首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Densities of wild masu salmon, Oncorhynchus masou Brevoort, were investigated before (late-September) and after (mid-November) autumnal habitat shifts in a small river in Hokkaido, northern Japan. Abundance of instream cover habitat formed by coarse woody debris, submerged vegetation and undercut banks was quantified. Density of 1+ and older masu salmon was significantly correlated with cover abundance in autumn, although cover was not significant for density of 0+ fish, indicating that clear-cut reaches were utilized by 0+ masu salmon in autumn. In early winter, densities of 0+ and 1+ and older masu salmon were both correlated with cover availability. These results suggest that the amount of cover habitat is an important regulator for densities of juvenile masu salmon during winter.  相似文献   

2.
3.
Abstract  The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.  相似文献   

4.
Abstract Dense riparian tree canopy is generally found to have a negative effect on salmonid populations. Canopy can affect fish both directly via trophic impacts and its effects as cover, and indirectly via its effects on the distribution of instream vegetation. This study examined the impact of riparian canopy on the ecology of juvenile Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in south‐west Ireland. Riparian canopy reduced the density, length and gut contents of juvenile salmon, but not brown trout. The negative relationship between canopy cover and fish size and feeding was strongly influenced by the abundance of instream macrophytes, which in turn varied as a function of catchment water chemistry. As a management strategy, the reduction of dense riparian canopy is unlikely to have the same effect on juvenile salmonids on all streams within an ecoregion because of differences in catchment‐wide factors.  相似文献   

5.
Understanding trade-offs associated with occupying various aquatic habitats provides a mechanistic understanding of habitat needs that can be used to evaluate the consequences of habitat loss or alteration. We used instream enclosures and field observations to identify how velocity affects the growth rates of four native species in the upper Gila River basin: longfin dace (Agosia chrysogaster) and speckled dace (Rhinichthys osculus), two species of no conservation concern, and loach minnow (Tiaroga cobitis) and spikedace (Meda fulgida), two federally endangered species. Elevated velocity was predicted to increase food delivery through drift or stimulation of benthic primary production. Energetic costs of high-velocity habitat were predicted to vary with morphology and behaviour and be lowest for speckled dace and loach minnow because they are adapted to occupy interstitial spaces of the substrate in riffles. Spikedace and longfin dace should perform best in moderate velocities, where the trade-off between exposure to drifting macroinvertebrates outweighs the energetic costs of maintaining position in the water column. Growth rates of loach minnow and speckled dace increased in higher velocities, but contrary to our initial predictions, spikedace growth rates also increased in high-velocity habitats while longfin dace grew fastest in low-velocity habitats; similar to the locations these species occupied based on field observations. These results indicate that for spikedace, the increased abundance of drifting macroinvetebrates in high-velocity habitats outweighs the energy expenditure, but for longfin dace the energetic costs of occupying moderate to high-velocity habitats outweigh the benefit to increased food availability. Our experiment provides a mechanistic understanding of habitat requirements across species and may inform predictions on how modifications or restoration of riverine ecosystems influence native fish diversity.  相似文献   

6.
ABSTRACT:   The changes in physical habitats and responses of fish, e.g. the Kirikuchi charr Salvelinus leucomaenis japonicus , were examined by placing instream structures in a stream on the upper drainage of the Totsu River system of the Kii Peninsula, Japan, over a two-year period. Instream structures created pools below the structures, and these pools have maintained their functions as fish habitats over two years. In two treatment sections, sections A and B (some red-spotted masu salmon were removed in advance in section B), mean water depth increased soon after placing the structures, but decreased over two years. Mean water velocity slowed after placing the structures in both sections. Total fish abundance has been relatively high at the two treatment sections compared with a control section after placing the structures. Age 1 Kirikuchi charr, however, increased only in section B. These results indicate that instream structures can serve as habitat enhancement for fish, including Kirikuchi charr, in the study area if other appropriate habitat factors for respective species are taken into consideration.  相似文献   

7.
Abstract – Effects of local environmental influences on the structure of fish assemblages were evaluated from 159 sites in two regions of the Great Plains with limited anthropogenic disturbance. These regions offered an opportunity to evaluate the structure and variation of streams and fish assemblages within the Great Plains. We used canonical correspondence analyses to determine the influence of environmental conditions on species abundances, species occurrences and assemblage characteristics. Analysis of regions separately indicated that similar environmental factors structured streams and fish assemblages, despite differences in environmental conditions and species composition between regions. Variance in fish abundance and assemblage characteristics from both regions was best explained by metrics of stream size and associated metrics (width, depth, conductivity and instream cover). Our results provide a framework and reference for conditions and assemblage structure in North American prairie streams.  相似文献   

8.
Relationships between the vertical distribution and thermal habitat, and body size of chum salmon Oncorhynchus keta were studied in the Bering Sea in summer using trawl surveys at various depths. Chum salmon abundance decreased with increasing depth, but the patterns of decrease differed between size groups. The abundance of small salmon fell rapidly with depth, whereas that of large salmon decreased gradually to 40 m depth, and abruptly below that. The average fork length of chum salmon collected from each trawl correlated positively with trawl net depth and negatively with water temperature. Since the optimal temperature for growth decreases with body size in this species, the observed body size‐related vertical habitat use by chum salmon may indicate size‐dependent thermal preferences.  相似文献   

9.
Laffaille P. Impact of stocked Atlantic salmon (Salmo salar L.) on habitat use by the wild population.
Ecology of Freshwater Fish 2011: 20: 67–73. © 2010 John Wiley & Sons A/S Abstract – We investigated the summer habitat occupied by populations of young‐of‐the‐year wild and stocked (farmed populations released into the native range) Atlantic salmon under allopatric and sympatric conditions. Under allopatric conditions, farmed and wild salmon occupied habitats with the same characteristics. The salmon preferentially occupied the riffle areas. However, under sympatric conditions, the fish occupied meso‐ and micro‐habitats with different characteristics. Wild salmon avoided habitats used by farmed salmon and preferred glide areas with considerable vegetation cover. This study suggests that differences in the pattern of habitats used by young Atlantic salmon were both size‐ and origin‐dependent and may result from intra‐species competition between farmed and wild populations. Given that stocking with farmed Atlantic salmon is carried out intensively to enhance recreational angling or to conserve salmon populations, this study warns that this can have a negative impact on the extant wild Atlantic salmon population.  相似文献   

10.
Atlantic salmon, Salmo salar L., parr habitat characterisation is usually performed by in situ measures of key environmental variables taken at the exact fish location if the fishing gear allows precise pinpointing of this location, or in large sampling sections covering a river reach or mesohabitat, often ignoring variability in the immediate vicinity around individual fish. These data may be critically important in the development and validation of habitat preference models. The influences of seven increasing distances of measures, the variation of the number of considered measures and the depth of velocity measurement (bottom or 0.6 of the depth) in the calculations of HSI (Habitat Suitability Index) from a multiple‐experts fuzzy model of Atlantic salmon parr habitat were tested. When a parr was present, six measures collected in a 50‐cm radius around the fish to provide an average measure as input data and velocity measured at 60% of the depth gave the highest HSI values. These results show some potential for the use of an intermediate study scale, between micro‐ and mesohabitat, and questions how fish habitat conditions are currently measured.  相似文献   

11.
12.
There is concern that expanding beaver (Castor fiber) populations will negatively impact the important economic, recreational and ecological resources of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) populations in Europe. We studied how beaver dams influenced habitat, food resources, growth and movement of juvenile Atlantic salmon and trout on three paired beaver-dammed and beaver-free (control) tributaries of important salmon rivers in central Norway. Lotic reaches of beaver-dammed and control sites were similar in habitat and benthic prey abundance, and ponds were small (<3,000 m2). Though few juvenile salmonids were detected in ponds, trout and salmon were present in habitats below and above ponds (comprising 9%–31% and 0%–57% of the fish collected respectively). Trout dominated control sites (79%–99%), but the greatest proportion of Atlantic salmon were upstream of beaver ponds (0%–57%). Growth rates were highly variable, with no differences in growth between lotic reaches of beaver-dammed and control sites. The condition and densities of juvenile salmon and trout were similar in lotic reaches of beaver-dammed and control sites, though one beaver-dammed site with fine sediment had very few juvenile salmonids. Beaver dams did not block the movement of juvenile salmonids or their ability to use upstream habitats. However, the degree of repeated movements and the overall proportion of fish moving varied between beaver-dammed and control sites. The small scale of habitat alteration and the fact that fish were able to move past dams makes it unlikely that beaver dams negatively impact the juvenile stage of salmon or trout populations.  相似文献   

13.
Abstract– Habitat is important in determining stream carrying capacity and population density in young Atlantic salmon and brown trout. We review stream habitat selection studies and relate results to variable and interacting abiotic and biotic factors. The importance of spatial and temporal scales are often overlooked. Different physical variables may influence fish position choice at different spatial scales. Temporally variable water flows and temperatures are pervasive environmental factors in streams that affect behavior and habitat selection. The more frequently measured abiotic variables are water depth, water velocity (or stream gradient), substrate particle size, and cover. Summer daytime, feeding habitats of Atlantic salmon are size structured. Larger parr (>7 cm) have a wider spatial niche than small parr. Selected snout water velocities are consistently low (3–25 cm. s?1). Mean (or surface) water velocities are in the preferred range of 30–50 cm. s?1, and usually in combination with coarse substratum (16–256 mm). However, salmon parr demonstrate flexibility with respect to preferred water velocity, depending on fish size, intra- and interspecific competition, and predation risk. Water depth is less important, except in small streams. In large rivers and lakes a variety of water depths are used by salmon parr. Summer daytime, feeding habitat of brown trout is also characterized by a narrow selection of low snout water velocities. Habitat use is size-structured, which appears to be mainly a result of intraspecific competition. The small trout parr (<7 cm) are abundant in the shallow swift stream areas (<20–30 cm depths, 10–50 cm. s?1 water velocities) with cobble substrates. The larger trout have increasingly strong preferences for deep-slow stream areas, in particular pools. Water depth is considered the most important habitat variable for brown trout. Spatial niche overlap is considerable where the two species are sympatric, although young Atlantic salmon tend to be distributed more in the faster flowing and shallow habitats compared with trout. Habitat use by salmon is restricted through interspecific competition with the more aggressive brown trout (interactive segregation). However, subtle innate differences in behavior at an early stage also indicate selective segregation. Seasonal changes in habitat use related to water temperatures occur in both species. In winter, they have a stronger preference for cover and shelter, and may seek shelter in the streambed and/or deeper water. At low temperatures (higher latitudes), there are also marked shifts in habitat use during day and night as the fish become nocturnal. Passive sheltering in the substrate or aggregating in deep-slow stream areas is the typical daytime behavior. While active at night, the fish move to more exposed holding positions primarily on but also above the substrate. Diurnal changes in habitat use take place also in summer; brown trout may utilize a wider spatial niche at night with more fish occupying the shallow-slow stream areas. Brown trout and young Atlantic salmon also exhibit a flexible response to variability in streamflows, wherein habitat selection may change considerably. Important topics in need of further research include: influence of spatial measurement scale, effects of temporal and spatial variability in habitat conditions on habitat selection, effects of interactive competition and trophic interactions (predation risk) on habitat selection, influence of extreme natural events on habitat selection use or suitability (floods, ice formation and jams, droughts), and individual variation in habitat use or behavior.  相似文献   

14.
Abstract Non‐wadeable river systems are some of the most diverse aquatic ecosystems, but little work has been conducted to quantify the relationships between fish assemblages and habitat characteristics in them. In 2007 and 2008, 21 reaches were sampled on 16 non‐wadeable rivers across Iowa, USA. Fish were sampled in each reach with three different gears, and habitat characteristics (channel morphology, current velocity, instream cover) were measured using standard procedures. Fish assemblages were structured based on drainage basin and reaches and could be categorised as belonging to one of three groups. Reaches in the Missouri River basin group were narrow and had a high proportion of fine substrate. Reaches in the Mississippi River A group were also narrow but had a high proportion of large rocky substrate. Reaches in the Mississippi River B group tended to be wider, deeper and have higher proportions of fine substrate than the other groups. Fish assemblages were closely related to habitat characteristics and reflected differences among the three groups. Results of this study suggest that stream geomorphology may have a substantial influence on fish assemblage structure in large rivers.  相似文献   

15.
Abstract— Temporal and spatial variability of fish communities were examined within a 91-km2 catchment in central New York over four years. Riffle-dwelling species, slimy sculpin Cottus cognatus , longnose dace Rhinichthys cataractae , and young-of-the-year brown trout Salmo trutta , were more strongly affected by flood and drought than pool-adapted species, adult brown trout, blacknose dace Rhinichthys atratulus , white sucker Catostomus commersoni , and creek chub Semotilus atromaculatus . Canonical correspondence analysis using seven abiotic variables (mean width, residual pool depth, water surface slope, mean Froude number, variance in Froude number, maximum monthly discharge and minimum monthly discharge) separated fish communities among sites and years. The first axis represented a headwater-to-valley gradient; the second axis reflected habitat complexity, based on both geomorphic and hydraulic features. Temporal differences in fish densities were related to hydrological factors. Fish communities throughout the catchment showed similar responses to flood and drought.  相似文献   

16.
  1. Freshwater communities are threatened by the conversion of natural landscapes for urban and agricultural purposes. Changes to land use may disrupt stream nutrient and geomorphological processes and reduce water quality, increase sedimentation, and decrease habitat heterogeneity eventually leading to species loss and decreases in ecosystem productivity. Endemic species are frequently at greater risk of habitat-mediated fragmentation and extirpation due to their constrained distributions.
  2. The Kanawha darter (Etheostoma kanawhae) is an understudied fish endemic to the New River Drainage in North Carolina and Virginia, USA. To investigate the potential effect(s) of land-use change on Kanawha darters, naïve occupancy was modelled using instream habitat characteristics and upstream forest cover.
  3. Generalized linear models revealed that instream habitat and forest cover are reliable predictors of Kanawha darter site occupancy. Specifically, models demonstrated that occupancy increased in reaches with reduced stream width, velocity, and bedrock substrate but higher concentrations of coarse woody material. Kanawha darter occupancy was also positively associated with the extent of forest cover in upstream catchments.
  4. Although Kanawha darters are not currently considered imperilled, most populations occurred in isolated reaches separated by large sections of unoccupied habitat. Continuing ex-urban development in riparian zones is likely to be the primary threat to Kanawha darters and other endemic species in this catchment. Resource managers and stakeholders should preserve forest cover in headwaters and occupied tributaries and protect or restore riparian zones along the main-stem South and North Forks of the New River to preserve high-quality habitat and enhance connectivity among isolated Kanawha darter populations.
  5. As human populations in montane regions continue to grow, there is a need to understand how land-use change affects endemic freshwater species. This study further supports the importance of retaining forest cover as an effective strategy for protecting and restoring populations of endemic fishes in high-gradient streams.
  相似文献   

17.
Abstract  – The responses of salmon parr, Salmo salar, to instream cover, related to several water depths, were tested in an ellipsoidal stream tank. Opaque plastic covers, most of which were 20 cm in length and 16 cm high, were randomly distributed through the tank, occupying about 3% of the bottom area. Six salmon parr were used for each experiment. In experiments with channel depths of 40 cm, the proportion of salmon under covers was 36.4%, at 30 cm 60.7%, and at 20 cm, 79.4%. Presence of similar-sized brown trout, Salmo trutta, increased the use of covers in channels and greater use of the pool area by salmon. The salmon were completely dominated by the trout, making about four times more more aggressive than salmon. Our findings show that water depth itself provides cover for young salmon.  相似文献   

18.
  1. Removal of instream woody habitat (IWH) is one factor attributed to declines in fish populations worldwide. Restoration of IWH to help fish populations recover is now common; however, quantitative predictions about the outcomes of these interventions is rare. As such, quantitative links between IWH and fish abundance is of interest to managers to inform conservation and restoration activities.
  2. Links between instream habitat attributes, especially IWH, and selected fish species of recreational, cultural, and ecological significance were explored at 335 sites spanning eight streams across south‐eastern Australia. Data were collected on fish abundance and length, IWH density and a range of other habitat attributes at a scale that incorporated at least one of each of the major mesohabitat types (functional river elements). The data were analysed using Bayesian hierarchical generalized linear mixed models to examine fish habitat associations and used to make quantitative predictions of responses to future restoration.
  3. Strong positive relationships were found between fish abundance and IWH density and the strength of this relationship varied between species and waterways. Murray cod (Maccullochella peelii), a species commonly targeted by IWH interventions, displayed the strongest association with IWH density. River blackfish (Gadopsis marmoratus) also showed a significant relationship with IWH, but this effect was waterway specific. Fish length was only related to IWH for river blackfish. These results may reflect differences in the life histories of these two species. We suggest that differences in habitat association through ontogeny may be more relevant at smaller spatial scales.
  4. The results generated in this study can be used to guide waterway restoration and develop quantitative predictions about how fish might respond to IWH interventions across south‐eastern Australia. This approach provides a powerful quantitative framework within which to explore management options and objectives, and to test our predicted responses to habitat restoration.
  相似文献   

19.
The Amazon rainforest has experienced rapid land‐use changes over the last few decades, including extensive deforestation that can affect riparian habitats and streams. The aim of this study was to assess responses of stream fish assemblages to deforestation and land cover change in the eastern Amazon. We expected that percentage of forest in the catchment is correlated with local habitat complexity, which in turn determines fish assemblage composition and structure. We sampled 71 streams in areas with different land uses and tested for relationships between stream fish assemblages and local habitat and landscape variables while controlling for the effect of intersite distance. Fish assemblage composition and structure were correlated with forest coverage, but local habitat variables explained more of the variation in both assemblage composition and structure than landscape variables. Intersite distance contributed to variance explained by local habitat and landscape variables, and the percentage of variance explained by the unique contribution of local habitat was approximately equivalent to the shared variance explained by all three factors in the model. In these streams of the eastern Amazon, fish assemblages were most strongly influenced by features of instream and riparian habitats, yet indirect effects of deforestation on fish assemblage composition and structure were observed even though intact riparian zones were present at most sites. Long‐term monitoring of the hydrographic basin, instream habitat and aquatic fauna is needed to test for potential legacy effects and time lags, as well as assess species responses to continuing deforestation and land‐use changes in the Amazon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号