首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The adsorption and mobility of herbicide, metamitron, in 41 soils samples from the province of Salamanca (Spain) was studied. Thirty‐four of the samples assayed were from irrigated soils and seven were from natural, uncultivated soils with organic matter contents above 3%. The correlations between the Freundlich K constants, Kd distribution coefficients, and Rf mobility parameters and the soils parameters were determined. Considering all the soils, the soils with organic matter contents above 2% or the soils with organic matter contents below 2%, significant correlations (p<0.001 to p<0.05) were found between K and Kd and the organic matter content of the soils. There were also a significant correlations (p<0.05) of K and Kd with clay+silt and clay contents of soils with organic matter contents below 2%. The adsorption of the herbicide by isolated soil components confirmed the results obtained with the soils and point to the importance of the exchangeable cation nature of the samples in the adsorption process. Based on Rf values obtained by TLC, the herbicide was found to be moderately mobile in 74% and mobile in 26% of the soils studied. The results of metamitron leaching by thin layer chromatography (TLC) and in undisturbed soil columns indicated the influence of organic matter content and of soil texture on the mobility of this herbicide.  相似文献   

2.
The influence of two organic amendments consisting of an urban waste compost (SUW) and a commercial amendment from olive mill wastes (OW) was assessed on the sorption properties and leaching of the ionizable herbicide imazaquin on four soils with different physicochemical characteristics. A loamy sand soil (CR), a loam soil (P44), a silt loam soil (AL), and a clay soil (TM), with low-medium organic matter contents, were chosen. Sorption-desorption experiments were performed on the original soils and on a mixture of these soils with the organic amendments at a rate of 6.25% (w/w). These mixtures were used just after preparation and after aging for 3 months. Imazaquin adsorption was higher on AL soil because of its high content of amorphous iron oxides, whereas it was related to the soils' organic matter (OM) contents on TM and CR soils and to acid pH on P44 soil. Addition of exogenous OM to soils caused a decrease in the adsorption of the herbicide with the only exception of CR soil, due to blocking of adsorptive surfaces and/or equilibrium pH rise. The extent of this decrease was dependent only on the nature of the added amendment on AL soil. The adsorbed amounts of imazaquin on aged organic fertilized soils were usually fairly close to that on original soils. Results of soil column experiments indicate that addition of exogenous organic matter cannot be considered as a regular practice for retarded movement of imazaquin.  相似文献   

3.
Adsorption and mobility of the fungicide metalaxyl were studied in 16 vineyard soils from the La Rioja region (Spain), with organic matter (OM) contents in the 0.31--1.37% range, and in 7 natural soils with OM contents in the 3.30--8.24% range. Adsorption isotherms were obtained using the batch equilibrium technique, and mobility was studied by soil thin-layer chromatography (soil-TLC). In all cases, the adsorption isotherms fit the Freundlich equation. The values of the K(f) constants were low in the vineyard soils (0.01--0.64) and increased in the natural soils (1.05--2.83). The n(f) values were in general lower than unity. K(f) constants were significantly correlated (p < 0.001) with the OM content when all of the soils were considered. According to the determination coefficient, r(2), OM would account for 88% of the variance in adsorption. When the vineyard soils alone were considered, a significant correlation was seen between K(f) and the OM and clay contents; both parameters, varying simultaneously, explain 80% of the variance in adsorption. Study of the mobility of metalaxyl with soil-TLC indicated that in vineyard soils the fungicide has the potential for being highly mobile in 19% of the soils and mobile in 81% of them. In natural soils, the fungicide has the potential for being moderately mobile or mobile in 86 and 14% of the soils, respectively. This type of behavior of metalaxyl indicates that in vineyards soils of the La Rioja region (Spain) with low OM contents, where application of the compound is continuous, a leaching of the fungicide from the soil to groundwaters could potentially occur. These results should be borne in mind when metalaxyl is to be used in the soils of this region.  相似文献   

4.
Liming is a practice commonly used to modify soil acidity, neutralize aluminum, and increase calcium and magnesium in the soil. Liming can change herbicide retention processes and consequently weed control and potential environmental contamination. The effects of liming on the sorption and desorption of hexazinone in different soils were evaluated. Samples from seven Brazilian soils were collected and separated into two subsamples, with and without limestone incubation. Hexazinone was quantified using ultra high-performance liquid chromatography. The sorption and desorption coefficients were determined in soils using Freundlich isotherms. Increasing the pH did not alter the sorption kinetics of hexazinone in the same soil class. The shortest sorption time of hexazinone occurred in soils with higher organic matter (OM) and clay content. Liming reduced the sorption and increased the desorption of hexazinone in the soils, which was caused by the increase in pH and reduction of OM content. Although the application of limestone increased desorption, the rate at which this process occurred was less than the sorption rate of hexazinone in most cases. In alkaline soils, the recommended dose of hexazinone for pre-emergence application should be low to avoid leaching and reduce the contamination of groundwater resources.  相似文献   

5.
Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity, ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.  相似文献   

6.
Adsorption/desorption characteristics of the herbicide 2,4-D on various types of soils were investigated. Batch equilibrium techniques were used in the laboratory experiments. Data were fitted to the linear and Freundlich sorption equations. K and Kf values ranged between 0.32–1.89 L- 1 mg and 2.6 × 10-3 – 7.4 mg kg- 1, respectively. Results showed that both for linear and Freundlich adsorption equations, for all soils, K and Kf were correlated to the organic matter content (r = 0.87 and r = 0.66, respectively). Adsorption was also positively correlated with silt and clay content of soils (r = 0.53) and negatively correlated with sand content.  相似文献   

7.
Aminocyclopyrachlor sorption/desorption was investigated in 14 soils from Brazil, representing a range of pH, and organic carbon (OC) and clay contents. The Freundlich equation adequately described behavior of aminocyclopyrachlor in soil. Freundlich sorption coefficient (K(f)) values ranged from 0.06 to 1.64 and 1/n values for ranged from 0.9 to 1.0. Sorption was correlated to OC (K(f,oc) ranged from 11 to 64) and clay contents. The lowest sorption was found for soils with very low OC contents (0.50-0.65%) and loamy-sand to sand textures. The 1/n values for desorption were lower than those observed for sorption, suggesting that aminocyclopyrachlor sorption by soil was not reversible; hysteresis coefficients ranged from 0.13 to 0.74. The results suggest that although aminocyclopyrachlor would be very mobile based on its sorption coefficients, its potential depth of leaching may be overestimated due to the hysteretic desorption.  相似文献   

8.
The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.  相似文献   

9.
Samples of two soils and two sediments collected at sites originating from mangrove forests in Thailand, were examined in terms of buffering capacity to organic compounds. Atrazine and linuron were used as representative hydrophobic organic compounds for estimating the buffering capacity by observing their adsorptive and desorptive behavior. The buffering capacity could be represented by the distribution of the adsorption ratio (AR) and desorption ratio (DR) as follows: AR (%) = (amount of herbicide adsorbed per unit weight of soil)/(initial amount of herbicide) x 100, and DR (%) = (amount of herbicide desorbed per unit weight of soil after herbicide desorption experiments) / (initial amount of adsorbed herbicide on soil) x 100. The soil under mangrove forests displayed a larger buffering capacity to atrazine and linuron. Compared with 42 soils from Japan, in terms of the adsorption proparty of atrazine and linuron, the mangrove soil ranked in a higher category on the classification of the Japanese soils. Thus, the importance of maintaining or recovering the mangrove forests to promote environmental conservation was emphasized.  相似文献   

10.
动物粪液中可溶性磷在土壤中的吸附和迁移特性研究   总被引:1,自引:0,他引:1  
农田土壤施用动物粪肥引入了大量的可溶性有机物、有机磷和无机磷,了解这些可溶性物质在土壤中的相对移动性及它们之间的相互作用有助于指导农田养分管理。本研究从粪液中分离获得含水溶性无机磷、有机磷和有机物(碳)的溶液,选择了具不同质地和有机质含量的4个土壤(含高量有机质的黄筋泥、含低量有机质的黄筋泥、淡涂泥和清水沙),应用等温吸附和土柱模拟淋洗方法研究了可溶性有机碳、无机磷和有机磷共存条件下,粪液中可溶性有机态磷和无机态磷在土壤中的吸附和迁移特性。吸附试验表明,可溶性有机物(碳)的存在大大降低了土壤对有机态磷和无机态磷的吸附,表明施用液态有机肥比施用化肥具有更大的磷流失风险。供试土壤对无机态磷的吸附强度高于有机态磷,但对二者的吸附量大小为:黄筋泥>淡涂泥>清水沙;并与粘粒含量、氧化铁含量呈正相关。有机质较高的土壤对有机磷的吸附明显低于有机质低的土壤。淋洗试验表明,在供试土壤中,这3种可溶性物质在土壤中吸持(包括生物吸持)的顺序为:可溶性无机磷>可溶性有机碳>可溶性有机磷;有机态磷比无机态磷更易在土壤中迁移。  相似文献   

11.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

12.
The effect of management practices on soil potential for regulating the residual concentration of pesticides was examined in samples from a Calcic Haploxeralf in Toledo (central Spain). Sorption-desorption of alachlor and linuron was found to depend on inputs of lignocelullosic wastes or cattle manure for the past 16 years. For a given herbicide, the soil sorption capacity (K(f)) follows the order control < crop residues < manure, which is consistent with the organic C content in the soil samples. Some structural characteristics of the soil humic acid as revealed by visible and infrared spectroscopies and analytical pyrolysis were useful to forecast the sorption-desorption intensity. Simple and multiple linear correlation analyses illustrate enhanced sorption of alachlor and linuron in soil plots where slightly altered soil organic matter accumulated (positive correlations with the intensity of infrared lignin signature band and with the methoxyphenol yields after pyrolysis of the humic acids and negative correlation with the aromaticity as pointed out by the optical density at 465 nm). Linuron showed a preference for soils with humic acids of low molecular weight and low degree of internal cross-linking, as inferred from the positive correlation with the ratio between optical densities at 465 and 665 nm. Under the conditions of the present experiment, agricultural practices including organic amendments seem to have a beneficial effect in the control of leaching and sorption of pesticides.  相似文献   

13.
土壤主要理化性质对湘粤污染农田镉稳定效果的影响   总被引:3,自引:0,他引:3  
崔旭  吴龙华  王文艳 《土壤》2019,51(3):530-535
利用盆栽试验研究了稳定剂(石灰、海泡石联合施用)对湖南、广东两省区不同性质土壤上生长的小青菜(Brassica chinensis L.)生物量、重金属吸收以及土壤pH和重金属提取态含量的影响,探讨了影响镉(Cd)稳定修复效果的土壤性质参数。结果表明:施加稳定剂对增加酸性土壤上小青菜生物量效果显著,土壤pH、有机质(OM)、全量Cd和黏粒是影响小青菜生物量变化的主要因素;土壤pH、阳离子交换量(CEC)、OM、黏粒是影响小青菜Cd含量变化的主要因素;土壤pH、CEC、全量Cd和黏粒是影响土壤提取态Cd含量变化的主要因素。  相似文献   

14.
Pesticide sorption or binding to soil is traditionally characterized using batch slurry techniques. The objective of this study was to determine linuron sorption in field-moist or unsaturated soils. Experiments were performed using low-density (i.e., 0.25 g mL(-)(1)) supercritical carbon dioxide to remove linuron from the soil water phase, thus allowing calculation of sorption coefficients (K(d)) at low water contents. Both soil water content and temperature influenced sorption. K(d) values increased with increased water content, if less than saturated. K(d) values decreased with increased temperature. K(d) values for linuron sorption on silty clay and sandy loam soils at 12% water content and 40 degrees C were 3.9 and 7.0 mL g(-)(1), respectively. Isosteric heats of sorption (DeltaH(i)) were -41 and -35 kJ mol(-)(1) for the silty clay and sandy loam soils, respectively. The sorption coefficient obtained using the batch method was comparable (K(f) for sandy loam soil = 7. 9 microg(1)(-)(1/)(n)() mL(1/)(n)() g(-)(1)) to that obtained using the SFE technique. On the basis of these results, pesticide sorption as a function of water content must be known to more accurately predict pesticide transport through soils.  相似文献   

15.
Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides.  相似文献   

16.
Naturally occurring wetting‐and‐drying cycles often enhance aggregation and give rise to a stable soil structure. In comparatively dry regions, such as large areas of Australia, organic‐matter (OM) contents in topsoils of arable land are usually small. Therefore, the effects of wetting and drying are almost solely reliant on the clay content. To investigate the relations between wetting‐and‐drying cycles, aggregation, clay content, and OM in the Australian environment, an experiment was set up to determine the relative influence of both clay content (23%, 31%, 34%, and 38%) and OM amendments of barley straw (equivalent to 3.1 t ha–1, 6.2 t ha–1, and 12.4 t ha–1) on the development of water‐stable aggregates in agricultural soil. The aggregate stability of each of the sixteen composite soils was determined after one, three, and six wet/dry cycles and subsequent fast and slow prewetting and was then compared to the aggregate stabilities of all other composite soils. While a single wet/dry cycle initiated soil structural evolution in all composite soils, enhancing macroaggregation, the incorporation of barley straw was most effective for the development of water‐stable aggregates in those soils with 34% and 38% clay. Repeated wetting‐and‐drying events revealed that soil aggregation is primarily based on the clay content of the soil, but that large straw additions also tend to enhance soil aggregation. Relative to untreated soil, straw additions equivalent to 3.1 t ha–1 and 12.4 t ha–1 increased soil aggregation by about 100% and 250%, respectively, after three wet/dry cycles and fast prewetting, but were of less influence with subsequent wet/dry cycles. Straw additions were even more effective in aggregating soil when combined with slow prewetting; after three wet/dry cycles, the mean weight diameters of aggregates were increased by 70% and 140% with the same OM additions and by 160% and 290% after six wet/dry cycles, compared to samples without organic amendments. We suggest that in arable soils poor in OM and with a field texture grade of clay loam or finer, the addition of straw, which is often available from preceding crops, may be useful for improving aggregation. For a satisfactory degree of aggregate stability and an improved soil structural form, we found that straw additions of at least 6.2 t ha–1 were required. However, rapid wetting of straw‐amended soil will disrupt newly formed aggregates, and straw has only a limited ability to sustain structural improvement.  相似文献   

17.
Azimsulfuron sorption--desorption on soil   总被引:11,自引:0,他引:11  
The sorption and desorption of the herbicide azimsulfuron, N-[[(4-dimethoxypyrimidin-2-yl)amino]carbonyl]1-methyl-4-(2-methyl-2H-tetrazole-5-yl)1H-pyrazole-5-sulfonamide, were studied using five soils. Sorption isotherms conformed to the Freundlich equation. It was found that pH is the main factor influencing the sorption and that the sorption on soils was negatively correlated with pH. The highest level of sorption was measured on soils with low pH and high organic carbon content. Moreover, inorganic soil colloids, for example, smectite clay minerals and iron oxides, contributed to the sorption of azimsulfuron. Desorption was hysteretic on soils with high organic and inorganic colloid contents.  相似文献   

18.
The application of organic amendments on soils poor in organic matter (OM) can improve long-term soil fertility, but may also enhance the mineralization of native soil organic matter. Three organic amendments, compost, sewage sludge and horse manure used by urban market gardeners in Dakar, Senegal were analyzed for their OM maturity. Their fate was evaluated in a 45-d agronomic trial in a sandy Arenosol with lettuce. In each case, water-extractable organic matter (WEOM) and humic-like substances (HLS) were isolated from raw amendments and amended soils, and characterized using ultraviolet-visible (UV/Vis) spectroscopy. Results highlighted the general more aromatic character of HLS and WEOM fractions extracted from compost compared to the other two amendments. When applied to soils, however, these differences were not clearly observed. The aromaticity and humification degree of the labile fraction (WEOM) increased with depth in the first 30 cm for all amendments. This indicated the high lixiviation rates that fresh OM underwent in the studied sandy soil. Finally, a statistical analysis of the results was able to discriminate between surface and deeper horizons and between amended- and non-amended soil samples. Spectroscopic indices showed indeed strong increase/decrease with depth linked with the mineralization/humification processes that the fresh OM from amendments underwent during the 45 d of the agronomic trial. This study highlights the potential of spectroscopic techniques to study agricultural amendment organic matter fractions and their fate in soils.  相似文献   

19.
Clay is generally considered an important stabiliser that reduces the rate of decomposition of organic matter (OM) in soils. However, several recent studies have shown trends contradicting this widely held view, emphasising our poor understanding of the mechanisms underlying the clay effects on OM decomposition. Here, an incubation experiment was conducted using artificial soils differing in clay content (0, 5, and 50%) at different temperatures (5, 15, and 25 °C) to determine the effects of clay content, temperature and their interaction on fresh OM decomposition. CO2 efflux was measured throughout the experiment. Phospholipid fatty acids (PLFAs), enzyme activities, microbial biomass carbon (MBC), and dissolved organic carbon (DOC) were also measured at the end of the pre-incubation and incubation periods in order to follow changes in microbial community structure, functioning, and substrate availability. The results showed that higher clay contents promoted OM decomposition probably by increasing substrate availability and by sustaining a greater microbial biomass, albeit with a different community structure and with higher activities of most of the extracellular enzymes assayed. Higher clay content induced increases in the PLFA contents of all bacterial functional groups relative to fungal PLFA content. However, clay content did not change the temperature sensitivity (Q10) of OM decomposition. The higher substrate availability in the high clay artificial soils sustained more soil microbial biomass, resulting in a different community structure and different functioning. The higher microbial biomass, as well as the changed community structure and functions, accelerated OM decomposition. From these observations, an alternative pathway to understanding the effects of clay on OM decomposition is proposed, in which clay may not only accelerate the decomposition of organic materials in soils but also facilitate the SOM accumulation as microbial products in the long term. Our results highlight the importance of clay content as a control over OM decomposition and greater attention is required to elucidate the underlying mechanisms.  相似文献   

20.
Degradation and adsorption of fosthiazate in soil   总被引:3,自引:0,他引:3  
Adsorption and degradation behavior of a pesticide in soil has a strong effect on its environmental fate as well as efficacy for pest control. Fosthiazate is an organophosphate compound that is currently under development as a nonfumigant nematicide. In this study, we evaluated adsorption and degradation kinetics of fosthiazate in three U.S. soils with different properties. Adsorption of fosthiazate in mineral soil was negligibly weak but appeared to increase with soil organic matter (OM) content. The half-life (T(1/2)) of fosthiazate ranged from 0.5 to 1.5 months in nonsterile soils but was prolonged to 1-3 months after sterilization. Degradation of fosthiazate in soil appeared to be caused by both chemical and microbial transformations. The persistence of fosthiazate generally decreased with increasing soil pH, but increased with increasing soil OM and clay contents. This results suggest that fosthiazate may have an enhanced leaching potential in acidic soils with low OM content, and its efficacy in high pH soils may not last as long as in neutral soils because of faster degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号