首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, I argue that we have at hand what is needed to provide scientific advice for ecosystem‐based management of small pelagics and other species groups now. The ingredients for this advice are (i) large marine ecosystems as spatial management units; (ii) maintaining ecosystem productivity and exploiting at multispecies maximum yield as overarching management objectives; (iii) assessment of ecosystems by evaluating changes in primary productivity; (iv) an operational management procedure in which single‐species catch proposals are adjusted to ecosystem productivity using a set of control rules. Inspection of historic landings for small pelagics and other small species in the Northeast Atlantic (ICES area) reveals that most likely fisheries exploitation does not, and never did, exceed system productivity in most LMEs and is therefore overall sustainable, although not necessarily for individual stocks.  相似文献   

2.
Abundance of marine stocks fluctuates in response to both internal processes (e.g., density dependence) and exogenous drivers, including the physical environment, fishing, and trophodynamic interactions. In the United States, research investigating ecosystem drivers has been focused in data‐rich systems, primarily in the North Atlantic and North Pacific. To develop a more holistic understanding of important ecosystem drivers in the Southeast U.S. continental shelf Large Marine Ecosystem, we applied generalized linear and dynamic linear modeling to investigate the effects of climate and fishing covariates on the relative abundance trends of 71 demersal fish and invertebrate species sampled by a coastal trawl survey during 1990–2013. For the assemblage as a whole, fishing effects predominated over climate effects. In particular, changes in trawling effort within the penaeid shrimp fishery governed abundance trends of bony fishes, invertebrates, and elasmobranchs, a likely result of temporal changes in bycatch mortality. Changes in trawling intensity induced changes in overall community composition and appear to have altered trophic interactions among particular species. Among climate indices investigated, the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent in well‐supported dynamic linear models. Observed annual abundance trends were synchronous among some taxonomically related species, highlighting similar responses to exogenous influences based on life history. This study strengthens the foundation for generating hypotheses and advancing ecosystem‐based fisheries research within the region.  相似文献   

3.
Analysing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species‐level life‐history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time and among individuals. To address similar challenges, community ecologists studying plants, insects and other taxa increasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed “functional traits”). Here, we review the history of trait‐based methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait‐based approaches within existing fisheries analyses. We argue that measuring and modelling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait‐based approaches could account for time‐varying parameters in population models; improve fisheries management and harvest control rules; and inform size‐based models of marine communities. We then present a step‐by‐step primer for how trait‐based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait‐based methods in fisheries science, to complement existing public databases of life‐history parameters for marine organisms.  相似文献   

4.
Fishing can drive changes in important phenotypic traits through plastic and evolutionary pathways. Size‐selective harvest is a primary driver of such trait change, has received much attention in the literature and is now commonly considered in fisheries management. The potential for selection on behavioural traits has received less study, but mounting evidence suggests that aggression, foraging behaviour and linked traits can also be affected by fishing. An important phenomenon that has received much less attention is selection on reproductive phenology (i.e., the timing of breeding). The potential for this type of “temporal selection” is widespread because there is often substantial variability in reproductive phenology within fish populations, and fisheries management strategies or fishermen's behaviours can cause fishing effort to vary greatly over time. For example, seasonal closures may expose only early or late breeding individuals to harvest as observed in a range of marine and freshwater fisheries. Such selection may induce evolutionary responses in phenological traits, but can also have demographic impacts such as shortened breeding seasons and reduced phenotypic diversity. These changes can in turn influence productivity, reduce the efficacy of management, exacerbate ongoing climate‐driven changes in phenology and reduce resilience to environmental change. In this essay, we describe how fisheries management can cause temporal variability in harvest, and describe the types of selection on temporal traits that can result. We then summarize the likely biological consequences of temporally selective fishing on populations and population complexes and conclude by identifying areas for future research.  相似文献   

5.
During the past century, the field of fisheries oceanography has dominated the study of population connectivity in marine environments. The influence of physical and biological processes and their relationship to transport and retention of early life history stages has been central in providing insight into population structuring and connectivity. However, the focus on dispersive early life history stages has meant that the role of adults has received less attention and is not fully understood or appreciated. We argue that adults play a vital role in population connectivity for a wide range of marine taxa and hypothesize that adult‐mediated population connectivity commonly results in a diverse array of population structuring. Two case‐studies on winter skate, Leucoraja ocellata, and winter flounder, Pseudopleuronectes americanus, are presented to illustrate the role adults play in marine connectivity at both broad and fine scales, respectively. Indeed, if adults are important for population connectivity, we argue that the role of larval processes is conditional on adult choice and only management and research pursuits that integrate the full life cycle of species will capture the full dynamics of metapopulation connectivity. Failure to include the roles of adults can lead to misinterpretation of the causes and consequences of changes in ecosystem structure and fisheries productivity.  相似文献   

6.
Well‐managed fisheries support healthy ocean ecosystems, coastal livelihoods and food security for millions of people. However, many communities lack the resources to implement effective fisheries management. No‐take marine reserves are a ubiquitous management intervention that provide conservation benefits and under certain circumstances can provide long‐term fishery benefits as a result of larval and adult emigration from reserve boundaries. But, support for marine reserves by fishery participants is often limited due to short‐term economic impacts resulting from foregone yields. In this study, we examine the timing and magnitude of economic impacts of marine reserves by utilizing a novel metric that discounts future economic benefits of enhanced productivity resulting from reserve protection. We ask under what circumstances long‐term benefits outweigh short‐term impacts of marine reserve implementation. We simulate fisheries for six species commonly caught in coastal environments and show that while conservation benefits accrue rapidly, more than a decade is often required to provide net fisheries benefits, even under circumstances favourable for reserves. We explore a suite of strategies for mitigating these short‐term economic losses, including flexible reserve designs, loans and enhanced ex‐vessel revenues. Results indicate that market‐based incentives show promise to offset short‐term economic losses. Our findings highlight the importance of understanding and communicating likely outcomes from marine reserve implementation and the need to engage supply chain actors to incentivize marine conservation that minimizes impacts to fishermen.  相似文献   

7.
Fish stock productivity, and thereby sensitivity to harvesting, depends on physical (e.g. ocean climate) and biological (e.g. prey availability, competition and predation) processes in the ecosystem. The combined impacts of such ecosystem processes and fisheries have lead to stock collapses across the world. While traditional fisheries management focuses on harvest rates and stock biomass, incorporating the impacts of such ecosystem processes are one of the main pillars of the ecosystem approach to fisheries management (EAFM). Although EAFM has been formally adopted widely since the 1990s, little is currently known to what extent ecosystem drivers of fish stock productivity are actually implemented in fisheries management. Based on worldwide review of more than 1200 marine fish stocks, we found that such ecosystem drivers were implemented in the tactical management of only 24 stocks. Most of these cases were in the North Atlantic and north‐east Pacific, where the scientific support is strong. However, the diversity of ecosystem drivers implemented, and in the approaches taken, suggests that implementation is largely a bottom‐up process driven by a few dedicated experts. Our results demonstrate that tactical fisheries management is still predominantly single‐species oriented taking little account of ecosystem processes, implicitly ignoring that fish stock production is dependent on the physical and biological conditions of the ecosystem. Thus, while the ecosystem approach is highlighted in policy, key aspects of it tend yet not to be implemented in actual fisheries management.  相似文献   

8.
Coral reefs support numerous ornamental fisheries, but there are concerns about stock sustainability due to the volume of animals caught. Such impacts are difficult to quantify and manage because fishery data are often lacking. Here, we suggest a framework that integrates several data‐poor assessment and management methods in order to provide management guidance for fisheries that differ widely in the kinds and amounts of data available. First, a resource manager could assess the status of the ecosystem (using quantitative metrics where data are available and semi‐quantitative risk assessment where they are not) and determine whether overall fishing mortality should be reduced. Next, productivity susceptibility analysis can be used to estimate vulnerability to fishing using basic information on life history and the nature of the fishery. Information on the relative degree of exploitation (e.g. export data or ratios of fish density inside and outside no‐take marine reserves) is then combined with the vulnerability ranks to prioritize species for precautionary management and further analysis. For example, species that are both highly exploited and vulnerable are good candidates for precautionary reductions in allowable capture. Species that appear to be less vulnerable could be managed on a stock‐specific basis to prevent over‐exploitation of some species resulting from the use of aggregate catch limits. The framework could be applied to coral reef ornamental fisheries which typically lack landings, catch‐per‐unit‐effort and age‐size data to generate management guidance to reduce overfishing risk. We illustrate the application of this framework to an ornamental fishery in Indonesia.  相似文献   

9.
10.
11.
Time/area closures have been widely used in fisheries management to prevent overfishing and the destruction of marine biodiversity. To a lesser degree, such spatio‐temporal management measures have been used to reduce by‐catch of finfish or protected species. However, as ecosystem‐based management approaches are employed and more fisheries are managed through multispecies, multiobjective models, the management of by‐catch will likely become increasingly important. The elimination of by‐catch has become a primary goal of the fishing policies of many countries. It is particularly relevant in the United States, as the deadline for setting annual catch limits (ACLs) in all fisheries passes in 2011. This will result in a dramatic expansion of the number of catch and by‐catch quotas. Such catch measures may result in the early closure of otherwise sustainable fisheries when by‐catch quotas are exceeded. To prevent such closures and the consequent economic hardship to fishers and the economy, it is imperative that managers be given the tools necessary to reduce by‐catch and improve fishing selectivity. Targeted spatio‐temporal fishery closures are one solution open to managers. Here, we examine how the spatio‐temporal and oceanographic characteristics of by‐catch may be used by managers to design fishery closures, and place these methods within a decision tree to assist managers to identify appropriate management measures. We argue that the current movement towards marine spatial planning (MSP) presents an important impetus to examine how we manage fisheries spatially, and we offer a first step towards the objective participation of fisheries in the MSP process.  相似文献   

12.
We have developed a set of tools that operate within an aquatic geographic information system to improve the accessibility, and usability of remote‐sensed satellite and computer‐modeled oceanographic data for marine science and ecosystem‐based management. The tools form the Pelagic Habitat Analysis Module (PHAM), which can be applied as a modeling platform, an investigative aid in scientific research, or utilized as a decision support system for marine ecological management. Applications include fisheries, marine biology, physical and biological oceanography, and marine spatial management. The GIS provides a home for diverse data types and automated tools for downloading remote sensed and global circulation model data. Within the GIS environment, PHAM provides a framework for seamless interactive four‐dimensional visualization, for matching between disparate data types, for flexible statistic or mechanistic model development, and for dynamic application of user developed models for habitat, density, and probability predictions. Here we describe PHAM in the context of ecosystem‐based fisheries management, and present results from case study projects which guided development. In the first, an analysis of the purse seine fishery for tropical tuna in the eastern Pacific Ocean revealed oceanographic drivers of the catch distribution and the influence of climate‐driven circulation patterns on the location of fishing grounds. To support management of the Common Thresher Shark (Alopias vulpinus) in the California Current Ecosystem, a simple empirical habitat utilization model was developed and used to dynamically predict the seasonal range expansion of common thresher shark based on oceanographic conditions.  相似文献   

13.
气候变化对海洋渔业资源的影响   总被引:5,自引:1,他引:4  
肖启华  黄硕琳 《水产学报》2016,40(7):1089-1098
气候变化问题是近年来国际社会关注的热点,海洋是气候系统储存能量的主要载体,气候变化给生活于其中的鱼类带来的影响不可忽视。气候的变化影响着各大洋低频气候变化模式以及海洋环境要素的变化,这些变化通过对鱼类个体的直接作用或生态系统食物链传递的间接作用影响海洋鱼类,包括鱼类的生理(生长、繁殖、洄游)、物候、资源量以及分布等,并形成了对海洋生态系统的影响,最终影响人类对渔业资源的管理。本文通过收集国内外相关文献,侧重从海洋鱼类资源量、分布变化以及海洋生态系统和渔业资源管理4个方面,综述了气候变化对渔业资源产生的影响,为应对气候变化、实现对渔业资源开发的可持续发展研究提供基础。  相似文献   

14.
Infrastructure development and overfishing in the Amazon make it imperative to define adequate scales for the ecosystem‐based management of commercial fisheries and the wetlands on which they depend. We mapped fisheries and fish ecology data from Brazil, Peru, Bolivia and Colombia to an explicit GIS framework of river basins and mainstems. Migratory species account for more than 80% of the known maximum catches of commercial fisheries across the Amazon. Of these migratory species, we nominated six long‐distance migratory fish taxa as flagship species to define the two main commercial fishery regions. The migrations of at least one goliath catfish species define a large‐scale longitudinal link joining the Andes, Amazon Lowlands and Amazon River estuary. Migratory Characiforms demonstrate interbasin wetland connectivity between nutrient‐rich and nutrient‐poor rivers over at least 2 million km2, or about one‐third of the Amazon Basin. We show that flooded forest area is the most important wetland variable explaining regional variations in migratory characiforme biomass as indicated by maximum annual fishery catches. The sustainable management of Amazon fisheries will require transnational cooperation and a paradigm shift from local community management alone to a more integrated approach that considers both rural and urban consumers and challenges, and the realistic life histories of migratory species.  相似文献   

15.
Reconciling food security, economic development and biodiversity conservation is a key challenge, especially in the face of the demographic transition characterizing many countries in the world. Fisheries and marine ecosystems constitute a difficult application of this bio‐economic challenge. Many experts and scientists advocate an ecosystem approach to manage marine socio‐ecosystems for their sustainability and resilience. However, the ways by which to operationalize ecosystem‐based fisheries management (EBFM) remain poorly specified. We propose a specific methodological framework—viability modelling—to do so. We show how viability modelling can be applied using four contrasted case‐studies: two small‐scale fisheries in South America and Pacific and two larger‐scale fisheries in Europe and Australia. The four fisheries are analysed using the same modelling framework, structured around a set of common methods, indicators and scenarios. The calibrated models are dynamic, multispecies and multifleet and account for various sources of uncertainty. A multicriteria evaluation is used to assess the scenarios’ outcomes over a long time horizon with different constraints based on ecological, social and economic reference points. Results show to what extent the bio‐economic and ecosystem risks associated with the adoption of status quo strategies are relatively high and challenge the implementation of EBFM. In contrast, strategies called ecoviability or co‐viability strategies, that aim at satisfying the viability constraints, reduce significantly these ecological and economic risks and promote EBFM. The gains associated with those ecoviability strategies, however, decrease with the intensity of regulations imposed on these fisheries.  相似文献   

16.
Invasive species often exhibit a suite of life‐history traits that promote rapid population growth, including early age and small size at maturation, and high reproductive investment. The common expression of these “fast” life‐history traits in invasive populations could be the result of plastic and/or genetic responses to the non‐native environment, or in response to the process of range expansion. To determine the relative importance of plastic and genetic contributions to the expression of life‐history traits, we reared two native Canadian and two invasive Spanish populations of Pumpkinseed sunfish (Lepomis gibbosus) in a common environment in central Ontario, Canada. In the wild, European Pumpkinseed tend to exhibit faster juvenile growth rates, younger age and smaller size at maturity, and higher reproductive investment than native North American populations. When reared in a common environment, both native and invasive populations exhibited similar juvenile growth rates, and similar age and size at maturity, suggesting that the differences seen among wild populations are a plastic response to the warmer non‐native environment. However, reproductive investment was consistently higher in the Spanish populations regardless of rearing environment, suggesting a genetic difference in reproductive investment between native and invasive populations. Selection for greater reproductive investment in non‐native Pumpkinseed may have contributed to their widespread success in Europe.  相似文献   

17.
With the adoption of the United Nations Law of the Sea came the need for effective worldwide control of marine fisheries. Initially centred on single species, the tasks have extended to ecosystem‐based management through the concept of marine‐protected areas into habitats and biodiversity. These diverse requirements have placed enhanced responsibilities on fisheries management organizations. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has successfully developed effective management measures for the Southern Ocean but has encountered difficulties in establishing marine‐protected areas. Key to the success of CCAMLR has been the establishment of conservation measures on clearly defined topics through decision making by consensus. It is argued that the problems that CCAMLR has encountered in establishing marine‐protected areas centre on the range of features, in terms of stakeholder interests, to be afforded protection allied to problems with the consensus process. In this paper, the approaches of CCAMLR in converting the conceptual framework of treaty language into practical management measures using consensus are discussed in relation to the manner in which marine‐protected areas might be established within other fisheries management organizations. It is concluded that the most effective approach is as a composite of strictly focussed conservation measures the sum of which cover all facets of a marine‐protected area. This approach has the further advantage that individual components can be changed without opening the whole legal instrument to re‐negotiation.  相似文献   

18.
Effective management of fisheries depends on the selectivity of different fishing methods, control of fishing effort and the life history and mating system of the target species. For sex‐changing species, it is unclear how the truncation of age‐structure or selection of specific size or age classes (by fishing for specific markets) affects population dynamics. We specifically address the consequences of plate‐sized selectivity, whereby submature, “plate‐sized” fish are preferred in the live reef food fish trade. We use an age‐structured model to investigate the decline and recovery of populations fished with three different selectivity scenarios (asymptotic, dome‐shaped and plate‐sized) applied to two sexual systems (female‐first hermaphroditism and gonochorism). We parameterized our model with life‐history data from Brown‐marbled grouper (Epinephelus fuscoguttatus) and Napoleon fish (Cheilinus undulatus). “Plate‐sized” selectivity had the greatest negative effect on population trajectories, assuming accumulated fishing effort across ages was equal, while the relative effect of fishing on biomass was greatest with low natural mortality. Fishing such sex‐changing species before maturation decreased egg production (and the spawning potential ratio) in two ways: average individual size decreased and, assuming plasticity, females became males at a smaller size. Somatic growth rate affected biomass if selectivity was based on size at age because in slow growers, a smaller proportion of total biomass was vulnerable to fishing. We recommend fisheries avoid taking individuals near their maturation age, regardless of mating system, unless catch is tightly controlled. We also discuss the implications of fishing post‐settlement individuals on population dynamics and offer practical management recommendations.  相似文献   

19.
20.
Fishery ecosystems are complex and influenced by various drivers that operate and interact at different levels and over multiple scales. Here, we propose a holistic methodology to determine the key mechanisms of fisheries, trophodynamics, and environmental drivers of marine ecosystems, using a multilevel model fitted to data on global catch, effort, trophic level, primary production, and temperature for 130 ecosystems from 1950 to 2012. The model describes the spatial‐temporal dynamics of world fisheries very well with a pseudo R2 = 0.75 and estimates the effects of key drivers of fishery production. The results demonstrate the integrative operation of bottom‐up and top‐down regulated trophic interactions at the global level and great variations in their relative importance among different types of ecosystem. The estimation of key drivers’ effects on marine ecosystems provides practical mechanisms for informed ecosystem‐based fisheries management to achieve the sustainable objectives that are consistent with the needs of specific fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号