首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The US catfish industry is evolving by adopting production‐intensifying practices that enhance productivity. Catfish producers have increased aeration rates over time, and some now use intensive rates of aeration (>9.33 kW/ha). Costs and production performance were monitored at commercial catfish farms using high levels of aeration (11.2–18.7 kW/ha) in Alabama, Arkansas, and Mississippi. A multivariate‐cluster analysis was used to identify four different management clusters of intensively aerated commercial catfish farms based on stocking density, size of fingerlings at stocking, and feed conversion ratios (FCR). Breakeven prices of hybrid catfish raised in intensively aerated pond systems were estimated to range from $1.86/kg to $2.17/kg, with the lowest costs associated with the second greatest level of production intensity. The two medium‐intensity clusters generated sufficiently high revenues for long‐term profitability. However, the least‐intensive and the most‐intensive clusters were economically feasible only when catfish and feed prices were closer to less probable market prices. Feed price, FCR, and yield contributed the most to downside risk. Intensive aeration in catfish ponds, up to the levels analyzed in this study, appears to be economically feasible under the medium‐intensity management strategies identified in this analysis.  相似文献   

2.
Understanding the economic effects of regulations on US aquaculture farms provides insights into which compliance costs create the greatest compliance burden on farms. This can further guide strategies to improve the efficiency of regulatory frameworks and potentially reduce on-farm compliance costs while maintaining adequate oversight. This study estimated the regulatory compliance burden on US catfish farms as part of a national effort to quantify the cost of regulations on US aquaculture farms. Completed survey interviews of catfish farms in the major catfish-producing states covered 63% of the total US catfish production area. Total regulatory costs of the US catfish industry were estimated at $45 million annually. Lost farm revenues (measured as the value of lost production, the value of markets lost from regulations, and the value of business opportunities lost because of regulations) were estimated to be $35 million per annum. Catfish-producing states outside the Alabama/Arkansas/Mississippi region had the highest ($2856/ha) and Alabama the lowest ($1127/ha) regulatory costs per hectare among the surveyed states. The greatest regulatory cost burden on catfish farms ($18 million) was caused by environmental regulations related mostly to the management of federally protected piscivorous migratory birds, followed by labor regulations ($12 million), and taxes/insurance ($7 million). Regulatory costs ($/kg) were 2.6 times higher on smaller (<80 ha) farms relative to larger (>300 ha) farms. Attention is needed to identify alternative regulatory frameworks that provide the same degree of regulatory oversight but are more cost-efficient.  相似文献   

3.
Previous studies have indicated that the price premium charged for hybrid catfish fingerlings may be a significant factor in the adoption and profitability of hybrid catfish production. An enterprise budgeting simulation analysis was developed to compare costs, risk, and effect of hybrid fingerling costs. Feed, fingerling, and total costs ($/ha and $/kg) were highest for hybrid catfish production, intermediate for NWAC‐103, and lowest for normal channel catfish production. Net returns were highest for hybrid catfish production, but breakeven prices were also highest. Risk analysis showed that downside risk (risk of losing money) was higher for hybrid production for all farm sizes. Risk‐averse farmers would not select hybrid catfish at the mean fingerling values used in the analysis. However, at hybrid fingerling prices less than $0.0081/cm, hybrid catfish production was superior in profitability and breakeven cost of production. Thus, for hybrid catfish production to be preferred economically to normal channel catfish, the price premium for hybrid catfish fingerlings can be no more than 84% ($0.0037/cm) above that of normal channel catfish fingerlings and 57% ($0.0025/cm) above that of NWAC‐103 fingerling prices.  相似文献   

4.
There is growing interest in sustainable intensification of aquaculture production. Yet little economic analysis has been done on farm‐level effects of the economic sustainability of production intensification. Data from 83 shrimp farms (43 in Vietnam and 40 in Thailand) were used to identify (through principal component and cluster analyses) 13 clusters of management practices that reflected various scales of production intensity that ranged from 0–1999 kg/ha/crop to 10,000 kg/ha/crop and above, for both Penaeus monodon and Litopenaeus vannamei in Vietnam and Thailand. The clusters identified reflected sets of management practices that resulted in differing yields despite similarities in stocking densities among some clusters. The enterprise budget analysis developed showed that the more intensively managed clusters outperformed the less intensively managed clusters in economic terms. More intensively managed farm clusters had lower costs per metric ton of shrimp produced and were more profitable. The greater yields of shrimp produced per hectare of land and water resources in more intensively managed shrimp farms spread annual fixed costs across a greater volume of shrimp produced and reduced the cost per metric ton of shrimp. Costs per metric ton of shrimp produced decreased from the lowest to the highest intensity level (from US$10,245 at lowest intensity to US$3484 at highest for P. monodon and from US$24,301 to US$5387 for L. vannamei in Vietnam and from US$8184 at the lowest intensity level to US$3817 at the highest intensity level per metric ton for L. vannamei in Thailand). Costs of pond amendments used in shrimp production were particularly high in Vietnam and largely unwarranted, whereas fixed costs associated with the value of land, production facilities, equipment, and labor were sufficiently high in Thailand so that net returns were negative in the long run. Nevertheless, economic losses in Thailand were less at greater levels of intensification. The study demonstrated a clear value proposition for shrimp farmers to use natural resources (such as land) and other inputs in an efficient manner and supports findings from corresponding research on farm‐level natural resource use efficiency. Additional research that incorporates economic analysis into on‐farm studies of sustainable intensification of aquaculture is needed to provide ongoing guidance related to sustainable management practices for aquaculture.  相似文献   

5.
Substantial economic losses of farmed catfish to fish‐eating birds such as the double‐crested cormorant, Phalacrocorax auritus, continue to be reported on U.S. catfish farms. An economic analysis was conducted of the on‐farm effects of both the increased expenditures to scare fish‐eating birds from catfish farms and of the value of the catfish that were consumed by cormorants. A survey was conducted of U.S. catfish farmers in the Delta region of Mississippi and Arkansas, to obtain farm‐level data on expenditures to scare birds. Estimations of the lost revenue from catfish consumed by cormorants were developed from a concurrent study on cormorant distribution, abundance, and diet in the region. The economic effects of bird predation in terms of both fish consumption and management costs were evaluated across three farm sizes and nine catfish production practices. Catfish farmers spent on average $704/ha ± $394/ha to scare birds, making bird‐scaring costs one of the top five costs of raising catfish. The greatest cost components of scaring birds were manpower (39% of all bird‐scaring costs) and the variable and fixed costs of trucks used to scare birds (34% of all bird‐scaring costs). Losses were greater on hybrid than channel catfish fingerling ponds. Industry‐wide, the value of catfish losses averaged $47.2 million (range of $25.8–$65.4 million). Total direct economic effects (including both the increased costs to scare birds and the revenue lost from fish consumed by cormorants despite bird‐scaring attempts) averaged $64.7 million (ranging from $33.5 to $92.6 million). Profitability improved by 4% to 23% across the farm size/production strategies analyzed upon removal of the economic effects from bird predation, with greater effects occurring on smaller‐scale farms. One‐third of the farm size and production scenarios analyzed changed from being unprofitable to showing a profit in the absence of such negative economic effects associated with bird depredation. Overall, the combined effects of increased farm expenditures to scare birds from farms and the value of the catfish lost to predation by cormorants caused substantial negative economic effects on catfish farms.  相似文献   

6.
The Cost of Off-Flavor   总被引:1,自引:0,他引:1  
Off-flavor problems in farm-raised catfish Ictalurus punctatus increase production costs and pose inventory management problems for catfish farmers. Multiperiod mathematical programming techniques were used to test the effect of 16 different off-flavor scenarios on expected net returns above variable cost with and without cash flow restrictions. The patterns of off-flavor incidence had less effect on farm profits than whether or not fish are off-flavor during certain key months of the year. To be feasible, systems designed to purge off-flavor from catfish would need to cost less than $0.05 to $0.06/kg (if cash flow is not a consideration) or $0.04/kg to $0.25/ke (with cash flow considerations).  相似文献   

7.
Technical, allocative, and cost efficiency measures of a sample of small-and medium-sized catfish farms in Chicot County, Arkansas were estimated using a weight-restricted data envelopment analysis technique. A measure of cost efficiency is used to determine operator characteristics, farm practices, and institutional support services that are likely to lead to higher levels of efficiency. Experience of the operators and extension contacts were important factors positively influencing farm level efficiency. Extension services in Chicot County generated about $5.2 million in cost savings among catfish farms or about $2,737 per contact. Importantly, higher cost efficiency of catfish farm efficiency in Chicot County, Arkansas, can be achieved by adjusting inputs used in production to optimal levels rather than by adjusting the scale of operation.  相似文献   

8.
Compelled by pending regulatory rule changes, settling basins have been proposed as a treatment alternative for catfish pond effluents, but the associated costs to catfish farmers have not been estimated. Economic engineering techniques were used to design 160 scenarios as a basis for estimating total investment and total annual costs. For static-water, levee-style catfish pond facilities, sizing of settling basins is controlled by factors such as type of effluent to be treated, pond layout, size of the largest foodfish pond, number of drainage directions, scope of regulations governing effluents, and the availability of land. Regulations that require settling basins on catfish farms would increase total investment cost on catfish farms by $126–2990 ha−1 and total annual per-ha costs by $19–367 ha−1. More numerous drainage directions on farms resulted in the greatest increase in costs. While both investment and operating costs increased with larger sizes of foodfish ponds, costs per ha were relatively greater on smaller than on larger farms. For farms on which existing fish ponds would have to be converted to settling basins, over half of the cost was due to the production foregone and annual fixed costs of the pond. Requiring catfish farmers to construct settling basins would impose a disproportionately greater financial burden on smaller farms. The magnitude of the increased costs associated with settling basins was too high relative to market prices of catfish for this technology to be economically feasible.  相似文献   

9.
Dockages can have a significant effect on catfish, Ictalurus punctatus, farm revenues. This study was conducted to quantify common dockages, examine seasonal and yearly variations in dockages assessed, and determine optimal production practices given various dockage scenarios. A convenience survey of invoice records from 30 commercial catfish farms and 10 processing plants provided 3686 daily catfish load records that were used to quantify dockages. A linear programming model was developed to examine optimal production practices given 11 alternative production scenarios with five size‐grading technologies subject to 24 types and levels of dockages. The survey revealed that 95% of catfish loads delivered to processing plants between 1997 and 2002 were assessed dockages that resulted in average losses of 2.45% per load or $0.066/kg of catfish marketed over the study period. Out‐of‐size discounts constituted the greatest losses. Dockage losses can be reduced by shifting either to longer‐term single‐batch production or more intensive grading. Longer‐term production results in fewer smaller fish that would incur dockage losses. However, cash flow constraints require more intensive early‐season grading. The grader choice depended on the dockage tolerance level and rate, the frequency distribution of sizes of catfish in the population, the efficiency of the grading technology, and the cost of the grading method. Larger farms minimize losses with intensive active grading (University of Arkansas at Pine Bluff grader).  相似文献   

10.
The economic effects of the implementation of regulations on aquaculture farms in the United States, while of concern, are not well understood. A national survey was conducted of salmonid (trout and salmon) farms in 17 states of the United States to measure on‐farm regulatory costs and to identify which regulations were the most costly to this industry segment. The response rate was 63%, with a coverage rate of 94.5% of the U.S. production of salmonids. The regulatory system resulted in increased national on‐farm costs of $16.1 million/year, lost markets with a sales value of $7.1 million/year, lost production of $5.3 million/year, and thwarted expansion attempts estimated at $40.1 million/year. Mean farm regulatory costs were $150,506/farm annually, or $2.71/kg; lost markets with annual sales values of $66,274/farm; annual lost production of $49,064/farm; and an annual value of thwarted expansion attempts estimated at $375,459/farm. Smaller‐scale farms were affected to a disproportionately greater negative extent than larger‐scale farms. Per‐farm regulatory costs were, on average, greater for foodfish producers than for producers selling to recreational markets, but per‐kg regulatory costs were greater for those selling to recreational compared to foodfish markets. Regulatory costs constituted 12% of total production and marketing costs on U.S. salmonid farms. The greatest regulatory costs were found to be effluent discharge regulations. The majority of regulatory costs were fixed costs, but regulatory barriers to expansion precluded compensatory adjustments to the business in spite of growing demand for salmonid products. Results of this study show that the on‐farm regulatory cost burden is substantial and has negatively affected the U.S. salmonid industry's ability to respond to strong demand for U.S. farm‐raised salmonid products. Results also suggest that the regulatory system has contributed to the decline in the number of U.S. salmonid farms. While regulations will necessarily have some degree of cost to farms, the magnitude of the on‐farm regulatory cost burden on U.S. salmonid farms calls for concerted efforts to identify and implement innovative regulatory monitoring and compliance frameworks that reduce the on‐farm regulatory cost burden.  相似文献   

11.
Abstract

Enteric Septicemia of Catfish (ESC) is a ruinous bacterial disease affecting the U.S. catfish industry. Previous attempts to develop ESC vaccines have failed to achieve industry acceptance, largely attributed to difficulties in delivering the vaccine to immunocompetent fish. Recently, a live attenuated ESC vaccine has been developed, coupled with a mechanized platform designed to accurately deliver measured doses of vaccine with feed. This delivery scheme for vaccine-feed admixture has shown tremendous promise under controlled research settings. This study evaluated the economic effects of on-going commercial-vaccination trials on catfish fingerling operations in Mississippi. Commercial-vaccination trials for both channel and hybrid catfish demonstrated significant improvement in survival, growth, feed consumption, feed conversion and gross yield. At a realistic vaccination cost of $750/ha, the net economic benefits to channel and hybrid catfish fingerling-production phases were $3199 and $6145/ha, respectively. Whole-farm models showed additional profit ranging from $71,758 to $133,887/400-ha on farms that integrate fingerling production to their production strategies due to appropriation of more of the otherwise incumbent fingerling production acreage into foodfish production. Commercial adoption of the oral-vaccination platform would greatly enhance profitability while laying the foundation for development and delivery of polyvalent vaccines against other catfish diseases.  相似文献   

12.
Abstract.— Different sizes of catfish fingerlings understocked in multiple-batch production may result in different survival, yield, cost, and economic risk. A pond production study was conducted to compare net yield, growth, survival, costs, and economic risk of understocking 7.6-cm, 12.7-cm. or 17.8-cm channel catfish Ictalurus punctatus fingerlings in growout ponds. Fingerlings were understocked at 15,000/ha with 1,369 kg/ha carryover fish averaging 0.58 kg. Mean growth rate increased significantly with size of fingerling understocked (1.4 ± 0.2 g/d, 1.8 ± 0.07 g/ d, and 2.2 ± 0.06 g/d for 7.6-cm, 12.7-cm, and 17.8-cm understocked fingerlings, respectively). Mean individual weights at harvest also increased significantly with size at stocking but none of the understocked fingerlings reached minimum market size (0.57 kg) over the 201-d study period. Survival of the smallest (7.6-cm) understocked fingerlings was significantly lower, but there was no difference in survival between the two other treatments. Net yields were highest for the two treatments understocked with 12.7- and 17.8-cm catfish and significantly lower for the treatment understocked with 7.6-cm fish. Growth of large carryover fish was significantly less in the treatment understocked with 17.8-cm fingerlings. Breakeven production costs were highest for the treatment understocked with 7.6-cm fish and lower for the other two treatments. The risk analysis showed that it was very likely that the 12.7- and 17.8-cm understocked fish could be grown profitably (very little risk of costs exceeding $ 1.32/kg—$1.65/kg). However, the risk of growing out 7.6-cm understocked fish at costs above market prices increased sharply. This static analysis indicated that the preferred size to understock in growout ponds would be 12.7 cm; however, additional work is needed in a dynamic framework to quantify the benefit of 17.8-cm fingerlings reaching market size earlier in the second year.  相似文献   

13.
The presence of carryover (fish >350 g stocked the previous year but not yet market size) channel catfish, Ictalurus punctatus, in multiple‐batch production ponds has been shown to affect overall production performance and costs. However, little attention has been paid to effects of varying biomasses of carryover fish in ponds. Twelve 0.1‐ha earthen ponds were stocked March 20, 2007, with 15,000 catfish fingerlings per ha (mean weight 31 g), and carryover fish at either 726, 1460, or 2187 kg/ha (mean weight 408 g, range 204–703 g) to compare the effect of three different biomasses of carryover catfish on the production performance of understocked fingerlings. Gross and net yields increased with increasing biomass of carryover fish. Growth and mean weight at harvest of fingerlings were significantly greater at the lowest biomass of carryover fish (<1460 kg/ha), but there was no difference between the medium and high carryover density treatments. Net returns were highest with the highest biomass of carryover fish, but fell by $688/ha in Year 2 because of slower growth of fingerlings in Year 1.  相似文献   

14.
Freshwater prawn, Macrobrachium rosenbergii, production costs have mainly been estimated from experimental results or from limited numbers of producers. This paper discusses results from a cost of production survey sent to freshwater prawn producers in the south central United States in 2005. Feed and stocking costs were the highest variable costs and were related to the proximity of the input sources. Inorganic fertilizer cost was significantly greater for the south region while electrical costs were greater for the west region of the study area. The average prawn breakeven price covering all costs was $12.74, $14.27, $16.12, $17.18, and $14.55 per kilogram for producers in Kentucky, Mississippi, Tennessee, “Other States,” and for all respondents, respectively. Producers could decrease costs by improving yields, i.e., by increasing survival and/or weight gain, or by decreasing stocking, feed, and electrical costs; or by finding multiple uses of the equipment used to grow-out and harvest freshwater prawns.  相似文献   

15.
We measure the impact that sanitary treatments that control ectoparasite Caligus rogercresseyi abundance have on unit production costs of Salmo salar farms in Chile. We follow complete production cycles for a sample of farms between 2009 and 2015. We estimate a simultaneous salmon biomass growth and Caligus abundance model. The statistical analysis determines the effect of antiparasitic treatments, location of farms, environmental conditions and Caligus abundance on the salmon growth profile. Using outside cost information, we simulate how unit production costs vary by treatment and farm characteristics. Our results suggest that unit production costs increase on average by $1.4?US/kg with Caligus and treatments. Treatment costs are compensated by higher harvesting levels, and unit production costs are invariant to the situation without treatment. All estimated effects differ depending on farm’s environmental and spatial conditions, suggesting that the design of cost-effective intervention calls for discriminatory regulation under heterogeneous conditions.  相似文献   

16.
Abstract

This study analyzed the contribution of the catfish industry to the economy of Chicot County, Arkansas, using an input-output model. The objective was to quantify the economic contribution of the industry in terms of creating new dollars, jobs, and income to the local community. Mail surveys and personal interviews were used to collect data from catfish farmers, processors and other businesses related to the catfish industry. For farmers, the information solicited included production and marketing costs, sales and employment. Out of approximately 85 questionnaires administered to catfish farms, 44 usable questionnaires were obtained for a response rate of 52%. Businesses directly related to the catfish industry provided information on employment and sales and included: processors, seiners and haulers, pond builders, tractor and equipment dealers, and feed bin manufacturers. Other businesses with indirect ties to the catfish industry included: input supply companies, banks, fertilizer and chemical companies, auto shops, electricians, and bookkeeping firms. The survey data were used to modify the IMPLAN database for Chicot County to reflect the 2001 level of catfish production, processing and services available to support the industry. This database was then used to estimate the economic impact of the industry to the county's economy. In 2001, the 85 catfish farmers in the county operated about 7,859 ha (19,500 acres). The farm-gate value of catfish production exceeded $63 million. Employment on catfish farms was approximately 510. In addition, 59 other businesses depended on the catfish industry. Results indicated that total employment created in Chicot County by businesses directly or indirectly involved with the catfish industry was 2,665 jobs. This represented 48% of all employment in Chicot County. Total tax revenue (federal, state, and local taxes) generated from both direct and indirect catfish businesses was $22 million. Combined, the total economic impact of the catfish industry in Chicot County, including direct, indirect and induced effects, was over $384 million. The output multiplier calculated for live catfish production was 6.05. Thus, each $1 of earnings by catfish farms generated $6.05 total economic activity in the Chicot County economy. If current economic difficulties should result in contractions in catfish acreage in Chicot County by 10%, unemployment rates would increase by 2%. This study demonstrates the importance of the catfish industry to the economy of Chicot County.  相似文献   

17.
Split ponds are recently developed pond‐based aquaculture systems that allow intensification of catfish aquaculture. Successful industry‐wide adoption of newly developing technologies like split‐pond systems will depend upon their productivity and cost efficiencies. Costs and production performance of the following three split‐pond design scenarios were monitored in Arkansas and Mississippi: (1) research design developed at the Thad Cochran National Warmwater Aquaculture Center, Stoneville, Mississippi; (2) waterwheel design tested on commercial catfish ponds; and (3) screw‐pump design tested on commercial catfish ponds. An economic engineering approach using standard enterprise budget analysis was used to develop estimates of breakeven prices (BEPs) ($/kg) for producing foodsize hybrid catfish (♂Ictalurus furcatus × ♀Ictalurus punctatus) for each scenario. Estimates of BEPs of hybrid catfish raised in split ponds ranged from $1.72 to $2.05/kg. The cost of catfish production in split ponds was sensitive to yield, fish prices, and feed prices. Annual net cash flows from both commercial split‐pond systems were high and sufficient to make the investment profitable in the long run. Feed price, feed conversion ratio, and yield contributed the most to downside risk of split ponds.  相似文献   

18.
The double‐crested cormorant, Phalacrocorax auritus, is considered the primary depredating bird species on commercially produced channel catfish, Ictalurus punctatus, in the southeastern USA. We simulated different levels of cormorant predation on losses at harvest and economic effects on channel catfish production in a multiple‐batch cropping system. We observed significant (P < 0.05) declines in catfish production at increasing levels of cormorant predation in this study. This decline was mitigated by increased individual growth of catfish at higher predation rates (i.e., lower catfish densities). This mitigating effect produced a non‐linear relationship with total kg of catfish harvested per pond resulting in a non‐linear incremental increase in breakeven price related to predation. Costs of production ($/kg) increased with increasing predation levels up to very high levels of predation with a cumulative maximum increase in breakeven price of $0.143/kg. These results indicate that losses at harvest due to cormorant predation occur immediately but are mitigated in part by compensatory growth of individual catfish. Losses due to cormorant predation in multi‐batch systems can be considerable, but there is not a 1:1 relationship between losses and kg of catfish harvested due to compensatory factors.  相似文献   

19.
Alternative management strategies will be required to produce hybrid catfish (♂Ictalurus punctatus X ♀Ictalurus furcatus) year-round to provide continuous market supply. Hybrid catfish fingerlings were stocked at 9,880 head/ha singly or in co-culture with sub-marketable (mean weight = 454 ± 16 g) hybrid catfish carried over the winter from a previous year’s multi-size trial. Economic analyses compared cost of production ($/kg of market-size fish produced) and cash flow of single- and multiple-batch production of hybrid catfish for a single- and two-year period. Gross total and marketable yields were significantly greater in the mixed-size treatment as compared to the single-size treatment, in spite of the significantly greater percentage of market-size fish (84%) in the single-size treatment than in the mixed-size treatment (71%). Cost of production ($/kg) was 4% to 10% lower in the multi-size treatment in the single-year analysis, but 18% to 20% lower when the full two-year cycle was assessed. Cash flow and cash flow risk were improved substantially with the multi-size treatment primarily because the overwintered sub-market-size fish from the previous year reached market size three to four months earlier than in the single-size treatment.  相似文献   

20.
Intensive production of ictalurid catfish in the USA has increased over the past several years, and a better understanding of the amount of organic carbon (OC) and dissolved oxygen (DO) in these culture environments is needed. Budgets for OC and DO were estimated over a production season (March to November) for an in‐pond raceway system for channel catfish, Ictalurus punctatus, and hybrid catfish (channel catfish × blue catfish, Ictalurus furcatus), with co‐culture of paddlefish, Polyodon spathula, and Nile tilapia, Oreochromis niloticus. Feed input ranged from 45 to 263 kg/ha/d with an overall average of 80 kg/ha/d. Production of each kilogram of live catfish required 1.5 kg of feed and released into the water 0.70 kg of OC, and led to the synthesis of an additional 3.36 kg of OC by photosynthesis. Consequently, production of 1 kg of live catfish resulted in 4.06 kg OC, and harvest of catfish accounted for only 29.5% of OC applied from the feed. Removal of OC increased to 34.3% with the additional harvest of paddlefish and tilapia. OC was consumed in respiration, and some OC accumulated in sediment. Total respiration within the system exceeded the DO produced by photosynthesis, while diffusion and mechanical aeration aided in maintaining suitable DO levels for fish production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号