首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
豫南35年生马尾松林生态系统碳库特征及其分配   总被引:2,自引:0,他引:2  
对豫南35年生马尾松林生态系统的生物量、碳贮量及其空间分布特征进行研究。采用分层切割法和相对生长方程计算乔木层生物量和林下植被生物量,C、N元素分析仪测定碳含量。研究结果表明:35年生马尾松林生态系统的总生物量平均为228.6 t.hm-2,其中乔木层生物量占88.9%,灌木层占7.7%,草本层占0.1%,凋落物层占2.7%;马尾松林生态系统总碳库为218.11 t.hm-2,其中植被总碳贮量为127.69 t.hm-2,土壤有机碳库为90.42 t.hm-2;乔木层碳库(115.52 t.hm-2)占生态系统碳库的52.96%,灌木层占3.80%,草本层占0.28%,现存凋落物层占1.50%,矿质土壤层碳库占生态系统碳库的41.46%。  相似文献   

2.
楠木人工林生态系统生物量、碳含量、碳贮量及其分布   总被引:5,自引:0,他引:5  
对32年生楠木人工林生物量、碳含量、碳贮量及其空间分布进行测定.结果表明;楠木林分平均生物量为174.33 t·hm-2,其中乔木层为166.73 t·hm-2,占林分生物量的95.6%;楠木林分生态系统各组分碳含量为树干0.576 9 gC·8-1,树皮0.465 4 gC·g-1,树枝0.523 2 gC·g-1,树叶0.495 8 gC·g-1,树根0.493 1 gC·g-1,灌木层0.498 9gC·g-1,草本层0.473 3 gC·g-1,苔藓层0.414 3 gC·g-1,枯落物层0.388 2 gC·g-1;土壤碳含量平均值为0.013 9gC·g-1,随土层深度增加各层次土壤碳含量逐渐减少;楠木林分生态系统总碳贮量为227.59 t·hm-2,其中乔木层91.33 t·hm-1,占楠木林分生态系统总碳贮量的40.13%,灌木层0.38 t·hm-2,只占0.17%,草本层1.71 t·hm-2,占0.76%,苔藓层0.63 t·hm-2,占0.28%,枯落物层0.66 t·hm-2,占0.29%,林地土壤(0~80 cm)碳贮量为 132.88t·hm-2,占58.40%;其碳库空间分布序列为土壤(0~80 cm)>乔木层>草本层>枯落物层>苔藓层>灌木层;楠木林分净生产量为8.570 6 t·hm-2a-1,其中乔木层净生产量为6.669 1 t·hm-2a-1,占林分总量的77.82%.楠木林分碳素年固定量4.253 6 t·hm-2a-1,其中乔木层碳素年固定量3.573 6 t·hm-2a-1,占林分总量的84.01%.  相似文献   

3.
海南岛尾细桉人工林碳贮量及其分布   总被引:3,自引:0,他引:3  
基于海南西部沿海台地区、北部平原区、东部沿海台地区和中部山地区共18个调查点54个尾细桉人工林样地调查数据,分析海南尾细桉人工林的生物量、碳贮量、固碳能力及其区域空间分布特征。结果表明:海南尾细桉人工林生物量平均为49.72t·hm-2,乔木层(85.10%)>凋落物层(8.08%)>林下植被层(6.82%);尾细桉人工林生态系统碳贮量平均为88.84t·hm-2,乔木层为20.55t·hm-2(23.13%),林下植被层为1.55t·hm-2(1.74%),凋落物层为1.93t·hm-2(2.17%),土壤层(0~100cm)为64.81t·hm-2(72.96%);尾细桉各器官碳贮量以树干最大,占乔木层碳贮量的52.81%;海南尾细桉人工林生态系统年净生产力平均为17.56t·hm-2a-1,年净碳固定量平均为8.43t·hm-2,折算成CO2量为30.91t·hm-2a-1;整个海南尾细桉人工林生态系统碳贮量为2958.37万t,年净碳固定量为280.97万t·a-1;从不同区域来看,中部山地区尾细桉人工林固碳能力达11.89t·hm-2a-1,远高于北部平原区(8.97t·hm-2a-1)、西部沿海台...  相似文献   

4.
南宁马占相思人工林生态系统碳素密度与贮量   总被引:7,自引:0,他引:7  
对南宁市马占相思人工林3个不同年龄阶段(4,7和11年生)生态系统的碳素密度、贮量及其空间分布特征进行研究.结果表明:马占相思不同器官中碳素密度为455.4~494.5 g·kg-1,各器官碳素密度表现为:皮>干或叶>枝>根;同一林分中各层次碳素密度表现为乔木层>灌木层>草本层;0~80 cm土层中碳素密度随林龄增加而增大,且随土层深度增加而下降;3个年龄阶段马占相思人工林生态系统总碳贮量分别为117.63,176.70和202.08 t·hm-2,其中乔木层分别占25.67%,46,10%和50.91%,灌木和草本层分别占1.82%,1.65%和1.62%,土壤层分别占69.84%,49.62%和44.59%,凋落物层分别占2.68%,2.34%和2.88%;3个年龄阶段林分碳素年净固定量分别为10.66,15.70和12.55 t·hm-2a-1,其中乔木层碳素年净固定量分别为7.54,12.14和9.36 t·hm-2a-1,占林分总量的70.17%,74.14%和74.58%;凋落物层碳素年固定量分别为312,3.56和3.191 t·hm-2a-1,占林分总量的70.17%.74.14%和74.58%.  相似文献   

5.
研究中国林业科学研究院热带林业实验中心28年生红椎纯林、马尾松纯林以及红椎-马尾松混交林的生物量和生产力分配格局.结果表明:红椎纯林、马尾松纯林与红椎-马尾松混交林生物量分别为94.797,212.435和155.638 t·hm-2;3种林分的乔木层生物量均占林分生物量的95%以上,其他各层均表现为凋落物层(0.56%~3.26%)>草本层(0.24%~0.85%)>灌木层(0.25% ~0.37%);在3种林分的乔木层各组分中,干材生物量最大,占总生物量的49.31% ~ 62.25%,红椎纯林中其他组分表现为根(17.16%)>枝(11.76%)>干皮(6.84%)>叶(1.99%),而马尾松纯林与红椎-马尾松混交林则为枝(18.39% ~ 19.98%)>根(14.48% ~17.72%)>叶(5.55%~8.80%)>干皮(4.19% ~ 5.57%);3个林分的净生产力表现为红椎纯林(3.369t·hm-2a-1)<红椎-马尾松混交林(5.628 t·hm-2a-1)<马尾松纯林(7.781 t·hm-2a-1).  相似文献   

6.
毛竹、杉木人工林生态系统碳平衡估算   总被引:4,自引:0,他引:4  
采用CID-301PS光合测定仪,对湖南会同林区毛竹和杉木人工林土壤CO2排放动态进行观测,并结合现存生物量调查,对其生态系统碳平衡特征进行估算.结果表明:毛竹和杉木林生态系统碳贮量分别为144.3和152.52 t·hm-2,并且其碳贮量空间分布格局基本一致,土壤层是主要部分,其次为乔木层,凋落物层和林下植被层所占比例最小.毛竹林土壤层有机碳贮量占76.89%,乔木层占22.16%,凋落物和林下植被层分别占0.51%和0.41%;杉木林土壤层碳贮量占62.03%,乔木层占34.99%,凋落物和林下植被层分别占2.28%和0.70%.毛竹林和杉木林生态系统年固定CO2总量分别为38.87和26.95 t·hm-2a-1,但其每年以土壤异养呼吸和凋落物呼吸的形式排放CO2的量分别为24.35和15.75 t·hm-2a-1,毛竹林和杉木林生态系统年净固定CO2的量分别为14.52和11.21 t·hm-2a-1,折合成净碳量分别为3.96和3.07 t·hm-2a-1.  相似文献   

7.
不同森林经营模式对丹清河林场天然次生林碳贮量的影响   总被引:2,自引:0,他引:2  
基于目标树经营、粗放经营、无干扰3种经营模式,分析黑龙江省丹清河林场针叶混交林、阔叶混交林、针阔混交林3种天然次生林的碳贮量变化。结果表明:1)林分碳贮量排序均为目标树经营(162.74~205.85 t·hm -2)>无干扰(128.88~150.47 t·hm -2)>粗放经营(107.59~130.57 t·hm -2),且目标树经营与无干扰、粗放经营的碳贮量差异显著( P <0.05);2)林分各层次碳贮量大小依次为土壤层(57.33%~70.38%)、乔木层(28.01%~39.83%)、凋落物层(0.50%~2.69%)、灌木层(0.21%~1.00%)、草本层(0.07%~0.56%);3)土壤层碳贮量排序为目标树经营>无干扰>粗放经营,0~20 cm土层碳含量和碳贮量比重最大;4)乔木层碳贮量排序均为目标树经营>无干扰>粗放经营,目标树经营与无干扰、粗放经营差异显著(P<0.05),干材碳贮量最大,占乔木层碳贮量的46.58%~54.72%;5)灌木层、草本层碳贮量排序均为无干扰>粗放经营>目标树经营,无干扰与粗放经营、目标树经营差异均显著(P<0.05);6)凋落物层碳贮量排序为目标树经营大于粗放经营和无干扰。目标树经营能够增加林分、土壤、乔木层碳贮量,是提高东北天然次生林碳汇功能的重要经营模式。  相似文献   

8.
西藏南伊沟林芝云杉林生物量与生产力研究   总被引:3,自引:1,他引:2       下载免费PDF全文
采用样地调查及标准样木收获法,研究西藏米林南伊沟成熟林芝云杉(Picea likiangensis var.linzhiensis林乔木层、灌木层、草本层、死亡木、凋落物层的生物量与生产力及其分配规律.结果表明:林芝云杉林生态系统总的生物量为367.49 t·hm-2,其中乔木层生物量最高276.64 t·hm-2,占总生物量的75.28%,其次是凋落层的生物量40.65 t·hm-2,占总生物量的11.06%.在乔木层中,干材生物量201.23 t·hm-2 (69.32%),皮25.53 t·hm-2(8.79%),枝17.80 t·hm-2(6.13%),叶3.33 t·hm-2(1.15%),根42.87 t·hm-2(14.61%).随着树木的生长,干材生物量所占比例增大,而枝、叶的比例则减小.林芝云杉林生态系统生产力为10.65 t·hm-2·a-1,其中乔木层最高5.00 t·hm-2·a-1,占总生产力的46.94%,其次为凋落层3.40 t·hm-2·a-1,占总生产力31.94%.在乔木层中仍以树干生产力最大2.58 t·hm-2 ·a-1,依次为枝(0.89 t·hm-2·a-1)、叶(0.67t·hm-2·a-1)、根(0.54t·hm-2·a-1)、皮(0.33 t·hm-2 ·a-1).  相似文献   

9.
为桉树人工林的土壤质量评价提供科学依据,研究了不同林龄(1a、2a、3a、5a、7a)尾巨桉林地0~60cm土壤和枯落物的碳含量及碳储量,测算了不同林龄桉树林地叶面积指数,乔木层、灌木层、草本层和枯落物层生物量。结果表明:土壤有机碳含量随土层深度增加而呈降低趋势,不同林龄0~20 cm土层有机碳含量差异显著,不同林龄相同土层之间土壤有机碳储量差异不显著;枯落物碳储量差异显著,大小顺序为:5 a (4.83 t·hm-2)>7 a (3.89 t·hm-2)>3 a (2.66 t·hm-2)>2 a (2.43 t·hm-2)>1 a (1.56 t·hm-2);0~60 cm土层土壤碳储量与叶面积指数呈负相关关系,与林龄、乔木层生物量、灌木层生物量、草本层生物量、枯落物层生物量之间呈正相关性,但相关性都不显著。  相似文献   

10.
《福建林业科技》2015,(3):45-49
以南亚热带地区广西宁明县米老排成熟林(34年生)为研究对象,采用标准样地法对其碳库及其分布格局进行研究。结果表明:1米老排不同器官碳素含量在472.6~509.3 g·kg-1之间,各器官碳素含量排序依次为树叶、干材、干皮、树枝、树根。灌木层、草本层、凋落物层碳素含量分别为480.4、469.1、483.2 g·kg-1。土壤(0~100 cm)土层中碳素含量为8.94g·kg-1,随土层加深土壤中碳素含量逐渐减少。2米老排人工林生态系统碳库为272.80 t·hm-2,其中乔木层为143.47t·hm-2,占52.59%;灌木层为0.44 t·hm-2,占0.18%;草本层为0.18 t·hm-2,占0.07%;凋落物层为5.07 t·hm-2,占1.86%;土壤层为123.64 t·hm-2,占45.32%。3米老排成熟林年净生产力为10.17 t·hm-2·a-1,碳素年净固定量为5.37 t·hm-2·a-1,折合成CO2的量为19.69 t·hm-2·a-1。  相似文献   

11.
通过对赤峰地区桦树、山杨、栎树、榛子、山杏、黄柳等6种树种不同器官碳含量测定,对乔灌木层碳密度的分析,结合赤峰市2017年森林资源统计数据,估算出赤峰市桦树、山杨、栎树、黄柳、榛子、山杏等天然林乔灌木层总碳储量为3497.27万t,以桦树、山杨、栎树为主的天然乔木林乔木层固碳价值为28810.73万美元,以黄柳、柠条、山杏、榛子为主的天然灌木林灌木层固碳价值为6546.58万美元。  相似文献   

12.
森林碳汇研究进展   总被引:2,自引:0,他引:2  
评价森林的碳源、碳汇功能,认为森林是一个大的碳汇,但随着森林破坏、退化的加剧以及火灾等干扰因素的影响,森林生态系统就可能成为碳源.列举森林碳储量及固碳经济效益计算的方法.认为目前大多数相关研究尤其是国内学者仅限于对现存森林CO2吸收或排放的计算,未能阐明森林碳汇、碳源的分布格局,研究对象多为大尺度的,在森林固碳经济效益计算方面缺乏公认的方法.  相似文献   

13.
湖南省森林生态系统碳汇经济价值初探   总被引:10,自引:2,他引:8  
通过利用立木蓄积量及森林面积等基本监测数据,对湖南省森林生态系统的碳汇能力及其经济价值进行了初步估算。结果表明:湖南省森林生态系统总贮碳量为2164.95Mt,年固碳量为12.73Mt,其经济价值分别为6603.10亿元和38.84亿元;湖南省森林生态系统平均碳密度为215.42t·hm-2。预计我省森林生态系统固碳增长潜力415.51Mt碳或1524.93MtCO2,由此产生的经济效益平均每年可达60.35亿元。同时还对湖南14个市州的森林碳汇及其经济价值分别进行了估算,并进一步对通过林业建设实现CO2减排进行了探讨。  相似文献   

14.
农田营造早竹林后土壤有机碳的变化   总被引:2,自引:0,他引:2       下载免费PDF全文
对农田营造早竹林后不同年限土壤有机碳变化规律的研究结果表明:(1)竹林3年生时,各层次土壤有机碳含量都呈现下降的趋势,其中表土层(0~30 cm)下降幅度最大;竹林满园后,由于采取了集约经营措施,竹林土壤有机碳含量迅速回升,至9年生时,各层次土壤有机碳含量都超过了农田相应层次水平,但是12年生时竹林各层次土壤有机碳含量又呈现下降趋势.(2)土壤有机碳密度变化和土壤有机碳含量相似,竹林3年生时各层土壤有机碳密度均呈现下降趋势;6年生时,除了0~30 cm土层继续下降外,其余各层次有机碳密度都增加;至9年生时,有机碳密度都超过相应农田各层土壤有机碳的密度;12年生时,各层土壤有机碳密度都呈现下降趋势.(3)3年生竹林土壤有机碳储量下降了近22%;以后土壤有机碳储量均逐渐增加,9年生竹林,土壤有机碳储量要超过农田土壤有机碳的储量;12年生时竹林有机碳储量下降,但是依然高于农田土壤有机碳的储量.  相似文献   

15.
基于2006年、2016年森林资源调查数据,运用生物量扩展因子法估算乔木林各优势树种(组)生物量,并根据生物量和含碳系数的大小,计算碳储量、碳密度,藉此对不同优势树种(组)、不同起源林分、不同林龄林分、不同类型林分碳储量、碳密度进行了比较分析。结果表明,10年间昆明市西山林场森林面积、蓄积增加151hm^2、58060m^3;碳储量增加了25230.64 t,达到111530.27 t,比2006年增加了23%。碳密度随林龄的增加而增加。  相似文献   

16.
胶接过程对活性炭孔隙结构影响的研究   总被引:5,自引:0,他引:5  
通过胶炭混合物与原料用活性炭孔隙结构的对比研究 ,探讨了胶接过程对活性炭孔隙结构的影响。得知用比表面积大、比孔容积大的活性炭以及分子量较大的胶粘剂为原料 ,活性炭在胶接过程中的孔隙损失率较少 ,并且搞清楚了孔径小的孔隙的损失率较少  相似文献   

17.
不同林龄麻栎林地上生物量及碳储量的分布特征   总被引:1,自引:0,他引:1  
在江苏句容选取样木构建了麻栎地上部分各器官的生物量回归模型,探讨了麻栎林地上部分不同林龄麻栎单株、林分、灌草层和枯枝落叶层的生物量及碳储量的分布特征.结果表明:随着林龄的增大,麻栎地上部分各器官生物量呈增长趋势,树干所占比例最大;灌草层和枯枝落叶层生物量随林龄增加而增大,幼龄林、中龄林、近熟林和成熟林的林分地上生物量分别为30.01、110.86、179.48和226.73t/hm2.麻栎林各组分含碳率随林龄增大总体呈增加趋势,但差异不大;幼龄林、中龄林、近熟林和成熟林的地上碳储量随着林龄的增加而增大,分别为13.25、48.97、80.60和107.28 t/hm2,乔木层是麻栎林地上碳储量的主体,乔木层各器官碳储量大小为:树干>树枝>树皮>树叶,树干是其碳储量的主要器官.  相似文献   

18.
【目的】研究鹅掌楸人工林土壤团聚体及其有机碳状况,为合理经营鹅掌楸人工林、促进林业可持续发展提供依据。【方法】以不同林龄鹅掌楸人工林(幼龄林、中龄林、成熟林)土壤为研究对象,通过野外调查和室内分析,测定各粒级土壤团聚体及其有机碳含量,分析土壤团聚体稳定性主要指标即平均重量直径(MWD)、几何平均直径(GMD),阐明土壤团聚体有机碳及其贡献率状况。【结果】不同林龄鹅掌楸人工林的土壤团聚体组成各不相同,但均以大团聚体(> 0.25 mm)为主,含量为54.98%~84.90%,且成熟林的大团聚体含量较幼龄林、中龄林分别显著提高了17.84%、25.52%;土壤团聚体稳定性指标:平均重量直径(MWD)和几何平均直径(GMD)均以成熟林的最大、幼龄林其次、中龄林最小,并且土壤团聚体稳定性指标存在明显垂直分布特征,随土层加深呈下降趋势;土壤团聚体有机碳含量及有机碳贡献率都以大团聚体中为最高;随着林龄增加,成熟林土壤团聚体有机碳含量显著高于幼龄林、中龄林,且于各林龄内,各粒级团聚体有机碳含量随土层加深呈下降趋势;土壤大团聚体有机碳贡献率随鹅掌楸林龄增加显著增大,并于成熟林土层达到80%;土壤团聚体与土壤团聚体有机碳含量相互联系,相辅相成。【结论】随鹅掌楸人工林的林龄增加,土壤大团聚体组成、团聚体稳定性、团聚体有机碳含量及土壤大团聚体有机碳贡献率总体呈增加趋势。  相似文献   

19.
采用常规方法,测定、分析了川西亚高山5种不同土地利用类型的土壤活性有机碳含量,结果显示土壤有机碳含量均是上层大于下层。在0~10cm土层土壤总有机碳含量表现为灌木林地落叶松林地退耕还林地云杉林地农田;10~20cm土层土壤总有机碳含量表现为灌木林地落叶松林地云杉林地退耕还林地农田。上下层平均值来看灌木林地有机碳含量最高为79.86g.kg-1,是云杉林地的2.85倍,是落叶松林地的1.49倍,是退耕还林地的1.62倍,是农田的3.34倍,表现为灌木林地落叶松林地退耕还林地云杉林地农田。上下层土壤微生物生物量碳含量均表现为灌木林地落叶松林地退耕还林地云杉林地农田;上下层土壤水溶性有机碳含量均表现为落叶松林地灌木林地云杉林地退耕还林地农田。  相似文献   

20.
通过在不同区域的银中杨、小黑杨、青山杨、迎春五号杨人工林设置标准地,利用生物量法对这4种林分的碳储量进行了计量研究。结果表明:4种杨树新品种人工林碳储量与生物量成正比,以树干、树枝、树根、树叶的顺序由高到低排列;4种杨树新品种人工林年净固碳量分别为银中杨4.04t·hm-2·a-1、青山杨3.06t·hm-2·a-1、迎春五号杨2.46t·hm-2·a-1、小黑杨1.98t·hm-2·a-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号