首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
贵州省陆地净初级生产力的季节变化研究   总被引:2,自引:0,他引:2  
了解不同季节陆地净初级生产力(NPP)的变化及与气候的相互关系以及其空间分布对深刻理解贵州陆地生态系统对全国气候变化的响应和陆地碳循环研究具有重要意义.本文使用1981—2000年间GLO—PEM模型模拟的贵州陆地NPP数据和同期气温、降水等数据,研究不同季节贵州陆地植被NPP的变化.结果表明,在1981—2000年期间,春季和秋季NPP都呈显著增加趋势,夏季和冬季NPP都呈减少趋势,春季是NPP增加速率最快的季节,夏季是NPP减少速率最快的季节.夏季NPP增加最高的区域分布于贵州南部的多数地区;夏季NPP降低最多的区域分布于贵州西北部.  相似文献   

2.
陕西省植被净第一性生产力时空变化研究   总被引:1,自引:0,他引:1  
利用1981~2000年GloPEM光能利用率模型数据、土地覆盖数据和中国县域行政区划矢量数据,对陕西省植被净第一性生产力(NPP)总量变化、空间分布格局及其变化特征进行了研究。结果表明,陕西省多年平均NPP总量为1.59×1014gC/a,单位面积年均NPP为771 gC/(m2.a)。20年来,陕西省植被年均NPP在波动中虽然有增加但总量仍呈减少趋势,即从1981年的1.55×1014gC/a减少到2000年的1.50×1014gC/a。陕西省单位面积年均NPP的空间分布格局显著,呈现出由南北向中部递增的趋势。陕西省年均NPP的空间变化明显,其中有43.4%的地区年均NPP增加,主要集中在陕南秦巴山区和关中平原;有56.6%的地区年均NPP减少,主要集中在陕北黄土高原。  相似文献   

3.
1981-2015年青藏高原地表温度的时空变化特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
本文使用ERA-Interim地表温度逐月再分析数据(分辨率0.5°×0.5°),使用线性倾向估计、小波分析和经验正交分解等方法研究了1981-2015年青藏高原年平均以及各季节地表温度的时空变化特征.结果表明,青藏高原整体温度比周边的温度低,温度分布主要受地形和纬度影响,温度随海拔升高而降低,随纬度升高而降低,高值中心位于高原东北部的柴达木盆地和高原南部以及东南部的藏南谷地地区,低值中心位于高原西北部的帕米尔高原和昆仑山一带.青藏高原年平均及各季节地表温度都呈逐年上升的趋势,升温速率春季最快,夏、秋季次之,冬季最缓,不同季节不同年代的升温趋势也不同.高原地表温度存在一个准4年的变化周期.高原大部分区域的地表温度以0.2℃/10 a的升温率在增长,高海拔地区升温速率普遍高于低海拔地区,阿里地区升温率达到0.6℃/10 a,帕米尔高原和祁连山地区呈降温趋势,降温率最大达0.6℃/10 a.4个季节的升温趋势分布并不一致,冬、春两季的高原增温趋势明显高于夏、秋两季.青藏高原夏、秋、冬以及年平均地表温度都以整体型变化为主,春季的东西反向变化更为显著,夏季次之.  相似文献   

4.
基于CASA模型估算了长顺县夏季植被净初级生产力(NPP),并分析了2000~2011年期间其时空分布特征。研究表明:2000~2011年期间,长顺县夏季NPP平均为34.51 g C/m~2·m,全县91.65%的区域,NPP值在20~50 g C/m~2·m之间。多年平均夏季NPP的分布呈现明显的地域性差异,总体呈现出由中部落叶阔叶林、针阔混交林及灌木林等植被茂盛的区域逐渐向东西两侧耕地及建设用地区域减少的分布规律;夏季NPP在12年间,其变化整体呈缓慢上升趋势。针阔混交林、落叶阔叶林、灌木林、耕地及草地区域的平均增长率分别为2.77、2.32、2.34、0.99、1.05。地区植被在夏季的固碳量在逐年增加;各乡镇夏季平均NPP在12年内的变化一致。长寨镇、广顺镇、摆所镇、鼓扬镇、代化镇、改尧镇、敦操乡分别以2.16、1.88、2.10、2.17、2.29、2.12、2.51 g C/m2·m的速率增加。  相似文献   

5.
2000~2013年商洛植被NPP变化及其对气温变化的响应   总被引:2,自引:2,他引:0  
基于2000~2013年的NDVI数据和气象数据,利用CASA模型对商洛地区植被的净初级生产力(NPP)进行了模拟估算。研究结果表明:2000~2013年商洛地区的NPP呈显著的增长趋势(P<0.01),年均NPP为841.64 g C/m2;春季、秋季、冬季的NPP在波动中增长,其中春季增长最快,而夏季的NPP呈现出波动下降的趋势。商洛地区的月均NPP与当月、提前1个月、提前2个月、提前3个月的月均气温均呈显著的正相关,但其受当月气温的影响最大。  相似文献   

6.
华北地区植被NDVI变化及与气候因子的关系   总被引:2,自引:1,他引:1  
基于1982—2006年NOAA/AVHRR NDVI数据和华北地区56个气象站点温度和降水数据,从月、季节和生长季尺度上分析植被NDVI、温度和降水的年际变化及NDVI对温度和降水的响应。结果表明,从月尺度上来看,植被NDVI年变化以增加趋势为主,温度以增加为主,降水量以减少为主。从季节上讲,春季和秋季NDVI空间分布大体一致,与夏季呈相反趋势;春季和秋季时间序列NDVI呈上升趋势,夏季降低趋势较弱;春季升温最快,其次是夏季;夏季降水增加,春季和秋季降水减少。生长季NDVI呈增加趋势,温度每10 a增加0.48℃(P0.01),降水变化趋势不明显。3,4,11月NDVI变化主要受温度限制,植被季节(春、夏、秋季)和生长季NDVI与温度的相关性均大于NDVI与降水的相关性,NDVI与温度的相关系数从大到小顺序是:生长季春季秋季夏季,NDVI与降水的相关系数从大到小顺序是:春季生长季夏季秋季。  相似文献   

7.
基于20002013年的NDVI数据和气象数据,利用CASA模型对商洛地区植被的净初级生产力(NPP)进行了模拟估算。研究结果表明:20002013年的NDVI数据和气象数据,利用CASA模型对商洛地区植被的净初级生产力(NPP)进行了模拟估算。研究结果表明:20002013年商洛地区的NPP呈显著的增长趋势(P<0.01),年均NPP为841.64 g C/m2;春季、秋季、冬季的NPP在波动中增长,其中春季增长最快,而夏季的NPP呈现出波动下降的趋势。商洛地区的月均NPP与当月、提前1个月、提前2个月、提前3个月的月均气温均呈显著的正相关,但其受当月气温的影响最大。  相似文献   

8.
青藏高原近30年植被净初级生产力时空演变研究   总被引:2,自引:0,他引:2  
利用卫星遥感数据和气象资料,分3个高程层面模拟了青藏高原地表太阳辐射(SOL),并以此驱动CASA模型估算1983要2012年青藏高原植被的净初级生产力(NPP),分析NPP的时空演变模式,而后探讨了NPP对气候因子的响应关系。研究结果表明:(1)分不同高程层面建立的太阳辐射模型能够更合理地反映青藏高原地表太阳辐射的空间分布特征,模拟精度高于其他相关模型。(2)青藏高原植被NPP的空间分布表现为自东南向西北逐渐递减的趋势。高原西北部降水量小于400mm的区域内植被NPP 的主导因子是降水,东南部降水量大于400mm的区域内植被NPP的主导因子是温度。(3)青藏高原植被NPP的演变趋势存在显著空间分异。总体上高原西北部植被NPP近30年变化相对稳定。其中1983要1992年,NPP增加区域主要分布于高原中部,在高原东南部则呈现减少趋势;1993要2002年,高原大部分地区NPP呈增加趋势,NPP减少区域集中在高原东部地区;2003要2012年,高原东部、南部NPP增加趋势明显,高原东南部NPP呈减少趋势。(4)总体上,1983要2012年青藏高NPP总量波动范围为0.494~0.590 Pgc/年变化率为0.0187 Pgc/10,年,呈现“缓慢增加-缓慢减少-快速增加”的趋势,其中年均温度增加对NPP的变异有显著影响(R2=0.456,P<0.001)。  相似文献   

9.
强玉柱 《农学学报》2015,5(6):82-87
选取天水市7个气象站1965-2011年日照时数资料,采用累积距平、Mann-Kendall突变检验法和Morlet小波等方法,分析天水市日照时数的气候变化规律。结果表明, 天水市年平均日照时数总体呈减少趋势。1965-1980年,日照时数呈增加趋势;1981-1992年呈减少趋势;1993-2008年呈增加趋势;2009年以后又趋于减少。日照时数的变幅最大的季节为夏季,春季的日照时数变化呈上升趋势,其余各季都呈下降趋势。小波分析得出天水市的全年和各季的日照时数大部都存在小尺度的准周期变化,冬季存在中尺度的周期变化,夏季在年代际的变化上存在准27年的周期变化。对日照时数气候变化的空间分析表明, 天水市整体平均日照时数呈下降趋势,有局部地方和整体趋于的气候变化趋势不完全相同,天水北部的变化趋势更加显著。  相似文献   

10.
为了解近几十年来云南省日照时数和风速的变化规律,利用云南省1960~2010年29个台站日照时数和风速的月值数据,采用线性倾向估计、Mann-Kendall突变检验等统计方法,分析了其年代际、年际、季和月的变化特征.结果表明:1960~2010年云南省日照时数和风速都分别以-16.8h/10a和-0.037(m·s-1)/10a的速率呈显著减少趋势;日照时数和风速年际和年代际变化幅度都较大,日照峰值(60年代)与谷值(90年代)相差92.0h,风速峰值(70年代)与谷值(90年代)相差0.32m/s;日照时数和风速各个季节都呈下降变化,但也有明显的季节差异,日照时数各季节变化幅度大小为冬季>春季>夏季>秋季,风速各季节变化幅度大小为春季>冬季>夏季>秋季.日照时数和风速各月变化以减少趋势为主,其中日照时数7月减少最多,风速3月下降最多.年日照时数在1981发生由多到少的明显突变,而风速突变不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号