubation temperatures, cells from fish acclimated to 18°C metabolized BaP at a greater rate than those at 28°C (49.6 ± 1.92 and 43.0 ± 2.24 μg/g/8h, respectively, at 23°C). Low but detectable activities of common biotransformation enzymes (aryl hydrocarbon hydroxylase, glutathione-S-transferase) and cytochrome P-450 content were found, however, no significant differences were evident between cells from fish acclimated to different temperatures. To whom to address correspondence  相似文献   

8.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

9.
Male ninespine sticklebacks, Pungitius pungitius, acclimated to 3°C have higher activities of mitochondrial enzymes in their axial muscles than males acclimated to 20°C. Phosphofructokinase and pyruvate kinase activities tended to be higher in cold than warm acclimated males. For females, warm acclimation tended to decrease only mitochondrial enzyme activities. As thermal acclimation did not change the physical condition and most anatomic parameters of the sticklebacks, the enzymatic changes do not seem due to mobilization of somatic reserves. Field acclimatization to warm temperatures led to a marked decrease in physical condition in both males and females. This decrease in physical condition could largely be attributed to atrophy of the carcass mass. Spring males had higher activities of phosphofructokinase, citrate synthase and cytochrome oxidase in the axial muscle than summer males. Again, females showed a less marked response. These data suggest that environmental temperature is a major determinant of muscle aerobic capacity, at least for male ninespine sticklebacks. Thus, these northern temperate zone fish retain the capacity for thermal compensation, much like their temperate zone counterparts.  相似文献   

10.
Oxygen consumption, ammonia excretion and fish swimming speed were measured in fish induced to swim by optomotor reaction in a circular metabolism chamber. The relationship between the swimming speed and fish metabolism described by exponential equations allowed the extrapolation to the standard metabolism, i.e. at zero swimming speed. The partitioning of the catabolised protein in the energy supply was estimated based on AQ (volume of ammonia/ volume of oxygen) values. Weight specific standard metabolism, as expressed by the ammonia excretion rate, decreased by one order of magnitude in coregonids as the fish grew from 20 to 780 mg body weight. The slope of the relationship between oxygen uptake and swimming speed decreased in coregonid ontogenesis. In salmon, after 12 days of fasting 28% of energy used was derived from protein, whilst coregonid juveniles utilized mostly lipid. Active swimming in fasted juveniles of coregonid, as well as in salmon, led to the accelerated utilization of protein as a source of energy, based on AQ coefficients. In juveniles acclimated to a range of water temperatures from 14 to 26°C, the changes in standard or active metabolic rate (expressed as oxygen uptake or ammonia excretion) were described by Q10 coefficients. They were generally higher for the ammonia excretion rate than for the oxygen uptake rate and for active metabolism than for standard metabolism. Utilization of protein as energy for swimming differed significantly between the species, being in general one order of magnitude higher in coregonids than in salmon. The use of protein for swimming activity tended to decrease during coregonid ontogenesis.  相似文献   

11.
The seasonal cycle and regulation by temperature of antifreeze protein mRNA (AF mRNA) were investigated in a Long Island population of winter flounder (Pseudopleuronectes americanus) by Northern blot hybridization and by in vitro translation of liver RNA. AF mRNA was expressed at high levels in the fall and winter (Nov.–Feb.) and at low or undetectable levels in the summer. The time of accumulation of AF mRNA coincides with the time during which water temperature and photoperiod decrease to 4°C and 9 h of light per day, respectively. A temperature and photoperiod decrease in the laboratory during this time also resulted in high levels of AF mRNA. The levels of other mRNAs, as assayed by in vitro translation, were relatively constant during both seasonal acclimation and laboratory acclimation. The seasonal cycle of AF mRNA in Long Island winter flounder is similar to that of a more northern, Newfoundland population of winter flounder and different from that of an intermediate, New Brunswick population. These similarities and dissimilarities are discussed in light of potentially different exogenous and endogenous regulatory cues in the different populations.  相似文献   

12.
为了解山东半岛东南部海域星康吉鳗资源密度时空变化及其与环境因子之间的关系,实验根据2016年10月和2017年1月、5月、8月山东半岛东南部海域4个航次底拖网调查数据,利用广义可加模型(GAM)分析了星康吉鳗资源密度时空分布特征及其与环境因子之间的关系。结果发现,星康吉鳗资源密度及分布具有明显的季节变化。春季,山东近海星康吉鳗资源密度为66.38 kg/h,夏季资源密度达到一年中最大值,为87.31 kg/h,秋季资源密度为79.01 kg/h,冬季资源密度大幅度降低,仅为10.44 kg/h。GAM模型结果显示,水深和海水底层温度对星康吉鳗资源分布影响最大。春季,星康吉鳗资源密度与水深、底温呈正相关关系,其分布范围较广,主要分布在海州湾中部海域(35°N沿线分布最多);夏季,其空间分布受水深影响,主要集中分布在水深20~30 m的山东半岛南部近岸海域;秋季,水深、底温、饵料生物量与星康吉鳗资源密度呈正相关,此时星康吉鳗分布较分散。冬季,星康吉鳗资源密度与水深呈正相关,此时主要分布在受黄海暖流影响的海州湾北部海域以及123.5°E~124°E海域。研究表明,星康吉鳗资源分布与其洄游习性和海域水温等水文特征的季节性变动有关,其分布特征在春季、冬季分别受青岛冷水团与黄海暖流影响显著。本研究有助于了解山东近海星康吉鳗群体的生活习性,为其资源的养护和管理提供依据。  相似文献   

13.
This study examined how muscle metabolic organization varied during an annual cycle in which rainbow trout (Oncorhynchus mykiss) were held in outdoor holding ponds in which they were exposed to natural changes in temperature (range 0.2 to 15.6°C) and photoperiod. We examined the activities of glycolytic and mitochondrial enzymes in red and white muscle to evaluate whether trout enhance their capacity for lipid and carbohydrate oxidation during cold-acclimization. When assayed at habitat temperature, the enzyme activities generally increased in spring to reach a maximum in summer followed by a decrease in the fall. This led to significantly higher activities at warm than cold periods for all enzymes measured in red muscle and all but one in white muscle. The activities at 10°C provided little evidence for compensatory adjustments of aerobic capacity. Particularly in red muscle, enzyme levels at 10°C were generally lower during cold than warm periods. The variation of enzyme activities throughout the cycle was not due to changes in protein concentration, as the same responses were observed when activities were expressed per g wet mass or per mg protein. Although the aerobic capacity did not increase with cold-acclimatization, the relative capacity for lipid oxidation was higher in winter than in summer trout. In contrast, the relative capacity for aerobic glycolysis was higher in summer than in winter trout. Thus, the metabolic capacities of trout muscle undergo seasonal reorganization.  相似文献   

14.
The behavioural and metabolic responses of the largemouth bass Micropterus salmoides (Lacépède) to temperature were determined to define optimal thermal conditions. The final preferendum of largemouth bass juveniles determined with acute and gravitation methods was independent of the method (29.0–28.1 °C). The displacement velocity in the horizontal thermal gradient of bass juveniles was 22.4 cm h−1 in the light phase and 22.6 cm h−1 in the dark phase. Oxygen consumption rates in the largemouth bass increased significantly (P<0.05) from 48.8 to 69.4 mg O2 Kg−1 h−1 with an increase in the acclimation temperature from 20 to 33 °C. The temperature quotient (Q10) in the juveniles was 1.37–2.00 in the range of acclimation temperatures of 26–29 and 29–32 °C. The optimum temperature range for growth calculated using Jobling's equation was 28.1–28.6 °C and for Q10 values 26–29 °C. The results are discussed in relation to the use of this information in aquaculture.  相似文献   

15.
The effects of acute temperature changes (2–17°C) on myocardial contractility with or without adrenergic activation were studied in the isolated spontaneously beating atrium of the Atlantic salmon (Salmo salar) reared at 8°C. The atrial frequency was markedly elevated (from 7 to 46 beats/min) by the rise in temperature from 2–17°C. Both the time to peak tension and to relaxation time were shortened. In contrast, the temperature effect on the maximal tension was modest. Exposure to exogenous adrenaline (1.1 nM–11 μM) resulted in a substantial enhancement of the maximal tension, notably at 2°C, while potentiation of the frequency at 2, 8 and 14°C, was less pronounced. The apparent affinity (pD2) for adrenaline on the chronotropy was higher at 8 and 14°C than at 2°C. For the inotropic responses pD2 was highest at the acclimation temperature (8°C). By comparison with data for the rainbow trout (Oncorhynchus mykiss) obtained by the same experimental design (Ask et al. 1981), species differences were apparent both in temperature dependence of contractile parameters and in their adrenergic activation. The Q10 for the frequency in absence of adrenaline was higher in the salmon than in the trout for the temperature interval 2–17°C. The apparent affinities for adrenaline for the frequency at 8°C and 14°C and for the maximal tension responses at 2°C and 8°C were also highest for the salmon atrium.  相似文献   

16.
As a major part of fish larval diet in nature, copepods constitute an appropriate live prey for aquaculture purposes. Considering the difficulty of mastering copepod mass production, studies on their growth performance at different environmental conditions are needed to improve their productivity. In this study a new selective approach based on temperature control is proposed to improve the physiological (body size, fecundity and lipid storage) performance of copepods. The estuarine copepod Eurytemora affinis known to have a high genetic variance in temperature tolerance was used as a biological model. First two different copepod lines were obtained after long‐term culture at constant cold (7°C) and warm (20°C) temperatures. Then both populations were transferred to a higher temperature of 24°C appropriate for aquaculture use and followed during five generations. During the first two generations (F1–F2) of a cold‐acclimated population, female body size and fecundity decreased significantly whereas the survival rate remained high. The high lipid content of this population was used by females to compensate the heat shock of more than 10°C. However, the survival rate decreased dramatically in F3 but allowed the selection of robust individuals which progressively improved their fitness during the following generations. So, compared to the warm acclimated population, the cold acclimated one showed larger body size, higher fecundity and better lipid storage. After only five generations at 24°C the cold‐acclimated population showed a significant genetic gain in prosome length compared to the warm acclimated one.  相似文献   

17.
Photosynthetic activities of seedlings of Zostera marina were successively measured using a gas volumeter for 6 days at seven light (0–400 μmol photons/m2 per s) and 11 water temperature conditions (5–35°C). The seedlings were collected from mature plants (Ise Bay, central Japan), and stored and cultured in incubators accurately controlled at each test temperature. The maximum gross photosynthesis (P maxg) was recorded at an optimal water temperature of 29°C after 0 days. After 6 days, P maxg appeared at 25°C and most plants cultured at 29–30°C bleached and withered after the drastic increase of light compensation point (I c). On the contrary, at 5–28°C, the photosynthetic activities either changed little (5–25°C) or recovered after a temporal reduction (26–28°C); seedlings survived and looked healthy after being cultured for 6 days. The recovery was thought to be an acclimation to tolerate higher water temperature. As a result, the critical upper water temperature for Z. marina seedlings was proposed as 28°C. The temperature was consistent with the previously reported maximum water temperature in habitats around the southern boundary of Z. marina in the northern hemisphere.  相似文献   

18.
A large part of the extensive aquaculture in Tunisia was based on the transfer of mullet fry from the marine coastal areas to the continental fresh water lakes, the aim of this work is the monitoring of the changes made in the lipid composition of Mugil cephalus fry according to salinity and temperature acclimation. Fish acclimated to 14 °C and 0.5 psu salinity, contained 55% less total fatty acid than those acclimated to the seawater at the same temperature. Low salinity induces an increase in the percentage of some polyunsaturated fatty acid such as the 22:5 (n-3), the 22:6 (n-3) and the 20:4 (n-6), as a result of change in the level of triacylglycerol content or the activation in the synthesis of those fatty acids. The transition of the acclimation temperature from 26 to 14 °C in seawater is followed by a 215% increase in the amount of total fatty acids in the fourth week of acclimation. The total fatty acid levels of all fish at 1 week were higher than most values at 4 weeks. There was an increase of polyunsaturated fatty acids percentages due to the decrease of the temperature at the low salinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The burbot (Lota lota) is the only fresh water member of the cod family, Gadidae, and is adapted to cold waters. The effects of temperature and light on the growth and survival of burbot larvae were investigated under hatchery conditions. Three temperature regimes (12, 16 and 20°C) were applied under continuous light and darkness during the experiment. Rotifer, Brachionus calyciflorus (L.) were fed to the larvae in the first 10 days and the diet was then replaced with Artemia nauplii. At the end of the feeding stage with rotifer, growth in terms of the total length and wet weight were larger at higher temperatures under continuous light. At day 10, survival rates of the fish held at 12°C under continuous light and darkness regime were higher than those held at 16°C and 20°C kept under the same conditions. From day 10 onwards, larval growth improved remarkably after changing the live food from rotifer to Artemia in all treatments. At the end of the study, the highest survival rate was recorded among the larvae held at 12°C exposed to continuous light. Under light condition, the temperature of 20°C did not result in an improved larval growth compared with 16°C. This may indicate that high temperature and continuous light are not beneficial for larval growth and survival when they reach older stage of development. The results indicate a significant interaction for the combination of temperature, light and time with respect to survival and wet weight, making unambiguous interpretation of the main effects difficult.  相似文献   

20.
The optimal water temperature in seed germination and the upper critical water temperature in seedling growth were determined for Zostera japonica collected from Ago Bay, Japan. The relationship between the seed germination rates and seed storage period (0, 30, and 60 days) at 0°C was also examined. The optimal water temperature in seed germination was in the range 15–20°C regardless of the storage period, in which germination rates were up to 14%. Seedlings, grown from seeds up to 10 cm in total length, were cultured for 1 week at various water temperatures to measure their relative growth rates. The optimal water temperature in early growth was in the range 20–25°C; relative growth rates ranged from 3.8 to 4.2%. Seedlings could survive up to a water temperature of 29°C, but most seedlings withered at 30 or 35°C. The optimal water temperatures for seed germination and seedling growth were related to the seasonal changes of water temperature in the sampling site. Although seedlings were hardly observed in Ago Bay in summer, Z. japonica might extend its distribution as far as where the summer water temperature is lower than 29°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号