首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
毛竹不同种源竹材物理力学性质初步研究   总被引:3,自引:0,他引:3  
通过对来自福建建瓯试验地16个毛竹种源竹材的密度、顺纹抗压强度、顺纹抗剪强度、顺纹抗拉强度和弦向抗弯强度及其弹性模量等物理力学性质的初步研究,结果表明:竹材物理力学性质在各种源之间存在一定的差异,其中湖南株洲的毛竹竹材物理力学性质比于其它种源的毛竹要好,而安徽霍山的毛竹竹材的物理力学性质较差,测量的各指标中有基本密度、抗剪强度、抗拉强度三项指标都达到最低;竹材密度的大小、抗拉强度的高低随种源纬度的降低而呈降低的趋势,而竹材的抗剪强度呈与之相反的趋势。  相似文献   

2.
This work investigated some mechanical, physical and free formaldehyde emission properties of heat-treated MDF. For this purpose, MDF panels were subjected to varying heat treatment temperatures (155°C, 165°C and 175°C), durations (2.5?h., 3.5?h. and 4.5?h.) and waiting times after hot pressing (30?min., 120?min. and 600?min). Thickness swelling (TS), water absorption (WA), free formaldehyde emission (FFE), bending strength (BS), modulus of elasticity (MOE), tensile strength perpendicular to fibers (TSPF) for treated and untreated samples were tested and evaluated statistically. Consequently, after the heat treatment values of tensile strength, bending strength and modulus of elasticity were almost negatively affected relatively, but the thickness swelling and water absorption and quantities of free formaldehyde were improved positively of MDF samples.  相似文献   

3.
Since the structure of oil palm wood varies dramatically, the property gradients of oil palm wood within a trunk are of great interest. In this study, the physical (density, water uptake and swelling in the radial direction) and mechanical properties (bending modulus of elasticity and strength, compressive modulus of elasticity and strength in the direction parallel to the fiber, compressive strength in the direction perpendicular to the fiber and shear strength in the direction parallel to the fiber) of oil palm wood for a whole trunk were examined. The water uptake, compressive strength in the direction perpendicular to the fiber, shear strength in the direction parallel to the fiber, bending modulus of elasticity and strength and compressive modulus of elasticity and strength in the direction parallel to the fiber appeared to be independent of trunk height but tended to be related to the relative distance from surface or density by a single master curve. However, the swelling in the radial direction of the oil palm wood was not correlated with the relative distance from the surface, trunk height or density. Finally, property map of oil palm wood for a cross section at any height was prepared for practical use.  相似文献   

4.
The objective of this study was to investigate the physical and mechanical performance of flakeboard reinforced with bamboo strips. The study investigated three different bamboo strip alignment patterns and an experimental control. All panels were tested in static bending both along parallel and perpendicular to the lengths of the bamboo strips. Internal bond strength (IB), thickness swelling (TS), linear expansion (LE), and water absorption (WA) were also examined. As expected, modulus of rupture (MOR) and modulus of elasticity (MOE) were substantially greater for all three experimental panel types as compared to the control group. LE was also improved for all three experimental panel groups. The bamboo strip alignment patterns had no significant effect on TS, WA and IB. The sample means for MOR, MOE and LE tested perpendicular to the bamboo strip lengths yielded slightly lower mean values than corresponding samples tested parallel to the bamboo strips lengths. This difference in mechanical properties is largely attributed to low panel density in the failure zones.  相似文献   

5.
ABSTRACT

Certain important quality parameters of red maple (Acer rubrum) laminated veneer lumber (LVL) impregnated with three waterborne formulations: copper azole (CA-B), micronized copper azole (MicroCA or MCA) and alkaline copper quaternary (ACQ-D) bonded with phenol formaldehyde or cross-linked polyvinyl acetate (XPVAc) adhesives were evaluated. Pre-dipping of veneers before LVL production and two post-manufacturing procedures, viz., vacuum-pressure and post-dipping of LVL, were applied. Maximum copper retention in pre-dip-treated, vacuum-pressure and post-dip-treated LVL was 1.4, 9.7 and 1.7?kg/m3, respectively. Copper retention in MCA-treated LVL was relatively lower than soluble formulations. Various physical, mechanical and bonding properties of treated LVL such as density, water absorption, swelling, flexural properties, hardness, tensile shear strength, delamination and wood failure (%) were studied and compared with untreated LVL. Little to negligible deleterious effect was observed on properties of LVL due to these chemical treatments. Analysis of variance results showed that most of properties of red maple LVL were not significantly different compared with those of untreated LVL. Therefore, vacuum-pressure impregnation process can be used to treat the red maple LVL with novel micronized copper formulations for increasing the service life of such products against biodegradation without affecting techno-mechanical quality parameters.  相似文献   

6.
Functional analysis of genes and proteins involved in wood formation and fiber properties often involves phenotyping saplings of transgenic trees. The objective of the present study was to develop a tensile test method for small green samples from saplings, and to compare mechanical properties of juvenile European aspen (Populus tremula) and hybrid aspen (Populus tremula × tremuloides). Small microtomed sections were manufactured and successfully tested in tension parallel to fiber orientation. Strain was determined by digital speckle photography. Results showed significantly lower values for juvenile hybrid aspen in both Young’s modulus and tensile strength parallel to the grain. Average Young’s moduli spanned the ranges of 5.9–6.6 and 4.8–6.0 GPa for European aspen and hybrid aspen, respectively. Tensile strength was in the range of 45–49 MPa for European aspen and 32–45 MPa for hybrid aspen. The average density (oven-dry) was 284 kg/m3 for European aspen and 221 kg/m3 for hybrid aspen. Differences in mechanical properties correlated with differences in density. Part of this article was presented at the 3rd International Symposium on Wood Machining, May 21–23, 2007, Lausanne, Switzerland  相似文献   

7.
对江汉平原人工林落羽杉物理力学性能进行了研究,结果表明:落羽杉的气干密度为0.413 g/cm3,气干密度等级为轻;综合强度为74 MPa,强度等级为Ⅰ级;径向横纹抗压强度略大于弦向横纹抗压强度;端面硬度最高,弦面硬度与径面硬度差别不大。落羽杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于近髓心处,南北方向对落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,而对其抗弯强度、弹性模量在1%水平上差异显著。  相似文献   

8.
人工林杨木的用途选择——实木或单板层积材   总被引:9,自引:0,他引:9  
实木材性对单板层积材强度的贡献率可衡量单板层积材强度中源自实木材性的份额,是人工林杨木单项用途选择的基础。本文以3个无性系实体杨木和由3种不同厚度杨木单板分别组配的单板层积材为对象,以由贡献率引出的实木与单板层积材的份率差值为依据,研究得出人工林杨木的最终用途选择。结果表明:69杨、72杨和63杨3个无性系杨木的平均份率差值分别为57%、-15%、-29%,说明69杨宜用作实木,72杨和63杨宜用作单板层积材;杨木用作不同组配结构的单板层积材时,实木与3565mm、2614mm、1545mm3种厚度单板组配的单板层积材的平均份率差值分别为43%、-13%和-43%,说明实木与较厚的3565mm单板组配的单板层积材相比,杨木宜用作实木,与较薄的2614mm和1545mm单板组配的单板层积材相比,杨木宜用作单板层积材。不同荷载作用的结果下用途选择结果显示,在抗剪强度、弹性模量和冲击韧性3项性能上的份率差值为正,此时杨木宜用作实木;在抗弯强度、抗压强度和硬度3项性能上的份率差值为负,此时杨木则宜用作单板层积材。  相似文献   

9.
Until now we developed an estimation method for strength distributions of laminated veneer lumber (LVL) element by nonlinear least-squares method (NLM). Estimated strengths by this method were modulus of elasticity (MOE) and modulus of rupture (MOR) in the horizontal use direction and the vertical use direction, tensile strength and compression strength. But to use LVL for structural members, shear strength was also needed. Therefore, we tried to estimate the shear strength distribution of LVL element by NLM same as MOE and MOR in the horizontal use direction and the vertical use direction, the tensile strength of LVL and the compression strength of LVL in the previous reports. We conducted shear strength test for LVL and estimated element shear strength distribution by LVL strength data in the horizontal and vertical use direction. Next, we simulated LVL shear strength distribution using element shear strength distribution and compared with experimental ones in each use direction. They were overlapped in both use direction. Therefore, we could validate NLM for estimating element shear strength distribution.  相似文献   

10.
Some of the properties of particleboard made from paulownia   总被引:3,自引:0,他引:3  
The objective of this study was to determine some of the properties of experimental particleboard panels made from low-quality paulownia (Paulownia tomentosa). Chemical properties including holocellulose, cellulose, lignin contents, water solubility, and pH level of the wood were also analyzed. Three-layer experimental panels were manufactured with two density levels using urea–formaldehyde as a binder. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), screw-holding strength, thickness swelling, and surface roughness of the specimens were evaluated. Panels with densities of 0.65 g/cm3 and manufactured using a 7-min press time resulted in higher mechanical properties than those of made with densities of 0.55 g/cm3 and press times of 5 min. Based on the initial findings of this study, it appears that higher values of solubility and lignin content of the raw material contributed to better physical and mechanical properties of the experimental panels. All types of strength characteristics of the samples manufactured from underutilized low-quality paulownia wood met the minimum strength requirements of the European Standards for general uses.  相似文献   

11.
钩梢对5年生毛竹竹材物理力学性质的影响   总被引:2,自引:0,他引:2  
毛竹(Phyllostachys edulis)秆形通直、材性优良,是利用范围最广、经济价值最大的竹种(刘亚迪等,2008);但同时因毛竹秆高大、枝叶繁茂,是受风雪灾害影响较大的林种之一(肖本权,2003)。2008年初,我国南方遭受了严重的雨雪冰冻灾害,涉及湖南、安徽、浙江、江西等19个省(区、市),受灾森林面积1860万hm2(祝列克,2008),受灾中心区域为毛竹的主分布区,占我国毛竹林面积的70%以上。据统计,全国竹林受灾面积约400万hm2,其中80%为毛竹林(李潇晓,2008)。在竹林培育中,为应对雨雪冰冻灾  相似文献   

12.
South Africa is a timber-scarce country that will most probably experience a shortage of structural softwood lumber in the near future. In this study the concept of using young, green finger-jointed Eucalyptus grandis lumber was evaluated for possible application in roof truss structures while the timber is still in the green, unseasoned state. Drying will occur naturally while the lumber is fixed within the roof truss structure. The objectives of this study were (1) to investigate the strength and stiffness variation of the finger-jointed E. grandis product in both the green and dry state for different age and dimension lumber, (2) to investigate the variation in density, warp and checking in the lumber when dried in a simulated roof-space environment and (3) to evaluate the potential of this finger-jointed product as a component in roof truss structures. Green finger-jointed E. grandis lumber of ages 5, 11 and 18 years and dimensions 48×73?mm and 36×111?mm from Limpopo province were evaluated. The study showed that the young finger-jointed E. grandis timber had very good flexural, tensile parallel to grain, and shear properties in both the green and dry state. The mean and characteristic modulus of elasticity and modulus of rupture values of the finger-jointed E. grandis product were higher and the variation lower in comparison to currently used South African pine sources. The tensile perpendicular to grain and compression perpendicular to grain strength did not conform to SANS requirements for the lowest structural grade (S5). Both tree age and product dimension were sources for variation in the physical and strength properties. Based on the results from this study the concept of producing roof trusses from green, finger-jointed young E. grandis timber has potential.  相似文献   

13.
竹节对竹材力学强度影响的研究   总被引:9,自引:2,他引:9  
曾其蕴  李世红 《林业科学》1992,28(3):247-252
本文对毛竹和刚竹的带节材与不带节竹材的主要力学性质研究表明,带节竹材的抗弯强度、顺纹抗压、抗剪、抗拉强度和冲击韧性都有一定程度降低的趋向,但抗劈开强度和横纹抗拉强度却有明显提高。影响竹材力学强度的主要因素是维管束数量、维管束排列方向及维管束中纤维的力学强度,了解这些规律,对复合材料的结构仿生有重要参考作用。  相似文献   

14.
Curved laminated veneer lumber (LVL) is manufactured from glue-coated pieces of rotary-cut veneers assembled and pressed between molds. In this study, curved LVLs were produced from two fast-growing wood species such as massion pine (Pinus massoniana Lamb.) and poplar (Populus euramericana CV. I.) for use in furniture. In addition to the applicability of the two wood species used, the optimum technological conditions of curved LVL production with radiofrequency (RF) heating and the physical and mechanical properties of curved LVL were investigated. The results are as follows: (1) Curved LVL made from massion pine and fast-growing poplar shows excellent mechanical properties. These fast-growing wood species are suitable for curved LVL being used as furniture structural members. (2) The mechanical properties of curved LVL are affected by frequency, voltage, RF application time, and moisture content, with the RF application time and moisture content having more important effects on the mechanical properties than the frequency and the voltage. (3) The mechanical properties of curved LVL increase with a linear increase in the density of curved LVL.The abstract of this study was presented at the 9th Annual Meeting of the Chugoku Shikoku Branch of the Japan Wood Research Society, Tottori, October 4, 1997  相似文献   

15.
The mechanical properties of 613 small clear specimens of 35 species (11 ring-porous hardwoods, 19 diffuse-porous hardwoods, and 5 softwoods) were evaluated. The aim of the study was to examine indexes of wood quality that are easy to measure and that exhibit a high correlation with bending performance and hardness that are essential properties of hardwood products. The modulus of rigidity, dynamic modulus of elasticity, bending properties (modulus of elasticity, modulus of rupture, stress at the proportional limit, absorbed energy, Tetmajer’s modulus), dynamic energy absorption by an impact bending test, compressive strength parallel to the grain, shear strength, partial bearing strength, and Brinell’s hardness were measured. A high correlation was found between dynamic modulus of elasticity and static modulus of elasticity. Bending stress at the proportional limit was found to be approximately equivalent to the compressive strength parallel to the grain. Static energy absorption correlated with dynamic energy absorption. Tetmajer’s modulus was found to be closely related to the ratio of the initial stiffness within the elastic range to the secant modulus at the maximum load. A high correlation was observed between Brinell’s hardness and partial bearing strength. The difference in the regression coefficients obtained for these correlations between the species groups was small. Part of this study was presented at the All Division 5 Conference of IUFRO, Taipei, October 2007  相似文献   

16.
Abstract

A new testing method measuring the specific fracture energy of wood-based panels in Mode I is proposed. Three types of wood-based panels, i.e. oriented strand board (OSB), particleboard (PB) and medium density fibreboard (MDF) are investigated, using fracture energy and the industrial European standard method of internal bond strength according to EN 319. Double cantilever beam specimens are notched in the middle layer to introduce an initial crack. To apply tensile load perpendicular to the surface of the panels to open the crack in Mode I specimens were adhesively bonded to steel braces. Besides the calculation of the total fracture energy an advanced analysis of the load–displacement curve was also performed. Results of the fracture energy method were compared to internal bond strength (IB). Specimen shape is optimized for industrial purposes using double cantilever beams, while the determination of the fracture energy is performed by simple integration of the load–displacement curve. While IB showed a large scattering of data, the fracture energy test yielded statistically significant differences between the board types.  相似文献   

17.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

18.
The morphological, physical, and mechanical properties of the nonwood plant fiber bundles of ramie, pineapple, sansevieria, kenaf, abaca, sisal, and coconut fiber bundles were investigated. All fibers except those of coconut fiber had noncircular cross-sectional shapes. The crosssectional area of the fiber bundles was evaluated by an improved method using scanning electron microscope images. The coefficient factor defined as the ratio of the cross-sectional area determined by diameter measurement, to the cross-sectional area determined by image analysis was between 0.92 and 0.96 for all fibers. This indicated that the area determined by diameter measurement was available. The densities of the fiber bundles decreased with increasing diameters. The diameters of each fiber species had small variation of around 3.4%-9.8% within a specimen. The tensile strength and Young’s modulus of ramie, pineapple, and sansevieria fiber bundles showed excellent values in comparison with the other fibers. The tensile strength and Young’s modulus showed a decreasing trend with increasing diameter of fiber bundles.  相似文献   

19.
《Southern Forests》2013,75(3):223-234
The aims and objectives of this study were to investigate the potential to predict laminated veneer lumber (LVL) stiffness from wood properties measured on trees and logs, and determine variation in log, wood and veneer properties as a function of tree height and age. Log selections were made from trees in three stands that were planned for harvesting at 14, 20 and 21 years of age. Rotary peeled veneer recovery from the logs was on average 65%. After drying, Metriguard testing showed over 50% of the veneer had an estimated dynamic modulus of elasticity (MOEdyn) above 12 GPa, with 20% above 14 GPa, and that veneer from the second log by tree height had higher MOEdyn values. In visual assessment to the AS/NZS 2269.0:2012 Standard, no veneer could be utilised in a panels face or subface positions and the older-age stand provided almost four times the volume of usable veneer. Standing-tree acoustic wave velocity (AWV) explained a moderate amount of variance in log MOEdyn and Pearson correlation coefficients between the (Metriguard) veneer MOEdyn, log AWV, log MOEdyn and disc basic density were significant, positive and strong, with log AWV explaining most of the observed variance in log stiffness. A moderately strong and positive linear regression existed between log AWV and veneer MOEdyn, supporting the use of log AWV tools for the ranking of stiffness in fibre-grown plantation E. nitens logs. Mechanical strength testing of LVL studs extracted from panels manufactured from the trial’s veneer indicated they equalled, and for some tested parameters exceeded, the characteristic design strength values previously published by commercial LVL manufacturers for equivalent size pine products.  相似文献   

20.
The objectives of this work were to analyze the physical and mechanical properties of parallel strand lumber (PSL) made from Calcutta bamboo. Based on the surface characteristics (Ahmad and Kamke 2003) and physical and mechanical properties (Ahmad and Kamke 2005) observed in previous work, a prototype PSL from Calcutta bamboo was manufactured and tested in the laboratory. Physical properties determined were dimensional stability and water absorption. The mechanical tests carried out were in compression and bending. Ultimate stress, stress at proportional limit, and modulus of elasticity were determined and compared to structural composite lumber (SCL) from several timber species produced by other researchers and manufacturers in the United States. The PSL produced was also exposed to accelerated aging process in order to assess its durability under extreme condition. PSL produced in the laboratory was stable in dimension. The mechanical characteristics compare favorably to SCL produced in other studies and SCL products available in the United States. The accelerated aging process was found to reduce the bending strength but no significant difference was detected in bending stiffness, and compression strength and stiffness. This is a promising indication of the suitability of Calcutta bamboo as raw material for structural composite products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号