首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six healthy adult horses (5 mares and 1 stallion) were given a single dose of acetylsalicylic acid (ASA), 20 mg/kg of body weight, by intravenous (IV), rectal, and intragastric (IG) routes. Serial blood samples were collected via jugular venipuncture over a 36-h period, and plasma ASA and salicylic acid (SA) concentrations were determined by high-performance liquid chromatography. After IV administration, the mean elimination rate constant of ASA (± the standard error of the mean) was 1.32 ± 0.09 hl, the mean elimination half-life was 0.53 ± 0.04 h, the area under the plasma concentration-versus-time curve (AUC) was 2555 ± 98 μg · min/mL, the plasma clearance was 472 ± 18.9 mL/h/kg, and the volume of distribution at steady state was 0.22 ± 0.01 L/kg. After rectal administration, the plasma concentration of ASA peaked at 5.05 ± 0.80 μg/mL at 0.33 h, then decreased to undetectable levels by 4 h; the plasma concentration of SA peaked at 17.39 ± 5.46 μg/mL at 2 h, then decreased to 1.92 ± 0.25 μg/mL by 36 h. After rectal administration, the AUC for ASA was 439.4 ± 94.55 μg · min/mL and the bioavailability was 0.17 ± 0.037. After IG administration, the plasma concentration of ASA peaked at 1.26 ± 0.10 μg/mL at 0.67 h, then declined to 0.37 ± 0.37 μg/mL by 36 h; the plasma concentration of SA peaked at 23.90 ± 4.94 μg/mL at 4 h and decreased to 0.85 ± 0.31 μg/mL by 36 h. After IG administration, the AUC for ASA was 146.70 ± 24.90 μg · min/mL and the bioavailability was 0.059 ± 0.013. Administration of a single rectal dose of ASA of 20 mg/kg to horses results in higher peak plasma ASA concentrations and greater bioavailability than the same dose given IG. Plasma ASA concentrations after rectal administration should be sufficient to inhibit platelet thromboxane production, and doses lower than those suggested for IG administration may be adequate.  相似文献   

2.
The objective of this study was to determine the effects of propofol on the minimum alveolar concentration of sevoflurane needed to prevent motor movement (MACNM) in dogs subjected to a noxious stimulus using randomized crossover design. Six, healthy, adult beagles (9.2 ± 1.3 kg) were used. Dogs were anesthetized with sevoflurane on 3 occasions, at weekly intervals, and baseline MACNM (MACNM-B) was determined on each occasion. Propofol treatments were administered as loading dose (LD) and constant rate infusion (CRI) as follows: Treatment 1 (T1) was 2 mg/kg body weight (BW) and 4.5 mg/kg BW per hour; T2 was 4 mg/kg BW and 9 mg/kg BW per hour; T3 was 8 mg/kg BW and 18 mg/kg BW per hour, respectively. Treatment MACNM (MACNM-T) determination was initiated 60 min after the start of the CRI. Two venous blood samples were collected and combined at each MACNM-T determination for measurement of blood propofol concentration using high-performance liquid chromatography method (HPLC). Data were analyzed using a mixed-model ANOVA and are presented as least square means (LSM) ± standard error of means (SEM).Propofol infusions in the range of 4.5 to 18 mg/kg BW per hour resulted in mean blood concentrations between 1.3 and 4.4 μg/mL, and decreased (P < 0.05) sevoflurane MACNM in a concentration-dependent manner. The percentage decrease in MACNM was 20.5%, 43.0%, and 68.3%, with corresponding blood propofol concentrations of 1.3 ± 0.3 μg/mL, 2.5 ± 0.3 μg/mL, and 4.4 ± 0.3 μg/mL, for T1, T2, and T3, respectively. Venous blood propofol concentrations were strongly correlated (r = 0.855, P < 0.0001) with the decrease in MACNM. In dogs, propofol decreased the sevoflurane MACNM in a concentration-dependent manner.  相似文献   

3.

Background

Levetiracetam is used to manage status epilepticus (SE) and cluster seizures (CS) in humans. The drug might be absorbed after rectal administration and could offer a practical adjunct to rectal administration of diazepam in managing SE and CS.

Hypothesis

Levetiracetam is rapidly absorbed after rectal administration in dogs and maintains target serum concentrations for at least 9 hours.

Animals

Six healthy privately owned dogs between 2 and 6 years of age and weighing 10–20 kg.

Methods

Levetiracetam (40 mg/kg) was administered rectally and blood samples were obtained immediately before (time zero) and at 10, 20, 40, 60, 90, 180, 360, and 540 minutes after drug administration. Dogs were observed for signs of adverse effects over a 24‐hour period after drug administration.

Results

C LEV at 10 minutes was 15.3 ± 5.5 μg/mL (mean, SD) with concentrations in the target range (5–40 μg/mL) for all dogs throughout the sampling period. C max (36.0 ± 10.7 μg/mL) and T max (103 ± 31 minutes) values were calculated and 2 disparate groups were appreciated. Dogs with feces in the rectum at the time of drug administration had lower mean C max values (26.7 ± 3.4 μg/mL) compared with those without (45.2 ± 4.4 μg/mL). Mild sedation was observed between 60 and 90 minutes without other adverse effects noted.

Conclusions and Clinical Importance

This study supports the use of rectally administered levetiracetam in future studies of clinical effectiveness in the management of epileptic dogs.  相似文献   

4.
Neonatal foals may require prolonged sedation to permit ventilatory support in the first few days of life. The objective of this study was to evaluate and compare the cardiopulmonary effects and clinical recovery characteristics of 2 sedative/analgesia protocols in healthy foals receiving assisted ventilation. Foals were randomized to receive dexmedetomidine, butorphanol, and propofol (DBP) or midazolam, butorphanol, and propofol (MBP) during a 24-hour period. Infusion rates of dexmedetomidine, midazolam, and propofol were adjusted and propofol boluses administered according to set protocols to maintain optimal sedation and muscle relaxation. Ventilatory support variables were adjusted to preset targets. Physiologic variables were recorded, cardiac output (CO) measured (thermodilution), and arterial and mixed venous blood collected for gas analysis at intervals up to 24 hours. Foals in group DBP received dexmedetomidine [2.4 ± 0.5 μg/kg body weight (BW) per hour], butorphanol (13 μg/kg BW per hour), and propofol (6.97 ± 0.86 mg/kg BW per hour), whereas foals in group MBP received midazolam (0.14 ± 0.04 mg/kg BW per hour), butorphanol (13 μg/kg BW per hour), and propofol (5.98 ± 1.33 mg/kg BW per hour). Foals in the DBP group received significantly more propofol boluses (9.0 ± 3.0) than those in the MBP group (4.0 ± 2.0). Although physiologic variables remained within acceptable limits, heart rate (HR), mean arterial pressure (MAP), and cardiac index (CI) were lower in foals in the DBP group than in the MBP group. Times to sternal recumbency, standing, and nursing were significantly shorter in the DBP than MBP group. We found that MBP and DBP protocols are suitable to assist ventilatory support in neonatal foals, although MBP results in a prolonged recovery compared to DBP.  相似文献   

5.
This study analyzed the pharmacokinetics of orbifloxacin (OBFX) in plasma, and its migration and retention in epithelial lining fluid (ELF) and alveolar cells within the bronchoalveolar lavage fluid (BALF). Four healthy calves received a single dose of OBFX (5.0 mg/kg) intramuscularly. Post-administration OBFX dynamics were in accordance with a non-compartment model, including the absorption phase. The maximum concentration (Cmax) of plasma OBFX was 2.2 ± 0.1 μg/ml at 2.3 ± 0.5 hr post administration and gradually decreased to 0.3 ± 0.2 μg/ml at 24 hr following administration. The Cmax of ELF OBFX was 9.3 ± 0.4 μg/ml at 3.0 ± 2.0 hr post administration and gradually decreased to 1.2 ± 0.1 μg/ml at 24 hr following administration. The Cmax of alveolar cells OBFX was 9.3 ± 2.9 μg/ml at 4.0 hr post administration and gradually decreased to 1.1 ± 0.2 μg/ml at 24 hr following administration. The half-life of OBFX in plasma, ELF, and alveolar cells were 6.9 ± 2.2, 7.0 ± 0.6, and 7.8 ± 1.6 hr, respectively. The Cmax and the area under the concentration-time curve for 0–24 hr with OBFX were significantly higher in ELF and alveolar cells than in plasma (P<0.05). These results suggest that OBFX is distributed and retained at high concentrations in ELF and alveolar cells at 24 hr following administration. Hence, a single intramuscular dose of OBFX (5.0 mg/kg) may be an effective therapeutic agent against pneumonia.  相似文献   

6.
This study investigated the analgesic and systemic effects of intramuscular (IM) versus epidural (EP) administration of tramadol as an adjunct to EP injection of lidocaine in cats. Six healthy, domestic, shorthair female cats underwent general anesthesia. A prospective, randomized, crossover trial was then conducted with each cat receiving the following 3 treatments: EP injection of 2% lidocaine [LEP; 3.0 mg/kg body weight (BW)]; EP injection of a combination of lidocaine and 5% tramadol (LTEP; 3.0 and 2.0 mg/kg BW, respectively); or EP injection of lidocaine and IM injection of tramadol (LEPTIM; 3.0 and 2.0 mg/kg BW, respectively). Systemic effects, spread and duration of analgesia, behavior, and motor blockade were determined before treatment and at predetermined intervals afterwards. The duration of analgesia was 120 ± 31 min for LTEP, 71 ± 17 min for LEPTIM, and 53 ± 6 min for LEP (P < 0.05; mean ± SD). The cranial spread of analgesia obtained with LTEP was similar to that with LEP or LEPTIM, extending to dermatomic region T13–L1. Complete motor blockade was similar for the 3 treatments. It was concluded that tramadol produces similar side effects in cats after either EP or IM administration. Our findings indicate that EP and IM tramadol (2 mg/kg BW) with EP lidocaine produce satisfactory analgesia in cats. As an adjunct to lidocaine, EP tramadol provides a longer duration of analgesia than IM administration. The adverse effects produced by EP and IM administration of tramadol were not different. Further studies are needed to determine whether EP administration of tramadol could play a role in managing postoperative pain in cats when co-administered with lidocaine after painful surgical procedures.  相似文献   

7.
8.
A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lead intoxication. The intoxicated goats had increased serum concentrations of liver enzymes (alanine aminotransferase and γ-glutamyl transferase), blood urea nitrogen, and reactivated δ-aminolevulinic acid dehydratase compared to the controls. Following intravenous amoxicillin (10 mg/kg bw) in control and lead-intoxicated goats, elimination half-lives were 4.14 and 1.26 h, respectively. The volumes of distribution based on the terminal phase were 1.19 and 0.38 L/kg, respectively, and those at steady-state were 0.54 and 0.18 L/kg, respectively. After intramuscular (IM) amoxicillin (10 mg/kg bw) in lead-intoxicated goats and control animals, the absorption, distribution, and elimination of the drug were more rapid in lead-intoxicated goats than the controls. Peak serum concentrations of 21.89 and 12.19 µg/mL were achieved at 1 h and 2 h, respectively, in lead-intoxicated and control goats. Amoxicillin bioavailability in the lead-intoxicated goats decreased 20% compared to the controls. After amoxicillin, more of the drug was excreted in the urine from lead-intoxicated goats than the controls. Our results suggested that lead intoxication in goats increases the rate of amoxicillin absorption after IM administration and distribution and elimination. Thus, lead intoxication may impair the therapeutic effectiveness of amoxicillin.  相似文献   

9.
We investigated the effect of oral administration of β-cryptoxanthin (β-CRX) on its serum concentration and peripheral neutrophil functions by the chemiluminescence (CL) response in Holstein cattle. A single oral administration of β-CRX was performed for serum β-CRX concentration (0, 0.05, 0.1, or 0.2 mg/kg body weight [BW]) and for peak CL response of peripheral neutrophils (0.2 mg/kg BW). The serum β-CRX concentration was peaked on 2 days after, similar to peak CL response on 3 days after β-CRX administration. Therefore, a single oral administration of β-CRX (0.2 mg/kg BW) induces higher serum concentration and concurrently enhances bactericidal ability of peripheral neutrophils in Holstein cattle.  相似文献   

10.

Background

Ketoprofen is a non-steroidal anti-inflammatory drug which has been widely used for domestic animals. Orally administered racemic ketoprofen has been reported to be absorbed well in pigs, and bioavailability was almost complete. The objectives of this study were to analyze R- and S-ketoprofen concentrations in plasma after oral (PO) and intra muscular (IM) routes of administration, and to assess the relative bioavailability of racemic ketoprofen for both enantiomers between those routes of administration in growing pigs.

Methods

Eleven pigs received racemic ketoprofen at dose rates of 4 mg/kg PO and 3 mg/kg IM in a randomized, crossover design with a 6-day washout period. Enantiomers were separated on a chiral column and their concentrations were determined by liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated and relative bioavailability (Frel) was determined for S and R –ketoprofen.

Results

S-ketoprofen was the predominant enantiomer in pig plasma after administration of the racemic mixture via both routes. The mean (± SD) maximum S-ketoprofen concentration in plasma (7.42 mg/L ± 2.35 in PO and 7.32 mg/L ± 0.75 in IM) was more than twice as high as that of R-ketoprofen (2.55 mg/L ± 0.99 in PO and 3.23 mg/L ± 0.70 in IM), and the terminal half-life was three times longer for S-ketoprofen (3.40 h ± 0.91 in PO and 2.89 h ± 0.85 in IM) than R-ketoprofen (1.1 h ± 0.90 in PO and 0.75 h ± 0.48 in IM). The mean (± SD) relative bioavailability (PO compared to IM) was 83 ± 20% and 63 ± 23% for S-ketoprofen and R-ketoprofen, respectively.

Conclusions

Although some minor differences were detected in the ketoprofen enantiomer concentrations in plasma after PO and IM administration, they are probably not relevant in clinical use. Thus, the pharmacological effects of racemic ketoprofen should be comparable after intramuscular and oral routes of administration in growing pigs.  相似文献   

11.
The study objective was to determine the effects of 70% nitrous oxide (N2O) and fentanyl on the end-tidal concentration of sevoflurane necessary to prevent movement (MACNM) in response to noxious stimulation in dogs. Six healthy, adult, intact male, mixed-breed dogs were used on 3 occasions in a randomized crossover design. After induction of anesthesia with sevoflurane, each of the following treatments was randomly administered: fentanyl loading dose (Ld) of 15 μg/kg and infusion of 6 μg/kg per hour [treatment 1 (T1)], 70% N2O (T2), or fentanyl (Ld of 15 μg/kg and infusion of 6 μg/kg per hour) combined with 70% N2O (T3). Each dog received each of the 3 treatments once during the 3-week period. Determination of MACNM was initiated 90 min after the start of each treatment. The values were compared using the baseline MACNM, which had been determined in a previous study on the same group of dogs. Data were analyzed using a mixed-model analysis of variance (ANOVA) and Tukey-Kramer tests, and expressed as least squares mean ± SEM. The baseline MACNM decreased by 36.6 ± 4.0%, 15.0 ± 4.0%, and 46.0 ± 4.0% for T1, T2, and T3, respectively (P < 0.05), and differed (P < 0.05) among treatments. Mean fentanyl plasma concentrations did not differ (P ≥ 0.05) between T1 (3.70 ± 0.56 ng/mL) and T3 (3.50 ± 0.56 ng/mL). The combination of fentanyl and N2O resulted in a greater sevoflurane MACNM sparing effect than either treatment alone.  相似文献   

12.
The concentrations of copper, molybdenum and zinc were measured in the liver of normal grazing sheep and lambs from Eastern Norway, and in sheep dead of chronic copper poisoning. The following mean values were found: Normal sheep: 173 ± 130 μg Gu/g wet weight, 1.0 ±0.3 μg Mo/g, and 49 ± 10 μg Zn/g; lambs: 129 ± 59 μg Gu/g, 0.9 ± 0.3 μg Mo/g, and 46 ±9 μg Zn/g; sheep dead of copper poisoning: 429 ± 249 μg Gu/g, 0.4 ± 0.1 μg Mo/g, and 43 ± 2d μg Zn/g. Sheep with low liver copper (Gu < 10 μg/g) were also analyzed for molybdenum and zinc, with the following results: 1.0 ± 0.2 μg Mo/g, and 45 ± 8 μg Zn/g wet weight. The differences in liver copper between all the groups, and the differences in molybdenum concentrations between the normal sheep and the lambs and between the normal sheep and the poisoned sheep were significant (P < 0.001). No significant correlations between liver copper/liver molybdenum or liver copper/liver zinc were detected.  相似文献   

13.
The concentrations of copper, zinc and molybdenum were measured in liver samples from 21 normal slaughter pigs (average age about 6 months) and in 36 sows (average age about 2 years). The following mean values were found: Slaughter pigs: 15 ± 8 µg Cu/g, 45 ± 7 μg Zm/g and 1.0 ± 0.2 μg Mo/g wet weight; sows: 46 ± 70 μg Cu/g, 70 ± 26 μg Zn/g and 1.3 ± 0.3 μg Mo/g wet weight. The concentrations of all 3 elements were significantly higher in the sows than in the young pigs. There was no correlation between the concentrations of copper, zinc or molybdenum. The recorded copper levels in the slaughter pigs were in accordance with the levels of non-supplemented pigs given in the literature. The soluble hepatic copper- and zinc-binding proteins were separated into 3 different fractions by gel filtration. With increasing copper and zinc levels in the liver, a higher relative amount of these elements were found in the low molecular weight fraction.  相似文献   

14.
The objective of this study was to compare the effect on the minimum alveolar concentration (MAC) of isoflurane when ketamine was administered either after or without prior determination of the baseline MAC of isoflurane in rabbits. Using a prospective randomized crossover study, 8 adult, female New Zealand rabbits were allocated to 2 treatment groups. Anesthesia was induced and maintained with isoflurane. Group 1 (same-day determination) had the MAC-sparing effect of ketamine [1 mg/kg bodyweight (BW) bolus followed by a constant rate infusion (CRI) of 40 μg/kg BW per min, given by intravenous (IV)], which was determined after the baseline MAC of isoflurane was determined beforehand. A third MAC determination was started 30 min after stopping the CRI. Group 2 (separate-day determination) had the MAC-sparing effect of ketamine determined without previous determination of the baseline MAC of isoflurane. A second MAC determination was started 30 min after stopping the CRI. In group 1, the MAC of isoflurane (2.15 ± 0.09%) was significantly decreased by ketamine (1.63 ± 0.07%). After stopping the CRI, the MAC was significantly less (2.04 ± 0.11%) than the baseline MAC of isoflurane and significantly greater than the MAC during the CRI. In group 2, ketamine decreased isoflurane MAC (1.53 ± 0.22%) and the MAC increased significantly (1.94 ± 0.25%) after stopping the CRI. Minimum alveolar concentration (MAC) values did not differ significantly between the groups either during ketamine administration or after stopping ketamine. Under the study conditions, prior determination of the baseline isoflurane MAC did not alter the effect of ketamine on MAC. Both methods of determining MAC seemed to be valid for research purposes.  相似文献   

15.
The present study aimed to quantitatively evaluate muscle mass and gene expression in dogs with glucocorticoid-induced muscle atrophy. Five healthy beagles received oral prednisolone for 4 weeks (1 mg/kg/day), and muscle mass was then evaluated via computed tomography. Histological and gene expression analyses were performed using biopsy samples from the biceps femoris before and after prednisolone administration. The cross-sectional area of the third lumbar paraspinal and mid-femoral muscles significantly decreased after glucocorticoid administration (from 27.5 ± 1.9 to 22.6 ± 2.0 cm2 and from 55.1 ± 4.7 to 50.7 ± 4.1 cm2, respectively; P<0.01). The fast- and slow-twitch muscle fibers were both atrophied (from 2,779 ± 369 to 1,581 ± 207 μm2 and from 2,871 ± 211 to 1,971 ± 169 μm2, respectively; P<0.05). The expression of the growth factor receptor-bound protein 10 (GRB10) significantly increased after prednisolone administration (P<0.05). Because GRB10 suppresses insulin signaling and the subsequent mammalian target of rapamycin complex 1 activity, increased expression of GRB10 may have resulted in a decrease in protein anabolism. Taken together, 1 mg/kg/day oral prednisolone for 4 weeks induced significant muscle atrophy in dogs, and GRB10 might participate in the pathology of glucocorticoid-induced muscle atrophy in canines.  相似文献   

16.
Estrus synchronization requires multiple treatments of hormonal drugs, requiring considerable time and cost. The aim of the present study was to develop an estrus synchronization protocol using intravaginal administration of estradiol benzoate (EB) capsules in goats. Two types of capsules were prepared: an EB capsule that melted immediately after administration and a sustained-release (SR) EB capsule that dissolved slowly and reached a peak after 24 h. Goats with functional corpus lutea were intramuscularly treated with prostaglandin F (PG). At 24 h after PG administration, goats were administered 1 mg of EB solution intramuscularly (PG + 24IM; n = 6) or 1 mg of EB capsule intravaginally (PG + 24EB; n = 6). The SR EB capsule was administered intravaginally at the time of PG administration (PG + SR; n = 6). The control group (n = 6) received only PG. All groups showed estrus within 72 h after PG administration. The onset of estrus did not differ significantly between the PG + 24IM and PG + SR groups but was earlier than in the control group. Estradiol concentration in the PG + SR group peaked at 11.5 ± 6.1 h after EB and PG administration. Peak estradiol concentrations were not significantly different between the PG + 24IM and PG + SR groups (78.0 ± 25.8 and 64.0 ± 38.1 pg/ml, respectively), and were higher than the PG + 24EB and control groups (27.3 ± 8.8 and 14.6 ± 6.1 pg/ml, respectively). These results suggest that intravaginal administration of an EB capsule with a sustained-drug release base is applicable for estrus synchronization, as an alternative to intramuscular administration.  相似文献   

17.
A bioavailability and pharmacokinetics study of doxycycline was carried out on 30 healthy ostriches after a single intravenous (IV), intramuscular (IM) and oral dose of 15 mg/kg body weight. The plasma doxycycline concentration was determined by HPLC/UV at 0 (pretreatment), 0.08, 0.25, 0.5 1, 2, 4, 6, 8, 12, 24 and 48 h after administration. The plasma concentration-time curves were examined using non-compartmental methods based on the statistical moment theory for only the higher dose. After IV administration, the elimination half-life (t1/2β), mean residence time (MRT), volume of distribution at the steady-state (Vss), volume of distribution (Vdarea) and total body clearance (ClB) were 7.67 ± 0.62 h, 6.68 ± 0.86 h, 0.86 ± 0.16 l/kg, 1.67 ± 0.52 l/kg and 2.51 ± 0.63 ml/min/kg, respectively. After IM and oral dosing, the mean peak plasma concentrations (Cmax) were 1.34 ± 0.33 and 0.30 ± 0.04 µg/ml, respectively, which were achieved at a post-administration time (tmax) of 0.75 ± 0.18, 3.03 ± 0.48 h, respectively. The t1/2β, Vdarea and ClB after IM administration were 25.02 ± 3.98 h, 23.99 ± 3.4 l/kg and 12.14 ± 1.71 ml/min/kg, respectively and 19.25 ± 2.53 h, 61.49 ± 7 l/kg and 40.19 ± 3.79 ml/min/kg after oral administration, respectively. The absolute bioavailability (F) of doxycycline was 5.03 and 17.52% after oral and IM administration, respectively. These results show that the dose data from other animals particularly mammals cannot be extrapolated to ostriches. Therefore, based on these results along with those reported in the literature, further studies on the pharmacokinetic/pharmacodynamic, in vitro minimum inhibitory concentration values and clinical applications of doxycycline in ostriches are required.  相似文献   

18.
The pharmacological effects of the anesthetic alfaxalone were evaluated after intramuscular (IM) administration to 6 healthy beagle dogs. The dogs received three IM doses each of alfaxalone at increasing dose rates of 5 mg/kg (IM5), 7.5 mg/kg (IM7.5) and 10 mg/kg (IM10) every other day. Anesthetic effect was subjectively evaluated by using an ordinal scoring system to determine the degree of neuro-depression and the quality of anesthetic induction and recovery from anesthesia. Cardiorespiratory variables were measured using noninvasive methods. Alfaxalone administered IM produced dose-dependent neuro-depression and lateral recumbency (i.e., 36 ± 28 min, 87 ± 26 min and 115 ± 29 min after the IM5, IM7.5 and IM10 treatments, respectively). The endotracheal tube was tolerated in all dogs for 46 ± 20 and 58 ± 21 min after the IM7.5 and IM10 treatments, respectively. It was not possible to place endotracheal tubes in 5 of the 6 dogs after the IM5 treatment. Most cardiorespiratory variables remained within clinically acceptable ranges, but hypoxemia was observed by pulse oximetry for 5 to 10 min in 2 dogs receiving the IM10 treatment. Dose-dependent decreases in rectal temperature, respiratory rate and arterial blood pressure also occurred. The quality of recovery was considered satisfactory in all dogs receiving each treatment; all the dog exhibited transient muscular tremors and staggering gait. In conclusion, IM alfaxalone produced a dose-dependent anesthetic effect with relatively mild cardiorespiratory depression in dogs. However, hypoxemia may occur at higher IM doses of alfaxalone.  相似文献   

19.
A high rate of mortality, expense, and complications of immunosuppressive therapy in dogs underscores the need for optimization of drug dosing. The purpose of this study was to determine, using a flow-cytometric assay, the 50% T-cell inhibitory concentration (IC50) of dexamethasone, cyclosporine, and the active metabolites of azathioprine (6-mercaptopurine) and leflunomide (A77 1726) in canine lymphocytes stimulated with concanavalin A (Con A). Whole blood was collected from 5 privately owned, healthy dogs of various ages, genders, and breeds. Peripheral blood mononuclear cells, obtained by density-gradient separation, were cultured for 72 h with Con A, a fluorochrome-tagged cell proliferation dye, and various concentrations of dexamethasone (0.1, 1, 10, 100, 1000, and 10 000 μM), cyclosporine (0.2, 2, 10, 20, 30, 40, 80, and 200 ng/mL), 6-mercaptopurine (0.5, 2.5, 50, 100, 250, and 500 μM), and A77 1726 (1, 5, 10, 25, 50, and 200 μM). After incubation, the lymphocytes were labeled with propidium iodide and an antibody against canine CD5, a pan T-cell surface marker. Flow cytometry determined the percentage of live, proliferating T-lymphocytes incubated with or without immunosuppressants. The mean (± standard error) IC50 was 3460 ± 1900 μM for dexamethasone, 15.8 ± 2.3 ng/mL for cyclosporine, 1.3 ± 0.4 μM for 6-mercaptopurine, and 55.6 ± 22.0 μM for A77 1722. Inhibition of T-cell proliferation by the 4 immunosuppressants was demonstrated in a concentration-dependent manner, with variability between the dogs. These results represent the initial steps to tailor this assay for individual immunosuppressant protocols for dogs with immune-mediated disease.  相似文献   

20.
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号