首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
热重法研究木材热解反应动力学   总被引:13,自引:0,他引:13  
本文应用热重分析法研究了木材热解过程,结果表明:1.失去水分后的试样木粉,α-纤维素热解反应分两阶段进行,克拉松木素热解反应只有一个阶段,2.热解反应的表观活化能α-纤维素〉试样木粉〉克拉松木素,在低温阶段热解时α-纤维素表以活化能远大于试样木粉,而在高温阶段热解时α-纤维素和试样木粉反应表观活化能基本相同,3.试样木粉和α-纤维素各阶段反应级数均为1,克拉松木素的热解反应级数因树各种的不同而有较  相似文献   

2.
基于等转化率法的芒草和玉米秸秆热解特性及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失水、过渡、主热解和炭化4个阶段;随着升温速率增加,热解各阶段均向高温侧移动,失重率增加,表明升温速率增加可促进热解反应的进行。动力学计算结果表明:3种方法拟合的相关系数均大于0.9,且芒草的相关系数大于玉米秸秆;芒草的活化能,KAS和Starink法计算得到的结果很接近,Ozawa法较低;而玉米秸秆的活化能,Ozawa法得到的最高,Starink法居中,KAS法最低。在整个热解过程中,3种方法求得的芒草的活化能随转化率升高波动明显,表明芒草热解过程发生了一系列复杂的化学反应;转化率为0.1~0.3、0.3~0.7及0.7~0.8时,分别对应半纤维素、纤维素及木质素的主热解阶段,这表明芒草三组分热解难易程度为木质素纤维素半纤维素。而玉米秸秆则不太一样,转化率为0.1~0.4时,玉米秸秆活化能急剧增加;转化率为0.4~0.8时,玉米秸秆活化能缓慢下降直至平稳。  相似文献   

3.
磷酸催化竹材炭化的FT-IR分析   总被引:4,自引:2,他引:2  
通过比较分析不添加和添加磷酸的竹材在不同炭化温度的炭化固体产物的红外光谱,探讨了磷酸对竹材热解过程以及所形成的炭的微观结构变化的催化作用。结果显示:1)磷酸能显著地催化竹材的主要成分(尤其是木质素)的热分解;同时能显著地催化芳环的形成和稠合,从而促进类石墨微晶的形成;2)在磷酸的催化下,400℃前是竹材中主要化学成分的热分解和芳环的形成过程,而400℃后是芳环的形成、芳环的稠合以及类石墨微晶的形成过程;3)红外光谱是研究炭化植物纤维中半纤维素、纤维素和木质素的热解变化过程和炭化产物炭微观结构的形成和发展的有效手段。  相似文献   

4.
竹材热解动力学的研究   总被引:8,自引:0,他引:8  
利用热重分析(TG)仪,在氮气的氛围中,加热速率分别为5、10、20、30和Fa40℃/min.热解温度40~500℃下,对竹材不同部位的外、中、内三层热解过程进行了研究。不同形状大小竹材的热解实验表明,传递现象对实验结果的影响很小。TG结果表明,竹材热解可认为是两步的反应过程。通过假设竹材热解反应的反应级数,对TG实验数据回归关联,根据回归线性相关度,筛选合理的反应级数,建立竹材热解动力学模型。计算结果发现,热解反应级数与加热速率有一定的关系,一般为1.5或2级;热解反应的表观活化能和频率因子呈现很强的规律性。  相似文献   

5.
通过热重分析对江西省南昌市茶园山林场8种乔木凋落物进行热解特性和动力学研究,计算了热解参数和动力学方程中的活化能E和指前因子A,分别根据综纤维素的活化能和热解参数主成分得分两种方法对其燃烧性进行了排序。结果表明:8种森林可燃物的综纤维素分解阶段的活化能在11.71~47.78 k J/mol之间,木质素分解阶段活化能在18.02~92.38 k J/mol之间;不同可燃物之间、不同反应阶段之间的指前因子变化很大;应用主成分分析对这8种可燃物的燃烧性的从高到低的排序为阴香楠竹桂花雪松油茶香樟银杏鹅掌楸;而采用活化能进行的排序与此相反。  相似文献   

6.
应用热重分析方法研究了黑龙江地区10种常见树叶的热解行为。利用TG-DTG曲线分析它们的热解特性,了解到木质素、半纤维素及纤维素的热解特性和温度、失重量以及失重速率之间的关系。结果表明:在空气气氛下10种树叶的热解均经历水分析出、快速热解、炭化3个主要阶段;在主要的快速热解阶段样品的热解动力学参数可以由Arrhenius反应方程和Coats-Red fem模型求得,计算得出樟子松、黑皮油松具有较好的防火性能,着火温度、活化能分别是:274.69℃、39.420KJ/mol,274.90℃、42.9110KJ/mol。。  相似文献   

7.
以油茶壳为原料,分离提取纤维素、半纤维素和木质素。利用TG-FTIR研究了油茶壳及其三组分在不同升温速率下的热解特性。结果表明:油茶壳及其三组分的热解过程都大致包括干燥、热裂解和炭化3个阶段,随着升温速率的增加,TG/DTG曲线向高温侧移动。热解挥发分主要为H_2O,CO_2,CO和CH_4,以及一些醛类、酸类、酮类、醇类和酚类等有机物。半纤维素对CO_2和CO的产出贡献最大,高温区木质素也产生较多的CO,纤维素的CH_4析出峰强度最高。采用Kissinger法对油茶壳及其三组分热解动力学特性进行研究,计算得到了反应活化能和频率因子。  相似文献   

8.
利用热重红外联用的分析方法对杨木粉和纤维素的热解失重特性和产物生成特性进行了对比研究。结果表明,杨木粉与纤维素热解失重的主要阶段在210~400℃范围内,裂解速率均约在350℃时达到最大。由于纤维素与杨木粉组成成分不同,杨木粉发生热失重的时间更早过程更长,而结构单一的纤维素在热失重过程中反应更为剧烈,分解速度较快裂解更完全。在线红外分析结果表明,杨木粉和纤维素热解产生的气体主要为CO2、CO、H2O及饱和小分子烷烃类,由于杨木粉中还有除纤维素以外的组分,使其热裂解过程变得更为复杂。  相似文献   

9.
竹材热解及炭化收缩特征分析   总被引:1,自引:0,他引:1  
对四种竹材的热解行为及炭化收缩现象进行了分析研究,结果表明:(1)竹材的种类和年龄对其热解特征和炭化收率有重要影响;(2)炭化过程中竹材收缩率随温度升高而增大;(3)竹材的炭化收缩率在不同年龄、不同部位也有差异.在相同炭化温度下,竹材炭化过程中切向和径向的收缩率高于轴向.  相似文献   

10.
【目的】热重分析是评价森林可燃物热解特性的重要方法。热重分析的结果能够用于计算热解动力学方程和其他热解参数,这是评价可燃物燃烧性的数据基础。根据热解动力学方程参数和其他热解参数的主成分分析结果对延边州地区7种常见乔木树种燃烧性进行排序,为延边州地区的防火树种选择提供理论支撑和指导。【方法】以延边州地区7种常见乔木树种的树皮、树叶为研究对象,利用热重分析仪器得到TG-DTG曲线并计算热解动力学方程求得7种乔木树种树皮及树叶的活化能(E)和指前因子(A),根据综纤维素热解阶段的活化能(E)以及主成分分析中的得分对7种乔木树种进行燃烧性排序。【结果】7种乔木树种的综纤维素热解阶段的活化能范围为:树皮:21.93~35.83 kJ·mol-1;树叶:25.76~46.10 kJ·mol-1,7种乔木树种树皮和树叶之间、不同热解阶段之间的指前因子变化很大;主成分分析法得到7种乔木树种的燃烧性排序:树皮:榆树皮椴树皮红松皮长白落叶松皮蒙古栎皮刺槐皮白桦皮。树叶:白桦叶红松叶榆树叶长白落叶松叶刺槐叶椴树叶蒙古栎叶。活化能排序与主成分分析法排序大致相反。【结论】根据热解参数的主成分分析结果对7种树种燃烧性排序,表明蒙古栎、刺槐和长白落叶松是延边州地区较好的抗火树种,可以作为较好的防火树种进行选择。  相似文献   

11.
文中介绍了一种新型工程竹产品——正交胶合竹(CLB)。已有试验对CLB墙体在稳态传热过程下的保温性能进行了探究,为进一步研究CLB墙体在室外综合温度周期性变化作用下的传热过程并探究采用CLB墙体的竹结构房屋的能耗情况,通过建立在稳态传热过程下CLB墙体的有限元模型并与已有试验结果对比验证了其有效性,从而进一步建立了受到室外综合温度作用下的5种墙体模型,以此分析CLB墙体在非稳态传热条件下的保温性能以及不同保温方式对于CLB墙体保温性能的影响,最后通过DeST对CLB墙体房屋进行能耗分析。结果表明:研究建筑墙体受到的温度作用时,太阳辐射引起的当量温度不应忽视;CLB墙体拥有优越的保温性能,采用CLB墙体的建筑室内热环境稳定;无论夏季或冬季,保温层最合理的位置在CLB墙体的外侧;围护墙体采用CLB墙体的竹结构能够达到江苏省居住建筑节能率65%的水平。  相似文献   

12.
木材阻燃体系的选择应考虑其热解特性,选取人工林珍贵树种柚木、楸木和速生材杉木、辐射松为研究对象,通过化学成分和热重(TG)分析试验,研究热解特性、热解动力学模型和参数,为阻燃体系选择提供理论依据。结果表明:四种木材的热解过程均可分为失水、过渡、剧烈降解和成炭等四个阶段;柚木、楸木的最大热解速率温度、活化能和活化因子均低于杉木和辐射松,适用于热解温度相对较低的阻燃体系。  相似文献   

13.
核桃壳与煤共热解的热重分析及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析在不同升温速率(5~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数。实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共热解时存在协同作用;三者的平衡热解温度分别为568.9、709.9和571.0K。应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述。核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol。  相似文献   

14.
竹炭导电率及高导电率竹炭制备工艺研究   总被引:27,自引:4,他引:27  
通过对竹炭炭化过程的研究,得出炭化温度,炭化时间是影响石墨化和导电性能的重要因素。实验测定了不同炭化时间与炭化温度下的体积电阻率,含水率和产率,提出了以干馏的方法获取普通的竹炭原料,并通过二次加工制备高导电率竹炭的方法及工艺。  相似文献   

15.
不同收集温度的竹醋液组分及形成过程分析   总被引:6,自引:1,他引:5  
用4年生毛竹为原材料,经过炭化炉热解后制得竹醋液。测定了不同温度收集的竹醋液的密度、pH值、有机酸含量等基本理化性能,用气相色谱/质谱联用仪进行组分分析,用等离子体原子发射光谱仪测定微量元素含量。结果表明,竹醋液是一种由有机酸、酚类、醛类、酮类、醇类和酯类等组成成分相当复杂的有机混合物。不同收集温度的竹醋液理化性能、化学组分及微量元素含量有差异。因此,在实际生产应用中要根据不同用途进行合理选择。  相似文献   

16.
覃斌  梁哨  李权  林辉 《林产工业》2020,57(2):22-26
利用扫描电镜(SEM)分析了马尾松边材素样以及6种防腐剂处理马尾松边材在被褐腐菌侵染后的降解情况,采用同步热分析(TGA-DSC)研究了试样热解特性、各反应阶段热动力学参数等。研究表明:当热解温度升高到600℃时,各试样失重率从小到大依次为10%丙酮<10%蒸馏水<马尾松素样<4%樟脑<10%乙酸乙酯<10%甲醇<4%氨溶烷基铜铵(ACQ),最大失重量越大则对应试样防腐剂的防腐效果越好。各试样的热解在低温区(260~380℃)和高温区(380~600℃)分别满足一级和二级反应动力学方程。各试样活化能从一级反应到二级反应阶段均出现不同程度减小。试样浸渍的防腐剂防腐效果越好,其褐腐后的纤维素含量保留得就越多,则对应试样的一级热解反应活化能越高。  相似文献   

17.
用热分析法研究竹材热解特性影响因素   总被引:1,自引:0,他引:1  
运用热重/差示扫描(TG/DSC)同步热分析法,通过实验分析了不同氮气流量、不同升温速度、不同竹龄等因素对毛竹材热解过程的影响。结果表明:(1)氮气流量的变化对差热扫描量热曲线没有明显影响,随着氮气流量的增大,在热解过程中失重增大,且最终剩余固体产物量呈递减的趋势。(2)升温速度变化对热重曲线没有明显影响,对DSC曲线的影响较明显。随着升温速度的增大,在整个热解过程中吸放热更明显。(3)在相同的试验条件下,不同竹龄的竹材的热解过程中热量吸放和失重变化温度点存在着一定的差值。  相似文献   

18.
竹废料微波裂解的单因素实验研究   总被引:1,自引:0,他引:1  
以微波裂解竹废料制备了一系列的生物油和竹炭,系统研究了竹废料裂解过程中的工艺参数包括原料含水率、原料粒径,微波输入功率和裂解温度,焦炭(催化剂)用量对裂解产物组成的影响。结果表明,当裂解功率为700 W,温度为550℃,焦炭用量为4%,并严格控制原料含水率在5%~8%时,生物油的得率最高,其值为44.91%,而竹炭及不可凝气体得率分别为23.21%和31.88%。竹废料微波裂解得到的生物油的成分复杂,应用前景相当广泛;竹炭也有一定的吸湿、吸附性能。因此,竹废料的微波裂解具有巨大的开发利用潜力。  相似文献   

19.
木质生物质快速热解生物油产率影响因素分析   总被引:14,自引:1,他引:14  
木质生物质能是可再生能源的重要组成部分,快速热解技术是国内外木质生物质能源化的热点研究课题.本文在简要总结木质生物质快速热解技术的基础上,着重对快速热解过程中热解温度、升温速率、压力、气相滞留时间、木质生物质物料特性、催化剂、热解反应器等因素对生物油产率的影响进行了论述,阐明了提高生物油产率的快速热解工艺条件.  相似文献   

20.
为了优化油脂类热解工艺,测量了大豆油催化热解的热重及差示扫描量热曲线,催化剂为碳酸钠、α型氧化铝及γ型氧化铝,反应温度由室温升至600℃。曲线表明催化剂的加入改变了热解反应的历程。利用不同升温速率(5、10和20 K/min)的热重数据,采用Vyazovkin算法计算了反应的活化能。活化能计算结果与DSC、DTG曲线的变化趋势相一致;大豆油的热解起始活化能为204.33 kJ/mol,碳酸钠、α型氧化铝、γ型氧化铝可将起始活化能分别降至137.3、98.455和182.06 kJ/mol,但随反应的进行,催化热解的活化能会逐步升高。依据活化能计算结果预测了等温裂解反应时间,温度的升高能有效降低反应时间,接近转化终点所用反应时间由6 h以上缩短至40 min以内。反应时间的计算结果表明催化剂的加入可以使反应较为温和的进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号