首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
预切种式宽窄行甘蔗种植机单辊排种系统设计与试验   总被引:2,自引:0,他引:2  
针对目前预切种式宽窄行甘蔗种植机排种系统存在排种不均、合格率低、漏种率高、耗种多、卡种堵塞严重等问题,通过ADAMS进行仿真虚拟试验分析及试验研究,设计了一种由转向导流有序集蔗机构和单辊排种器构成的甘蔗预切种排种系统。通过自行搭建的试验平台,研究了转向导流有序集蔗机构和单辊排种器的集蔗箱弹性控流板结构形式、侧板夹角及排种辊转速等参数对排种性能的影响。研究结果表明:自动转向导流有序集蔗合格率为95.1%;单辊排种器的集蔗箱弹性控流板结构对排种合格率具有极显著影响,侧板夹角和排种辊转速对排种合格率具有显著影响;单辊排种器优化参数组合为:两段圆弧式集蔗箱弹性控流板结构、集蔗箱两侧板夹角为105°、排种辊转速为6r/min(理论排种速度:0.83s/根)。最后进行了优化组合参数的验证试验,结果表明:排种平均合格率为91.0%、平均漏种率为4.5%、平均堵塞率为0.5%,排种均匀性显著提高。  相似文献   

2.
甘蔗横向种植机补种系统设计与试验   总被引:1,自引:0,他引:1  
针对甘蔗横向种植机在种植过程中出现的漏播问题,设计了一套基于51单片机的甘蔗实时补种系统。通过对充种、储种、供种、护种及投种过程进行运动学和动力学的仿真分析,确定了影响补种效果的主要因素,设计了补种系统的关键部件。该系统采用AT89C52单片机、3套对射型激光传感器分别对漏种、补种箱和储蔗槽中蔗种余量不足的情况进行信号采集,进行漏种计数显示和实现蔗种余量不足时的报警,步进电机作为动力源,驱动辊耙转动完成补种过程。选取行进速度和补种辊槽数为试验因素,以补种成功率和重置率为补种性能指标,进行了二因素五水平的正交旋转组合试验。结果表明,行进速度对补种成功率的影响极显著,补种辊槽数对补种成功率的影响极显著;利用Excel软件进行了二次回归方程分析,得出当行进速度为3 km/h、补种辊槽数为10个时,补种成功率达到93.97%,重置率为1.69%。设计的实时补种系统性能稳定可靠,解决了播种器工作过程中的漏种问题。  相似文献   

3.
免耕播种机漏播补偿系统设计与试验   总被引:3,自引:0,他引:3  
针对免耕播种机作业时存在漏播问题,设计了一种漏播自动补偿系统,建立了补偿装置驱动的数学模型,应用滑模变结构控制算法设计了补偿系统控制器,并对补偿系统的动态响应性能进行了仿真分析。通过补种控制算法,确定了补种机构与主排种器的距离S和离地高度H,得到了补种排种盘转速n和播种机行进速度v_m、粒距L_l之间的关系曲线,对排种器安装高度H、粒距L_l、传送带速度v_m进行了二次回归正交试验,验证了漏播补偿系统的补种性能。台架试验的最佳工况组合为,补种排种器安装高度15.33 cm、粒距25.16 cm、传送带速度3.52 km/h时,补种成功率可达96.5%。田间试验表明,安装漏播补偿系统后,免耕播种机播种合格率均值为98.72%,有效提高了播种质量。  相似文献   

4.
为提高马铃薯智能排种机的排种效率,降低作业人员的劳动强度,进一步提高马铃薯出芽及收获产量,对智能排种机的补种系统进行了设计。在智能排种机结构组成及工作原理基础上,建立马铃薯运动学参数模型,并加装补种装置,主要包括声光传感器、步进电机及报警装置等。给定合理的补种控制程序,进行试验,结果表明:设计的智能排种机补种系统补种合格率达97.5%以上,漏种指数试验平均值为1.1%,重种指数试验平均值为1.3%,各关键参数指标符合设计要求。该优化试验可为马铃薯智能排种机其他关键装置性能提升提供参考。  相似文献   

5.
整秆式甘蔗收获机蔗叶分离机构设计与试验   总被引:1,自引:0,他引:1  
为了进一步降低整秆式甘蔗收获机的含杂率,满足糖厂对机械化收割甘蔗的含杂率要求,结合甘蔗在蔗叶分离过程中的受力分析,对甘蔗起主要支撑作用的剥叶辊、输出辊及除杂辊进行布局安装,避开了蔗叶分布范围,以利于实现较高的除杂率。通过在试验平台上进行的正交试验研究,得出了该蔗叶分离机构的较优参数组合:刷片形状为20mm梳齿型,除杂辊与甘蔗交错深度0mm,除杂辊转速140 r/min。试验结果表明:此蔗叶分离机构具有较好的蔗叶分离效果,从而验证了蔗叶分离机构的可行性。  相似文献   

6.
为了研究甘蔗收获机在收获新植蔗和宿根蔗时的作业性能差别,以4GQ-1C型履带式甘蔗收获机为研究机型进行了对比试验。收获机以相同作业参数收获两种不同状态下的甘蔗,分别测定收获机的性能指标。试验结果表明,收获新植蔗时,宿根破头率为4.69%,相比宿根蔗(6.33%)低25.90%;总损失率为2.11%,相比宿根蔗(3.38%)低37.57%;蔗段合格率为96.80%,相比宿根蔗(94.35%)高2.60%;未剥净率为0.18%,相比宿根蔗(0.26%)低30.77%;含杂率为4.83%,相比宿根蔗(6.19%)低21.97%。在收获新植蔗时,作业性能在总体上优于宿根蔗,因此,在收获宿根蔗时可以适当调整收获机各项作业参数,以达到更好的收获效果。  相似文献   

7.
小麦小区播种机排种控制系统设计与试验   总被引:4,自引:0,他引:4  
为了提高小区播种机自动化水平,解决传统小区播种机械作业参数不易调节等问题,设计了一种基于STM32的小麦小区播种机排种控制系统。该系统主要由Android终端、STM32主控制系统、存种筒提升控制系统、锥体格盘控制系统以及分种器控制系统等组成,确定存种筒延迟落下时间,分别建立步进电机和直流电机调速模型,设计人机交互界面进行作业参数设置,实现了小区排种作业参数与实际作业需求的快速匹配。搭建室内试验台,以锥体格盘转速、分种器转速为试验因素,以行间均匀性变异系数为评价指标进行试验。试验结果表明,锥体格盘转速、分种器转速以及两者之间的交互作用对行间均匀性均有非常显著的影响;当锥体格盘转速为4 r/min、分种器转速为1 250 r/min时,行间均匀性变异系数均值为4. 53%,行间均匀性较好,且籽粒破碎率较低。该系统实现了小区排种作业精确控制,为小区播种的智能化控制提供了技术支撑。  相似文献   

8.
设计了一种苔麸播种机气流输送式排种系统,该系统主要由排种器、风送输种管、分配器和风机等关键部件组成。对排种器、风送输种管和分配器进行理论分析与设计,得到关键参数模型和理论值,完成风机选型,搭建了气流输送式排种系统试验平台。采用二次回归通用旋转组合设计试验,以风送输种管进口风速和播种量为影响因素,以总排种量稳定性变异系数和各行排种量一致性变异系数为响应指标,对气流输送式排种系统进行台架试验,运用Design-Expert软件对试验数据进行方差分析、响应面分析,得到最优工作参数组合:风速25.42m/s,播种量15kg/hm2。最优参数组合试验结果表明,各行排种量一致性变异系数4.96%,总排种量稳定性变系数0.98%,试验值与理论优化值相对误差小于4.2%,种子破损率0.12%,排种均匀性变异系数20.4%,满足标准和农艺要求。  相似文献   

9.
为解决现有对置斜盘有机肥侧抛装置在抛撒时存在的近处肥料堆积与局部起垄问题,结合侧抛装置各部件作用及工作原理,在理论分析的基础上设计一种对称螺旋叶片辅助辊轮,并优化其关键结构参数和作业参数,明确了其与主抛撒部件圆盘的空间位置关系。利用EDEM软件先后开展了单因素与响应面仿真试验,研究了辊轮转速、螺旋角和叶片数对均匀度变异系数和1 m内肥料占比的影响,优化后得到了最优参数组合。仿真结果表明,辅助辊轮工作时的最优参数组合为辊轮转速2 238 r/min、螺旋角42.70°、叶片数4,均匀度变异系数24.45%、1 m内肥料占比24.96%,且以该参数组合进行仿真的结果优于原辊轮最优参数仿真结果;设计的辅助辊轮样机试验结果为均匀度变异系数25.46%、1 m内肥料占比25.65%,相较于原辅助辊轮的46.77%与65.94%有了很大改善,配合主盘共同作用时抛撒均匀性好,无堆积和起垄现象。研究表明:对称螺旋叶片可有效修正肥料颗粒运动方向,使主盘集中的非受控肥料向两侧分散,与主盘及其他辅助部件联合作用下大幅提高了抛撒性能。  相似文献   

10.
勺链式马铃薯排种器自补种系统设计与试验   总被引:5,自引:0,他引:5  
针对勺链式马铃薯排种器普遍存在的漏种问题,提出了一种基于电容值精确测量技术的漏种检测方法,设计了电容式漏种检测传感器,以及以PLC为核心的自补种系统,实现了该系统在马铃薯种植机上的应用,并试验研究了该系统的补种性能。试验结果表明:排种速度为0.3~0.7m/s时,原始漏种率为7%~11.3%,排种株距误差率为3.3%~9.1%;经自补种系统补偿后,最终漏种率为1.1%~1.75%,补种株距误差率为7.6%~16.9%;在试验范围内,随排种速度增大,补种成功率变化不大,平均为84.6%。设计的电容式漏种检测传感器检测可靠,自补种系统补偿效果显著,补种株距精度满足马铃薯种植要求。  相似文献   

11.
针对目前精密播种装置在长时间的播种中容易出现吸嘴被堵塞、播种合格率降低等问题,设计了一种气吸振动滚筒式防堵塞精密播种装置。该装置由滚筒装置、落种装置、振动种盘及加种箱等组成,利用振动种盘振动使其内的种子群做"沸腾"运动;带有负压的吸嘴将种子吸附并携带种子进入排种区,利用重力和正压进行排种;并通过安装在滚筒装置中的导针以实现清理吸嘴中的杂物,可有效防止播种过程中吸嘴堵塞,有利于播种装置实现精量、低伤种率的播种需求。在播种前向加种箱中加入适量的种子,可实现自动精量均匀加种,播种装置加种过程对种子损伤率小,加种效率高,可实现长时间连续播种的需求,播种工作效率可达到225盘/h以上。  相似文献   

12.
为了解决针对型孔轮式排种器播量调节困难的问题,在偏心轮型孔轮式排种器的基础上,设计了一种由型孔轮和调节环(舌)组成的变容量型孔轮式排种器,以排种器的转速、调节舌类型、播量调节档位、行进速度、调节舌宽度为变量对油菜种子进行了单因素和多因素试验。试验结果表明:影响排种均匀性、各行排量一致性和种子破碎率的主要因素为排种器的转速、调节舌类型和型孔大小。变容量型孔轮式排种器的转速以30~50 r/min为宜,调节舌类型凹圆头优于平头,型孔长度增大对提高排种均匀性和各行排量一致性及降低破碎率有利。在所设计的结构尺寸条件下,该排种器适应于各类小粒度种子的条播。  相似文献   

13.
针对小麦播种时发生地轮传动失效而造成漏播和播量不均等问题,设计了一种电控小麦播种系统。系统工作时能够结合设置的播种参数和检测的作业速度信号获得排种器的理论转速,并通过采集驱动器的脉冲输出频率计算出排种器的实时转速,将理论转速与实际转速形成的偏差e及偏差变化率ec作为输入变量,利用模糊PID自整定控制器进行电机转速的精准控制,使排种器到达目标转速,从而提高播种精度。室内试验结果表明:在中速及中高速状态下,小麦播种机电控系统的性能最为稳定,平均偏差在2.5%以内,控制精度为1.49%,并求得排种器在不同工作长度下排种量与转速的函数关系。田间试验结果表明:应用本电控系统进行田间小麦播种作业时,小麦播种机的总排种量变异系数为1.14%,各行排种量变异系数为2.89%,播种均匀性变异系数为5.64%,播深合格率为90%,电控播种系统能有效地提高小麦播种机的播种均匀性。  相似文献   

14.
针对目前振动式水稻育秧盘低播量精量排种器存在匀种均匀性差、难以提供单列稳定种子流的问题,设计了一种压电振动式匀种装置。通过对压电振子振动原理、振动板动力学和水稻种子转向等分析,确定了各部件的结构参数。进行振动板结构参数优化设计,以储种盒深度、转向槽角度以及振动方向角为试验因素,结合Box-Behnken试验方案进行优化,试验结果表明转向槽角度、储种盒深度、振动方向角和转向槽角度交互作用对试验结果影响显著,当储种盒深度为8mm、转向槽角度为49°、振动方向角为29°时,种子均匀性变异系数为17.91%。通过台架试验测定振动板加速度,确定输入电压与振幅之间的关系。最优结构参数下振动板匀种试验结果表明,匀种均匀性变异系数、播种合格率和漏播率分别为18.20%、94.65%和0.67%。不同匀种速度下播种性能试验结果表明,当工作电压为130~180V时,其播种合格率均不小于94.17%,漏播率均不大于0.83%。不同水稻品种适应性试验结果表明,在工作电压130、150、170V下,其播种合格率均不小于94.17%,漏播率均不大于1.0%,满足超级杂交水稻精量化育秧播种要求。  相似文献   

15.
温室大棚电驱气力式胡萝卜播种机设计与试验   总被引:1,自引:0,他引:1  
目前能适应设施大棚种植条件的小型播种机多采用窝眼轮式排种器,播种精度低,播种质量无法实时监测。小型气力式播种机需要配置气力式排种器和风机,存在动力系统设计困难、排种稳定性差、整机结构复杂、笨重等设计难题。本文基于设计的气吸式排种器,设计了叉形分种器,实现窄行距精密播种作业;确定油电混合动力系统,排种器和风机采用电驱方式,排种稳定性得到了提高。设计了基于旋转编码器测速的电驱式胡萝卜播种机控制系统,该系统以PLC为主控制器,根据旋转编码器采集的前进速度信息实时调节排种器转速,实现排种转速与播种机前进速度实时匹配。基于对射式矩阵光纤传感器,开发了播种质量监测系统,解决了小粒径种子的监测问题。通过试验表明,续航时间为10h,计数相对误差小于等于4.6%,型孔堵塞时能发出警报提醒;播种株距合格率大于93.7%、漏播率小于等于3.9%、重播率小于2.4%,漏播率检测误差小于8.4%,试验结果符合国家相关标准要求及胡萝卜种植农艺要求。  相似文献   

16.
轮勺式大蒜单粒取种装置设计与试验   总被引:2,自引:0,他引:2  
针对因大蒜颗粒大、形状不规则和表面粗糙而造成漏播及重播率高的问题,设计了一种轮勺式大蒜单粒取种装置,该装置主要由取种勺、取种轮、驱动电机、支架、种箱等组成。对取种区、输种区和排种区的大蒜分别进行了受力分析,阐述了轮勺式大蒜单粒取种装置的原理,通过离散元仿真软件对取种勺及取种轮的结构形状进行了对比优化,确定了取种勺及取种轮的最优结构,采用数理统计的方法确定了取种勺的尺寸区间。以取种勺的半径、长度和取种轮转速为试验因素,以漏充率和合格率为响应指标进行了正交回归试验,建立了漏充率和合格率的回归模型,对回归模型进行了参数优化。最优参数组合为取种勺半径16. 30 mm、取种勺长度38. 50 mm、取种轮转速10. 0 r/min,在最优参数组合下进行了台架试验,得漏充率5. 50%,合格率91. 10%,与回归模型预测结果基本一致。  相似文献   

17.
针对超级稻育秧播种环节振动式排种器匀种性能差,难以实现精量播种的问题,设计一种分体组合振动式精量播种匀种装置,并提出了一种基于图像识别的振动匀种控制方法。对振动板关键结构参数:储种盒深度和转向槽角度进行匀种性能单因素离散元仿真分析,结果表明:输送阶段不同时间和空间匀种均匀性变异系数和振动板出口处供种均匀性变异系数随储种盒深度增大而增大,随转向槽角度增大先减小后增大,并确定储种盒深度和转向槽角度分别为12 mm和48°。设计并搭建了种子流图像检测与控制系统,压电振动单体和匀种单元图像检测和整流验证试验表明,当检测到图像中白色低像素占比低于20%,经整流后,白色像素占比可满足设计要求。对分体组合振动式播种匀种装置进行不同匀种电压和具有不同长宽比的3种超级稻品种进行播种性能试验。试验结果表明,当工作电压为150~200 V时,其播种合格率不小于93.47%,漏播率不大于1.00%;3种水稻种子播种合格率均不小于94.17%,漏播率不大于0.67%。该装置能够满足超级稻精量播种要求,且对不同超级稻种子具有较好的适应性。  相似文献   

18.
针对目前没有干热处理专用装备,用普通烘箱对种子干热处理时温度准确性差、均匀性低、灭菌不彻底等问题,采用均匀加热、热风循环、智能控制技术,研发种子干热处理装备,主要由箱体、托盘车、加热系统和控制系统等组成。通过优化结构,使得气流和温度分布均匀,保证种子均匀受热。控制系统可按不同种子的干热温度—时间曲线自动处理,通过PID精准调节加热功率,实现温度波动小,均匀度高,湿度可控,可设置16段温度、存储10种处理工艺。测试结果表明,温度控制精度高,恒温时温度波动小,升温和降温时反应快、超调量小,在100 ℃时温度均匀度为1.34 ℃,温度波动度为0.15 ℃,可彻底灭菌并能保持种子活性,满足种子干热处理的需求。  相似文献   

19.
花生气吸滚筒式穴播器分种盘设计与试验   总被引:1,自引:0,他引:1  
针对花生气吸滚筒式穴播器因一次投种性能不稳定造成单粒率低的问题,通过在气吸滚筒式穴播器的取种盘和二次投种机构之间增设分种盘,将种子限定在一个较小的齿形空间内,并拨动种子沿着预定轨道运动,提高了气吸滚筒式穴播器投种的准确性和精度。设计并分析了分种盘的分种齿齿形和分种盘与取种盘的位置关系,确定了分种盘结构和位置参数。借助DEM-CFD耦合方法研究了气吸滚筒式穴播器的工作过程,分析了携种区种子的运动轨迹,阐明了漏播和重播产生机理。以单粒率、漏播率和重播率为评价指标进行三因素二次旋转正交组合试验,分析了齿形方向角、安装角、作业速度对投种性能的影响,结果表明:当齿形方向角为-4.55°、安装角为14.99°和作业速度为4.01 km/h时,气吸滚筒式穴播器的排种性能最优,此时单粒率为94.99%,漏播率为2.49%,重播率为2.52%。以最优组合为基础进行田间试验,当作业速度为3.51~4.51 km/h时,试验结果满足花生单粒精量播种机械技术要求,且安装分种盘比未安装分种盘的单粒率提升超过1.46个百分点,排种优势明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号