首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats.Study designRandomized, prospective, blinded, three period crossover experiment.AnimalsSix healthy adult cats weighing 4.1 ± 0.5 kg.MethodsBuprenorphine (0.02 mg kg?1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24 hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p < 0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics.ResultsTT increased above baseline from 15 to 480 minutes and at 30 and 60 minutes after IV and IM administration, respectively (p < 0.05). Maximum increase in TT (mean ± SD) was 9.3 ± 4.9 °C at 60 minutes (IV), 4.6 ± 2.8 °C at 45 minutes (IM) and 1.9 ± 1.9 °C at 60 minutes (SC). TT was significantly higher at 15, 60, 120 and 180 minutes, and at 15, 30, 45, 60 and 120 minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0 = 47.4 minutes) and receptor binding (kon = 0.011 mL ng?1 minute?1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff = 18.2 minutes).Conclusions and clinical relevanceIV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats.  相似文献   

2.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

3.
Pharmacokinetics of tobramycin in cats   总被引:1,自引:0,他引:1  
Tobramycin was administered to cats and its serum concentration vs time data were analyzed by use of a noncompartmental model. In the first experiment, 5 mg of tobramycin/kg of body weight was administered IV, IM, and then SC to 6 cats, 3 weeks apart. After IV administration, the mean +/- SD total body clearance of tobramycin was 2.21 +/- 0.59 ml/min/kg, and the apparent volume of distribution at steady state was 0.19 +/- 0.03 L/kg. The mean residence time was 90.5 +/- 16.2 minutes, with a harmonic mean serum half-life of 68.9 +/- 9.7 minutes. Blood urea nitrogen and serum creatinine concentrations were increased 3 weeks after the IV injection and also 3 weeks after the IM injection, which suggested possible renal damage. Moreover, large area under the curve values developed after IM and SC administrations, resulting in bioavailabilities of 159.5% and 189.9%, respectively, with no change in elimination rate. These results suggested a change in distribution, possibly caused by saturation of renal binding sites by residual tobramycin from the previous injection of 5 mg/kg. In experiment 2, 6 other cats were given 3 mg of tobramycin/kg by the same routes as before, but using a crossover design. Bioavailability after IM and SC administrations was 102.5% and 99.2%, respectively, indicating complete absorption of tobramycin. The BUN concentration increased in 3 cats, and serum creatinine concentration increased in 1 of these 3 cats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Nineteen cats were given 3 mg of gentamicin sulfate/kg of body weight by rapid IV, SC, or IM injection for baseline values. Serum concentration of gentamicin vs time data were analyzed using a noncompartmental model based on statistical moment theory. One week later, each cat was given 0.5 microgram of Escherichia coli endotoxin/kg, IV. After cats had an increase in rectal temperature of at least 1 C, 3 mg of gentamicin/kg was administered by the same route used the previous week. Serum concentration of gentamicin vs time data were analyzed, and pharmacokinetic values were compared with base-line values. For IV studies, the half-life (t1/2) of gentamicin and the mean residence time were significantly different (P less than 0.05) compared with base line, whereas the total body clearance and apparent volume of distribution at steady state were not. The harmonic mean +/- pseudo SD for the t1/2 of gentamicin after IV administration was 76.8 +/- 12.6 minutes for base line and was 65.2 +/- 12.2 minutes in the same cats given endotoxin. The t1/2 of gentamicin after SC administration was 74.6 +/- 6.2 minutes for base line and was 65.2 +/- 13.6 minutes in the same cats given endotoxin. After IM administration, the t1/2 of gentamicin was 60.3 +/- 10 minutes for base line and was 59.7 +/- 13.6 minutes in the same cats given endotoxin. After IV administration of gentamicin, the arithmetic mean +/- SD for the mean residence time was 102.4 +/- 16.1 minutes for base line vs 79.2 +/- 18.4 minutes in the same cats given endotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
OBJECTIVE-To compare the effect of oral administration of tramadol alone and with IV administration of butorphanol or hydromorphone on the minimum alveolar concentration (MAC) of sevoflurane in cats. DESIGN-Crossover study. ANIMALS-8 Healthy 3-year-old cats. PROCEDURES-Cats were anesthetized with sevoflurane in 100% oxygen. A standard tail clamp method was used to determine the MAC of sevoflurane following administration of tramadol (8.6 to 11.6 mg/kg [3.6 to 5.3 mg/lb], PO, 5 minutes before induction of anesthesia), butorphanol (0.4 mg/kg [0.18 mg/lb], IV, 30 minutes after induction), hydromorphone (0.1 mg/kg [0.04 mg/lb], IV, 30 minutes after induction), saline (0.9% NaCl) solution (0.05 mL/kg [0.023 mL/lb], IV, 30 minutes after induction), or tramadol with butorphanol or with hydromorphone (same doses and routes of administration). Naloxone (0.02 mg/kg [0.009 mg/lb], IV) was used to reverse the effects of treatments, and MACs were redetermined. RESULTS-Mean +/- SEM MACs for sevoflurane after administration of tramadol (1.48 +/- 0.20%), butorphanol (1.20 +/- 0.16%), hydromorphone (1.76 +/- 0.15%), tramadol and butorphanol (1.48 +/- 0.20%), and tramadol and hydromorphone (1.85 +/- 0.20%) were significantly less than those after administration of saline solution (2.45 +/- 0.22%). Naloxone reversed the reductions in MACs. CONCLUSIONS AND CLINICAL RELEVANCE-Administration of tramadol, butorphanol, or hydromorphone reduced the MAC of sevoflurane in cats, compared with that in cats treated with saline solution. The reductions detected were likely mediated by effects of the drugs on opioid receptors. An additional reduction in MAC was not detected when tramadol was administered with butorphanol or hydromorphone.  相似文献   

6.
OBJECTIVE: To assess whether administration of hydromorphone and, or ketamine are associated with post-anesthetic hyperthermia in cats undergoing routine surgery. STUDY DESIGN: Prospective clinical study. ANIMALS: Forty healthy, adult cats undergoing ovariohysterectomy (OVH), castration, or declaw surgery. MATERIALS AND METHODS: Each cat was assigned randomly to one of four groups (n = 10). For pre-anesthetic medication, all cats received subcutaneous (SC) glycopyrrolate (0.01 mg kg(-1)) and acepromazine (0.02 mg kg(-1)) and either hydromorphone (0.1 mg kg(-1) SC) or medetomidine (7.5 microg kg(-1) SC). Anesthesia was induced with either diazepam (0.1 mg kg(-1)) and ketamine (5 mg kg(-1)) or propofol (6 mg kg(-1) injected to effect). Group 1 (HDK) received hydromorphone and diazepam-ketamine. Group 2 (HP) received hydromorphone and propofol. Group 3 (MDK) received medetomidine and diazepam-ketamine. Group 4 (MP) received medetomidine and propofol. Rectal temperature was measured before drugs were given, at tracheal extubation and at hourly intervals for 5 hours thereafter. RESULTS: During the 5 hours after anesthesia and surgery, at least one cat in every group had a rectal temperature >39.2 degrees C (102.5 degrees F). The percentage of observations for which a cat's temperature exceeded its pre-anesthetic temperature in groups HDK, HP, MDK, and MP were 86%, 80%, 25%, and 34%, respectively. Maximum temperatures in groups HDK, HP, MDK, and MP were 41.6 degrees C (107.0 degrees F), 40.3 degrees C (104.2 degrees F), 39.2 degrees C (102.6 degrees F), and 40.1 degrees C (104.1 degrees F), respectively. By 5 hours after tracheal extubation there were no differences in temperature between the treatment groups. CONCLUSION: For up to 5 hours following anesthesia and surgery, cats might have body temperatures that exceed their pre-anesthesia body temperatures. The use of hydromorphone is associated with post-anesthetic hyperthermia. However, hyperthermia may occur when other drugs are used. CLINICAL RELEVANCE: Cats given hydromorphone should be closely monitored for hyperthermia following anesthesia and surgery.  相似文献   

7.
The purpose of the study was to assess the pharmacokinetics of liposome‐encapsulated (DPPC‐C) hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs. A total of eight healthy Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg were used. Dogs randomly received liposome encapsulated hydromorphone, 0.5 mg/kg IV (n = 6), 1.0 mg/kg (n = 6), 2.0 mg/kg (n = 6), or 3.0 mg/kg (n = 7) SC with a 14–28 day washout between trials. Blood was sampled at serial intervals after drug administration. Serum hydromorphone concentrations were measured using liquid chromatography with mass spectrometry. Serum concentrations of hydromorphone decreased rapidly after IV administration of the DPPC‐C formulation (half‐life = 0.52 h, volume of distribution = 12.47 L/kg, serum clearance = 128.97 mL/min/kg). The half‐life of hydromorphone after SC administration of DPPC‐C formulation at 1.0, 2.0, and 3.0 mg/kg was 5.22, 31.48, and 24.05 h, respectively. The maximum serum concentration normalized for dose (CMAX/D) ranged between 19.41–24.96 ng/mL occurring at 0.18–0.27 h. Serum hydromorphone concentrations fluctuated around 4.0 ng/mL from 6–72 h after 2.0 mg/kg and mean concentrations remained above 4 ng/mL for 96 h after 3.0 mg/kg DPPC‐C hydromorphone. Liposome‐encapsulated hydromorphone (DPPC‐C) administered SC to healthy dogs provided a sustained duration of serum hydromorphone concentrations.  相似文献   

8.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

9.
Buccal administration of buprenorphine is commonly used to treat pain in cats. It has been argued that absorption of buprenorphine through the buccal mucosa is high, in part due to its pKa of 8.24. Morphine, methadone, hydromorphone, and oxymorphone have a pKa between 8 and 9. This study characterized the bioavailability of these drugs following buccal administration to cats. Six healthy adult female spayed cats were used. Buccal pH was measured prior to drug administration. Morphine sulfate, 0.2 mg/kg IV or 0.5 mg/kg buccal; methadone hydrochloride, 0.3 mg/kg IV or 0.75 mg/kg buccal; hydromorphone hydrochloride, 0.1 mg/kg IV or 0.25 mg/kg buccal; or oxymorphone hydrochloride, 0.1 mg/kg IV or 0.25 mg/kg buccal were administered. All cats received all treatments. Arterial blood was sampled immediately prior to drug administration and at various times up to 8 h thereafter. Bioavailability was calculated as the ratio of the area under the time–concentration curve following buccal administration to that following IV administration, each indexed to the administered dose. Mean ± SE (range) bioavailability was 36.6 ± 5.2 (12.7–49.5), 44.2 ± 7.9 (18.7–70.5), 22.4 ± 6.9 (6.4–43.4), and 18.8 ± 2.0 (12.9–23.5)% for buccal administration of morphine, methadone, hydromorphone, and oxymorphone, respectively. Bioavailability of methadone was significantly higher than that of oxymorphone.  相似文献   

10.
OBJECTIVE: To describe the dose-related thermal antinociceptive effects of intravenous (i.v.) hydromorphone in cats. STUDY DESIGN: Randomized, blinded, crossover design. ANIMALS: Seven adult cats (3.5-7.4 kg), two spayed females, and five neutered males. METHODS: Hydromorphone (0.025, 0.05, or 0.1 mg kg(-1)) was administered i.v.. Skin temperature and thermal threshold were measured before and at selected time points to 720 minutes post-administration. Statistical analysis of mean thermal threshold and skin temperatures over time for each dose and between doses was by way of a split-plot model and post hoc Bonferroni t-tests. p < 0.05 was considered significant. RESULTS: A significant difference from baseline for mean thermal threshold was identified for the 0.05 mg kg(-1) dose (5-80 minutes, peak thermal threshold 46.9 +/- 6.2 degrees C) and 0.1 mg kg(-1) dose (5-200 minutes, peak thermal threshold 54.9 +/-0.2 degrees C). The thermal threshold was significantly greater after the 0.1 mg kg(-1) dose from 5 to 200 minutes compared to the 0.025 mg kg(-1) and 0.5 mg kg(-1) doses. The thermal threshold was significantly greater from 35 to 80 minutes for the 0.05 mg kg(-1) dose when compared with the 0.025 mg kg(-1) dose. Skin temperature was significantly increased from 35 to 140 minutes following the 0.1 mg kg(-1) dose. CONCLUSIONS: A dose-related antinociceptive effect was demonstrated for i.v. hydromorphone in cats. CLINICAL RELEVANCE: Hydromorphone at doses less than 0.1 mg kg(-1) has a modest antinociceptive effect and a short duration of action. At a dose of 0.1 mg kg(-1) i.v., onset of analgesia is rapid with a clinically useful duration of effect, but is associated with a rise in skin temperature.  相似文献   

11.
Healthy adult mixed-breed dogs, assigned to 2 groups of 6 dogs each, were given 3 mg of gentamicin sulfate/kg of body weight on 3 injection days 7 days apart. Group 1 was given gentamicin by rapid IV injection, by injection into the belly of the longissimus muscle at the first lumbar vertebrae (IM site 1), and by injection in the belly of the biceps femoris muscle (IM site 2). Group 2 was given gentamicin by rapid IV injection, by SC injection into the space over the cranial angle of the scapula on the midline (SC site 1), and by SC injection just caudal to the crest of the ilium (SC site 2). Pharmacokinetic values (mean +/- SD) from 12 dogs given gentamicin IV were 54.4 +/- 15.4 minutes for the effective half life, 2.29 +/- 0.48 ml/kg/min for clearance, and 172 +/- 25.4 ml/kg for volume of distribution at steady state. Bioavailability (93.92 to 96.65%) and peak plasma gentamicin concentration (9.43 to 10.89 micrograms/ml) were independent of injection site, but time to peak concentration when gentamicin was given at SC site 2 (43.33 minutes) was significantly (P less than 0.05) longer than that when gentamicin was given at IM site 1 (27.50 minutes). Absorption half-life was shorter after injections were given at both IM sites (8.9 and 9.8 minutes) than after injection was given at SC site 2 (18 minutes).  相似文献   

12.
ObjectiveTo evaluate the thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats.Study designRandomized, blinded, placebo-controlled crossover study design.AnimalsA total of six purpose-bred, adult female ovariohysterectomized Domestic Short Hair cats.MethodsCats were allocated into three treatments each consisting of two injections, subcutaneous then intravenous (IV) administration, 2 hours apart: treatment SS, two injections of 0.9% saline; treatment BS, buprenorphine (0.24 mg kg–1, 1.8 mg mL–1) and saline; and treatment BH, buprenorphine (0.24 mg kg–1) and hydromorphone (0.1 mg kg–1). Skin temperature (ST) and thermal threshold (TT) were recorded before (baseline) and for 24 hours following first injection. TT data were analyzed using mixed linear models and a Benjamini–Hochberg sequential adjustment procedure (p < 0.05).ResultsThere were no significant differences among treatments for baseline ST and TT values, treatment SS over time and between treatments BS and BH. Compared with baseline, TT was significantly increased at all time points in treatments BH and BS except at 2 hours in treatment BS. TT was significantly higher than SS at 3–18 hours and 4–12 hours for treatments BS and BH, respectively. Maximal increases in TT were 47.5 °C at 2 hours, 53.9 °C at 3 hours and 52.4 °C at 6 hours in treatments SS, BS and BH, respectively.Conclusions and clinical relevanceAdministration of IV hydromorphone following high-concentration buprenorphine provided no additional antinociception and decreased the duration of effect when compared with high-concentration buprenorphine alone. Alternative analgesics should be considered if additional analgesia is required after administration of high-concentration buprenorphine.  相似文献   

13.
The goal of this study was to assess the antinociceptive activity of a single dose of hydromorphone or butorphanol and to examine the effect of their coadministration on thermal thresholds in cats. Thermal thresholds were measured after IM administration of hydromorphone (0.1 mg/kg), butorphanol (0.4 mg/kg), a combination of butorphanol and hydromorphone (0.4 and 0.1 mg/kg), or saline to each of 6 cats in a randomized, blinded, crossover study design. There were at least 12 days between treatments. Thermal thresholds were measured by a thorax-mounted thermal threshold-testing device specifically developed for cats. Thermal thresholds were measured before treatment, at varying intervals to 12 hours, and at 24 hours after treatments. Data were analyzed by an analysis of variance with a repeat factor of time. Dysphoria was associated with butorphanol administration but not with hydromorphone or hydromorphone-butorphanol combined administration. Vomiting was seen with hydromorphone but not with butorphanol or hydromorphone-butorphanol combined. The control treatment group was stable over time (P = .22; mean threshold, 40.1 degrees C). Thresholds were significantly (P < .05) higher than the control treatment between 15 and 165 minutes for butorphanol, between 15 and 345 minutes for hydromorphone, and between 15 and 540 minutes for hydromorphone-butorphanol combined. The addition of butorphanol to hydromorphone decreased the intensity of antinociception during the 1st 2 hours but extended the duration of observable antinociception from 5.75 to 9 hours. The present study suggests that the combination of butorphanol and a pure OP3 (mu) receptor agonist clinically does not produce increased analgesia and indeed may result in decreased analgesia.  相似文献   

14.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

15.
[目的]探究盐酸赛拉嗪对家兔的麻醉效果。[方法]选取新西兰兔12只,随机分为耳缘静脉注射(IV)保定组、臀部肌肉注射(IM)保定组、IV未保定组、IM未保定组,每组3只;按照不同给药途径给予家兔3 mg/(kg·BW)盐酸赛拉嗪,给药后保定处理方式为仰卧保定四肢及头部,未保定的家兔自然俯卧;第1次给药后30 min,再以相同给药途径给予家兔2 mg/(kg·BW)盐酸赛拉嗪;于给药前10 min以及第2次给药后5、30、60 min监测家兔基本生命体征及麻醉反应指标。[结果]给予盐酸赛拉嗪后不同时间,4组家兔呼吸频率和脉搏次数与给药前相比均显著(P<0.05)或极显著(P<0.01)降低;给药后60 min IM保定组脉搏次数最低,显著(P<0.05)低于IV未保定组。4组家兔给药后30 min直肠温度与给药前相比均显著(P<0.05)降低;除IV未保定组外,给药后60 min各组家兔直肠温度与给药前相比极显著(P<0.01)降低;给药后60 min IM保定组的直肠温度最低,极显著(P<0.01)低于IV未保定组。IM保定组家兔给药后不同时间均未出现翻正反射、睫毛反射和疼痛反射;IV未保定组在给药后60 min,3只家兔均出现翻正反射、睫毛反射和疼痛反射。IM保定组家兔的麻醉期最长,显著(P<0.05)长于IV保定组,极显著(P<0.01)长于IV未保定组和IM未保定组。[结论]用盐酸赛拉嗪麻醉家兔时应使用IM给药途径,推荐首次给药剂量为3 mg/(kg·BW),之后30 min再补充2 mg/(kg·BW),给药后应即刻保定确实。  相似文献   

16.
Cyadox (CYX) is a synthetic antibacterial agent of quinoxaline with much lower toxic effects. A safety criterion of CYX for clinical use was established by studying the pharmacokinetics and metabolism of CYX after oral (PO), intramuscular (IM), and intravenous (IV) administration. CYX was administered in six domesticated cats (three males and three females) by PO (40 mg/kg.b.w.), IM (10 mg/kg.b.w.), and IV (10 mg/kg.b.w.) routes in a crossover pattern. Highly sensitive liquid chromatography with ultraviolet detection (HPLC-UV) method was developed for detection of CYX and its metabolites present in plasma, urine, and feces. The bioavailability of CYX after PO and IM routes was 4.37% and 84.4%. The area under curves (AUC), mean resident time (MRT), and clearance (CL) of CYX and its metabolites revealed that CYX quickly metabolized into its metabolites. The total recovery of CYX and its main metabolites was >60% after each route. PO delivery suggesting first pass effect in cats that might make this route suitable for intestinal infection and IM injection could be better choice for systemic infections. Less ability of glucuronidation did not show any impact on CYX metabolism. The findings of present study provide detailed information for evaluation of CYX.  相似文献   

17.
18.
ObjectiveTo assess the pharmacokinetics of hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs.Study designRandomized experimental trial.AnimalsSeven healthy male neutered Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg.MethodsThe study was a randomized Latin square block design. Dogs were randomly assigned to receive hydromorphone hydrochloride 0.1 mg kg−1 or 0.5 mg kg−1 IV (n = 4 dogs) or 0.1 mg kg−1 (n = 6) or 0.5 mg kg−1 (n = 5) SC on separate occasions with a minimum 14-day washout between experiments. Blood was sampled via a vascular access port at serial intervals after drug administration. Serum was analyzed by mass spectrometry. Pharmacokinetic parameters were determined with computer software.ResultsSerum concentrations of hydromorphone decreased quickly after both routes of administration of either dose. The serum half-life, clearance, and volume of distribution after IV hydromorphone at 0.1 mg kg−1 were 0.57 hours (geometric mean), 106.28 mL minute−1 kg−1, and 5.35 L kg−1, and at 0.5 mg kg−1 were 1.00 hour, 60.30 mL minute−1 kg−1, and 5.23 L kg−1, respectively. The serum half-life after SC hydromorphone at 0.1 mg kg−1 and 0.5 mg kg−1 was 0.66 hours and 1.11 hours, respectively.Conclusions and clinical relevanceHydromorphone has a short half-life, suggesting that frequent dosing intervals are needed. Based on pharmacokinetic parameters calculated in this study, 0.1 mg kg−1 IV or SC q 2 hours or a constant rate infusion of hydromorphone at 0.03 mg kg−1 hour−1 are suggested for future studies to assess the analgesic effect of hydromorphone.  相似文献   

19.
The pharmacokinetics of difloxacin were studied following intravenous (IV), subcutaneous (SC) and oral administration of 5mg/kg to healthy white New Zealand rabbits (n = 6). Difloxacin concentrations were determined by HPLC assay with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of difloxacin against different strains of S. aureus from different european countries was performed in order to compute the main pharmacodynamic surrogate markers. The plasma difloxacin clearance (Cl) for the IV route was (mean +/- SD) 0.41 +/- 0.05 L/h kg. The steady-state volume of distribution (V(ss)) was 1.95 +/- 0.17 L/kg. The terminal half-life [Formula: see text] was (mean+/-SD) 4.19+/-0.34 h, 7.53 +/- 1.32 h and 8.00 +/- 0.45 h after IV, IM and oral, respectively. From this data, it seems that a 5 mg/kg dose difloxacin would be effective by SC and oral routes in rabbits against bacterial isolates with MIC0.1 microg/mL.  相似文献   

20.
This study investigated the analgesic and systemic effects of intramuscular (IM) versus epidural (EP) administration of tramadol as an adjunct to EP injection of lidocaine in cats. Six healthy, domestic, shorthair female cats underwent general anesthesia. A prospective, randomized, crossover trial was then conducted with each cat receiving the following 3 treatments: EP injection of 2% lidocaine [LEP; 3.0 mg/kg body weight (BW)]; EP injection of a combination of lidocaine and 5% tramadol (LTEP; 3.0 and 2.0 mg/kg BW, respectively); or EP injection of lidocaine and IM injection of tramadol (LEPTIM; 3.0 and 2.0 mg/kg BW, respectively). Systemic effects, spread and duration of analgesia, behavior, and motor blockade were determined before treatment and at predetermined intervals afterwards. The duration of analgesia was 120 ± 31 min for LTEP, 71 ± 17 min for LEPTIM, and 53 ± 6 min for LEP (P < 0.05; mean ± SD). The cranial spread of analgesia obtained with LTEP was similar to that with LEP or LEPTIM, extending to dermatomic region T13–L1. Complete motor blockade was similar for the 3 treatments. It was concluded that tramadol produces similar side effects in cats after either EP or IM administration. Our findings indicate that EP and IM tramadol (2 mg/kg BW) with EP lidocaine produce satisfactory analgesia in cats. As an adjunct to lidocaine, EP tramadol provides a longer duration of analgesia than IM administration. The adverse effects produced by EP and IM administration of tramadol were not different. Further studies are needed to determine whether EP administration of tramadol could play a role in managing postoperative pain in cats when co-administered with lidocaine after painful surgical procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号