首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of epidermal cells of cucumber leaf tissue infected by Sphaerotheca fuliginea was examined by light microscopy to understand how silicon in infected host cells affects host defence mechanisms. Leaf pieces from plants treated with nutrient solutions containing 0·05, 0·50 or 2·3 mm of silicon (Si) were harvested at intervals of 24, 48, 72, 96 and 120 h after inoculation with the pathogen and examined after staining with toluidine blue or aniline blue. Si treatments significantly reduced the time to initiation of production and/or accumulation of phenolic materials in infected host epidermal cells, and increased the number of infected cells that produced and/or accumulated phenolics. The number of haustoria produced per colony of S. fuliginea was significantly reduced over time, and conidiophore development was delayed on the leaves of cucumber treated with 2·3 mm Si nutrient solution.  相似文献   

2.
Pythium spp. that cause damping-off of seedlings also can cause root rot of older plants and lead to yield reductions. This can be especially severe in soilless cultures where the fungus can spread easily with the nutrient solution. 39Pythium isolates obtained from discolored roots were assayed for their ability to cause damping-off on cucumber seedlings in sand-peat and for their pathogenicity in soilless culture of cucumber in rockwool or hydroponic solution. Isolates ofPythium aphanidermatum, P. irregulare, P. sylvaticum andP. ultimum were highly pathogenic in sand-peat, but onlyP. aphanidermatum strains were pathogenic in soilless conditions and led to root decay, plant death in rockwool culture and growth reduction in hydroponic culture. One strain ofP. aphanidermatum significantly reduced the yield of cucumber grown in rockwool under conditions similar to those of commercial cultures.  相似文献   

3.
Localized infection of cucumber leaves with Colletotrichum lagenarium induced resistance against infection after challenge inoculation with pathogenic fungi, including C. lagenarium and Pythium ultimum var. ultimum. Systemic acquired resistance in the hypocotyl was observed when challenge inoculation was made 4 to 7 days after the first inoculation of cotyledons. Seven days after the first inoculation of a primary leaf, induced resistance against the challenge inoculation in the hypocotyl was also observed. However, the hypocotyl did not develop induced resistance when plants were challenged by a wound inoculation with P. ultimum. Received 9 June 1999/ Accepted in revised form 13 December 1999  相似文献   

4.
Pythium ultimum var. ultimum was isolated from carrot seedlings with damping off and from soil used for growing the plant in a greenhouse on Spitsbergen Island, Svalbard. The fungus caused severe damping off of carrot, cucumber and tomato seedlings after artificial inoculation. The rDNA internal transcribed spacer sequences of the Svalbard isolate were identical to those of Canadian and Japanese isolates of P. ultimum var. ultimum. The results suggest that the pathogen in the greenhouse on Svalbard was probably introduced from temperate regions through contaminated plants and/or soil imported to the island. This is the first record of P. ultimum var. ultimum within the Arctic zone.  相似文献   

5.
The root rot widely seen in hyacinth was found to be caused byPythium spp. instead of byFusarium culmorum. Of sixPythium species isolated, three, includedP. ultimum andP. violae, were investigated in glasshouse experiments and their pathogenicity demonstrated. In these experiments plants were successfully grown in containers in which an aqueous mist was maintained, or in water cultures. In experimental plots on infected soil, Dexon, a fungicide selective for Pythiaceae, distinctly reduced the number of dead plants and increased yield and bulb size, thus confirming the role ofPythium in causing root rot. Practical application of Dexon deserves further attention.  相似文献   

6.
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent of various soilborne pathogens. It controls damping-off or root rot caused byPythium ultimum on cucumber, wheat and cress. Strain CHA0 synthesizes several antibiotic metabolites such as hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin. The role of pyoluteorin in the suppression of damping-off was investigated. Two Tn5 mutants (CHA660 and CHA661) of strain CHA0 were isolated which had lost the capacity to produce pyoluteorin but still produced 2,4-diacteylphloroglucinol and HCN. These mutants still inhibitedP. ultimum on malt agar (which favours the production of 2,4-diacetylphloroglucinol) but had partially lost the ability to inhibit this pathogen on King's B agar (which favours the production of pyoluteorin). The two pyoluteorin-negative mutants showed a reduced capacity to suppress damping-off of cress caused byP. ultimum but were as effective in the protection of cucumber against this pathogen as the wild-type strain.These results indicate that, depending on the plant, pyoluteorin production plays a role in the suppression of damping-off by strain CHA0 without being a major mechanism in disease suppression. We suggest that the contribution of pyoluteorin to the biocontrol activity of strain CHA0 is determined by the quantity of this antibiotic produced in the rhizosphere, which might depend on the root exudates of the host plant.  相似文献   

7.
Pythium group F is a minor pathogen which induces symptomless infections that occur frequently and results in yield losses in tomato soilless cultures. To elucidate the mode of action of this microorganism, the influence of culture filtrates of Pythium group F on tomato growth was investigated and compared to that of the pathogen Pythium ultimum. Depending on metabolite production by the fungus, marked differences were observed in plant response. Pythium group F crude culture filtrates or low molecular weight fractions (< 500) caused swelling behind the root tip and reduced root growth; the cohesion and adherence of cells within the cortical area were also affected. These symptoms were similar to those observed on plants treated with indole-3-acetic acid. By contrast, P. ultimum filtrates caused a marked distortion of cell shape accompanied with folding of host cell walls, particularly in the cortical area. These symptoms were characteristic of the activity of toxic compound(s) on host cells. Chemical analysis of the filtrates demonstrated that indole-3-acetic acid and tryptophol were produced by Pythium group F and P. ultimum. However, Pythium group F took up and metabolized more indole-3-acetic acid precursors, especially tryptophan, a key amino acid in the pathways leading to indole-3-acetic acid synthesis. The fact that Pythium group F and P. ultimum transformed tryptamine and indole-3-acetaldehyde into indole-3-acetic acid and tryptophol confirms the existence of a tryptamine pathway within both fungi. These results support the hypothesis that auxins facilitate Pythium group F infections. On the other hand, toxin(s) and hydrolytic enzymes are likely involved in P. ultimum pathogenesis.  相似文献   

8.
Root and stem rot with wilt of above ground parts of cultivated chrysanthemums was first found in Ibaraki, Toyama and Kagawa prefectures, Japan in 2002 and 2003. Pythium species were isolated from the diseased tissues and identified as P. dissotocum, P. oedochilum, P. sylvaticum, P. ultimum var. ultimum and asexual strains of P. helicoides based on their morphologies and sequences of rDNA-ITS region. All the Pythium species were strongly pathogenic to chrysanthemums in pot conditions and were reisolated from the inoculated plants. Because Pythium root and stem rot of chrysanthemum has never been reported in Japan, we propose that this is a new disease that can be caused by the five Pythium species.  相似文献   

9.
Papaya ringspot virus type P (PRSV‐P) systemically infects Carica papaya and species belonging to the family Cucurbitaceae. Attempts to recover PRSV‐P from naturally infected cucurbit plants grown near or among diseased papaya trees have shown conflicting results worldwide. This study aimed to evaluate the natural infection of cucurbit species grown among and near papaya trees infected with PRSV‐P in Brazil. Natural infection of cucurbits with PRSV‐P occurred in zucchini squash but not in watermelon and cucumber. However, several attempts to recover PRSV‐P from numerous Cucurbita pepo cv. Caserta (zucchini squash) plants grown 5–80 m from diseased papaya trees in the field failed. Mechanical inoculations of Cucurbita pepo cv. Caserta, Cucurbita maxima cv. Exposição (pumpkin), Cucumis sativus cv. Primepack Plus (cucumber) and Citrullus lanatus cv. Crimson Sweet (watermelon) with five Brazilian PRSV‐P isolates showed that zucchini squash was the most susceptible species followed by watermelon and cucumber, while pumpkin was not infected. The results confirmed the variable susceptibility of cucurbit species to experimental and natural PRSV‐P infection. Given these facts, the control of the disease through roguing should focus mainly on diseased papaya plants, as has been practised successfully in Brazil for many years, and on those cucurbits particularly known to be susceptible to natural infection with PRSV‐P.  相似文献   

10.
11.
12.
BACKGROUND: Pythium ultimum is a plant pathogen that causes significant yield losses on many economically important crops. Chemical treatment has been used for disease control. In searching for alternatives, venom piperidine and piperideine alkaloids from red imported fire ants were tested against P. ultimum in vitro, and piperideines were employed to control cucumber damping‐off in the greenhouse as drench treatments. Results Piperidine and piperideine alkaloids of the red imported fire ant significantly inhibited mycelium growth of P. ultimum. Piperidine alkaloids were stable at both room and elevated temperatures. The inhibitory activity positively correlated with the concentrations of piperidine alkaloids in the medium, and the EC50 = 17.0 µg ml?1. Germination of sporangia of P. ultimum was negatively correlated with the concentrations of piperidine alkaloids in the medium, and the EC50 = 12.3 µg ml?1. The piperideine alkaloid drenching treatment significantly improved seedling emergence and seedling height of cucumber. CONCLUSION: This is the first report describing the use of venom alkaloids from the red imported fire ant to inhibit P. ultimum in the laboratory and the application of piperideine alkaloids to control damping‐off disease caused by P. ultimum in the greenhouse. These findings may lead to the development of a new group of fungicides. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
14.
Kievitone, phaseollinisoflavan and phaseollin were detected in roots of bean seedlings (Phaseolus vulgaris L.) grown in natural soil. Comparison of phytoalexin production by roots grown in different media indicated that these phytoalexins were probably induced by microorganisms in soil. The influence of common root rot pathogens of bean, Pythium spp., on phytoalexin production was determined. Pythium ultimum elicited kievitone, phaseollinisoflavan and phaseollin in roots grown in sterilized silica sand. P. sylvaticum induced only kievitone and phaseollin in the same growth medium. Glyphosate did not significantly affect the accumulation of phytoalexins within 3 days. However, by day 5, significantly more phaseollin was detected in the roots of Pythium inoculated plants treated with glyphosate than in Pythium inoculated plants not treated with glyphosate. In a hydroponic system, both Pythium spp. elicited accumulation of kievitone and phaseollin in root tissue, and both phytoalexins were exuded into the bathing solution. Glyphosate application did not significantly affect accumulation or exudation of phytoalexins by bean roots in the hydroponic system. The results from this study illustrate the nature and extent of phytoalexin production by bean roots in the absence and presence of microbes.  相似文献   

15.
Reactions that occur when a plant is subjected to Citrus tristeza virus (CTV) infection often result in triggering of numerous defence mechanisms to fight the infection. The reactions vary according to virus strain, host genotype, time of exposure to the infection and environmental conditions. To date, no study has examined in detail the consequences of 10‐year exposure to CTV infection on the biochemical and physiological status of susceptible Mexican lime plants (Citrus aurantifolia). To understand the reaction of such plants, changes in nutrient status, total proteins, enzyme activity involved in scavenging of reactive oxygen species, photosynthetic and transpiration rates, chlorophyll content, membrane permeability and water content were analysed in plants infected with different CTV isolates and in healthy plants. The activity of superoxide dismutase and polyphenol oxidase significantly decreased in the infected leaves, and membrane permeability was lower in the infected plants. Macro‐ and micronutrient elements were significantly changed: concentrations of leaf nitrogen, zinc, magnesium and iron were elevated but potassium concentration depressed in comparison to noninfected control leaves. Levels of other analysed nutrient elements, enzymes, photosynthesis and stomatal conductance, chlorophyll content and relative water content were unchanged. Clear physiological changes were found among infected and noninfected control plants but none between plants infected with different CTV isolates. The data suggest that some of the defence mechanisms investigated here were suppressed due to the continuous and long‐term pressure of biotic stress.  相似文献   

16.
The utilization of phosphites (Phi) could be considered as another strategy to be included in integrated disease management programmes to reduce the intensive use of fungicides and production costs. The aim of the present work was to analyze whether the beneficial effects of phosphite treatment previously observed in potato plants grown under greenhouse conditions, were reflected after harvest of field grown potatoes, both in disease protection and in yield. In addition, biochemical compounds possibly involved in induced defence responses by Phi, like phytoalexins, pathogenesis related proteins and oxidative stress enzymes were measured. Foliar applications of KPhi to field grown crops resulted in post-harvest tubers with a reduced susceptibility to Phytophthora infestans, Fusarium solani and Erwinia carotovora infections, suggesting that this compound induced a systemic defence response. An increase in phytoalexin content in P. infestans inoculated tubers obtained from Phi-treated plants suggests their participation in the defence response. Chitinase content increased 72 h after wounding or inoculation with P. infestans in tubers from KPhi-treated plants compared to wounded or infected tubers from non-treated plants. Contrary to this, the isoforms of β-1,3-glucanases analyzed did not increase in the tubers of Phi-treated plants. The increment in peroxidase and polyphenol oxidase activities indicated that these enzymes could be part of the Phi defence mechanism. No negative effects were observed in potato yield at harvest, measured as total tuber weight and dry matter, after foliar KPhi treatment. This suggests that the energetic cost involved in the defence response activation would not be detrimental to plant growth.  相似文献   

17.
Muskmelon (Cucumis melo cv. Temprano Rochet) and autumn squash (Cucurbita maxima) seedlings were inoculated either with Acremonium cucurbitacearum or Monosporascus cannonballus, two of the soil-borne fungi implicated in ‘melon collapse’. Inoculation was achieved in two different ways: by growing the plants in pots containing infested soil to study the histological changes produced in the infected tissues using light microscopy and by growing seedlings in Petri dishes together with fungal colonies in order to observe the colonisation of the plant tissues using scanning electron microscopy. Both muskmelon and autumn squash roots infected with A. cucurbitacearum showed a suberised layer in the epidermis and the outermost layers of the parenchymatic cortex, but these symptoms developed earlier in the muskmelon plants. Muskmelon plants infected by this fungus also presented hypertrophy and hyperplasia, which led to a progressive separation of the vascular bundles in the lower stems of the affected plants. This response was not observed in autumn squash during the study. On the other hand, few histological changes were observed in tissues infected with M. cannonballus and only a slight increase in the size of cortical intercellular spaces was noted in the lower stems of muskmelon plants, and infected autumn squash tissues remained free of these symptoms throughout the study. The scanning electron microscope observations revealed that both fungi were able to colonise the tissues of the two host plants which were studied. A. cucurbitacearum colonised the epidermis and cortex of both muskmelon and autumn squash. The hyphae grew both inter- and intracellularly, and the density of the colonisation decreased within the endodermis. The same colonisation of host plants was observed as a result of M. cannonballus infection. The xylem vessel lumina of both muskmelon and autumn squash showed hyphae and tylose formation as a result of both fungal infections. However, non-fungal structures were detected in the hypocotyl vascular tissues. The present study demonstrates that both fungi are capable of infecting the tissues of a species which is resistant (autumn squash) and a species which is susceptible (muskmelon) to melon collapse.  相似文献   

18.
The soilborne fungi Sclerotinia sclerotiorum, Rhizoctonia solani and the oomycete Pythium ultimum are among the most destructive pathogens for lettuce production. The application of the biocontrol agent Paenibacillus alvei K165 to the transplant soil plug of lettuce resulted in reduced S. sclerotiorum, R. solani and P. ultimum foliar symptoms and incidence compared to untreated controls, despite the suppressive effect of the pathogens on the rhizosphere population of K165. In vitro, K165 inhibited the growth of S. sclerotiorum and R. solani but not P. ultimum. Furthermore, the expression of the pathogenesis‐related (PR) gene PR1, a marker gene of salicylic acid (SA)‐dependent plant defence, and of the Lipoxygenase (LOX) and Ethylene response factor 1 (ERF1) genes, markers of ethylene/jasmonate (ET/JA)‐dependent plant defence was recorded. K165‐treated plants challenged with P. ultimum showed up‐regulation of PR1, whereas challenge with R. solani resulted in up‐regulation of LOX and ERF1, and challenge with S. sclerotiorum resulted in up‐regulation of PR1, LOX and ERF1. This suggests that K165 triggers the SA‐ and the ET/JA‐mediated induced systemic resistance against P. ultimum and R. solani, respectively, while the simultaneous activation of the SA and ET/JA signalling pathways is proposed for S. sclerotiorum.  相似文献   

19.
Pepino mosaic virus (PepMV) was shown to be efficiently transmitted between tomato plants grown in a closed recirculating hydroponic system. PepMV was detected in all plant parts after transmission via contaminated nutrient solution using ELISA, immunocapture RT‐PCR, RT‐PCR, electron microscopy, and by inoculation to indicator plants. Detection of PepMV in nutrient solution was only possible after concentration by ultracentrifugation followed by RT‐PCR. Roots tested positive for PepMV 1–3 weeks after inoculation, and subsequently a rapid spread from the roots into the young leaves and developing fruits was found within 1 week. PepMV was only occasionally detected in the older leaves. None of the infected plants showed any symptoms on fruits, leaves or other organs. Pre‐infection of roots of tomato cv. Hildares with Pythium aphanidermatum significantly delayed PepMV root infections. When mechanically inoculated with PepMV at the 2–4 leaf stage, yield loss was observed in all plants. However, only plants of cv. Castle Rock recorded significant yield losses when infected via contaminated nutrient solution. Yield losses induced by infection with PepMV and/or P. aphanidermatum ranged from 0·4 up to 40% depending on experimental conditions.  相似文献   

20.
To determine whether light quality affects the incidence of disease, we exposed cucumber (Cucumis sativus L. cv. Jinyan No. 4) plants at the 4-leaf stage to white and other monochromatic lights and tested the effects on plant response to Sphaerotheca fuliginea, defence-related gene expression and metabolic changes. Exposure to red light resulted in higher levels of H2O2 and salicylic acid (SA), and stronger expression of defence genes such as PR-1 than exposure to white or other monochromatic lights. In comparison, plants grown under purple and blue light had higher activities of phenylalanine ammonia-lyase (PAL) and polyphenoloxidase (PPO) and higher level of flavonoids than plants grown under other lights. Furthermore, plants grown under red light were more resistant whilst plants grown under other monochromatic lights were less resistant to Sphaerotheca fuliginea than plants grown under white light. These results suggest a role of red light in light-enhanced resistance, which correlates with enhanced SA-dependent signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号