首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
河北廊坊大豆枯萎病病原镰刀菌的分子鉴定   总被引:1,自引:0,他引:1  
 为明确河北廊坊中国农科院植保所试验基地大豆孢囊线虫病田内大豆枯萎病病原镰刀菌的种类,对362份罹病枯萎大豆植株进行病原真菌分离,得到335株真菌;使用镰刀菌通用引物鉴定出镰刀菌(Fusarium spp.) 279株,占分离菌株83.3%;镰刀菌特异性引物、测序等分子生物学技术结合形态学特征进一步鉴定镰刀菌种类,鉴定出尖孢镰刀菌(F. oxysporum)189株,占分离菌株56.4%;茄病镰刀菌(F. solani)67株占20.0%、禾谷镰刀菌(F. graminearum)16株占4.8%、木贼镰刀菌(F. equiseti)3株、层出镰刀菌(F. proliferaum)2株、燕麦镰刀菌(F. avenaceum)和厚孢镰刀菌(F. chlamydosporum)各1株;致病性测试结果表明数量最多的尖孢镰刀菌(F. oxysporum)中约92.8%菌株具有不同程度的致病力;这些结果表明该试验基地大豆枯萎病的优势病原菌为尖孢镰刀菌(F. oxysporum);研究结果可为大豆枯萎病的防治提供科学依据,并为大豆孢囊线虫与尖孢镰刀菌复合侵染大豆的研究奠定基础。  相似文献   

2.
黑龙江省马铃薯干腐病菌种类鉴定及致病性   总被引:5,自引:0,他引:5  
本研究将采自黑龙江省不同地区的马铃薯干腐病病样进行分离和病原菌纯化,得到27个镰刀菌菌株,通过致病性鉴定,其中的18个菌株具有致病性。运用培养性状和形态特征综合分析的方法,对上述18个菌株进行鉴定,结果显示为6种镰刀菌,分别为拟枝孢镰孢(Fusarium sporotrioides)、茄镰孢(F.solani)、接骨木镰孢(F.sam-bucinum)、拟丝孢镰孢(F.trichothecioides)、燕麦镰孢(F.avenaceum)和茄病镰孢蓝色变种(F.solanivar.coerule-um)。同时对上述6种镰刀菌进行致病性测定,结果表明不同种类镰刀菌致病性不同,以接骨木镰孢、燕麦镰孢和拟丝孢镰孢致病力最强,拟枝孢镰孢致病力最弱。  相似文献   

3.
镰刀菌对大蒜根系分泌物的敏感性与其致病力相关分析   总被引:2,自引:0,他引:2  
试验采用菌丝生长速率法测定了大蒜根系分泌物对3种供试植物病原镰刀菌的抑菌活性, 并进一步分析了18株从腐烂蒜瓣上分离的尖孢镰刀菌和12株从小麦赤霉病样分离的禾谷镰刀菌对大蒜根系分泌物的敏感性及致病力之间的关系。研究结果表明, 大蒜根系分泌物对供试镰刀菌均具有抑制活性, 但从腐烂蒜瓣上分离的尖孢镰刀菌对根系分泌物的敏感性低于其他菌株。致病力分析结果表明, 供试的18株尖孢镰刀菌均能使蒜瓣发病, 但致病力与其对根系分泌物的敏感性无明显相关性; 供试的禾谷镰刀菌中对根系分泌物不敏感的4株菌株能侵染蒜瓣, 但敏感性高的菌株不能侵染蒜瓣, 且根系分泌物对禾谷镰刀菌的抑制率与禾谷镰刀菌致病力之间呈显著的负相关。这表明大蒜根系分泌抑菌物质是根系抵御镰刀菌侵染的重要机制, 但一些菌株能对根系分泌物产生抗性, 从而侵染大蒜。综上所述, 大蒜根系分泌物对镰刀菌具有抑制活性, 可以利用大蒜和其他作物间作或轮作控制镰刀菌枯萎病的发生和蔓延, 但长期利用大蒜轮作或间作控制土传病害可能面临镰刀菌对大蒜根系分泌物产生抗性, 导致防效降低的风险。  相似文献   

4.
为获得草莓根腐病原菌尖孢镰刀菌Fusarium oxysporum的优良拮抗菌,以草莓种植基地的土壤为拮抗菌来源,通过室内测定不同菌株的抑菌活性,筛选抑菌率最高的菌株,在此基础上对所筛菌株进行分类鉴定,并评价其抑菌谱和防效.结果表明,从土壤中分离获得39株拮抗菌,筛选出3株对尖孢镰刀菌具有明显抑制作用的菌株.其中,菌株...  相似文献   

5.
为了充分发掘和利用有益微生物资源,本文以草莓根腐尖孢镰刀菌Fusariumoxysporum为靶标菌,从草莓根际土壤中分离筛选得到3株拮抗细菌,通过培养性状与形态特征、生理生化特征以及16SrDNA同源序列比对分析进行了鉴定,菌株1-9和9—4为多粘类芽孢杆菌Paenibacilluspolymyxa、菌株12—4为枯草芽孢杆菌Bacillussubtilis。这3株细菌对草莓根腐尖孢镰刀菌的抑菌作用进行了初步的研究,结果表明,3株拮抗细菌对草莓根腐尖孢镰刀菌的生长有很好的抑制作用,镜下观察对菌丝有致畸作用,其培养滤液还能够抑制草莓根腐病尖孢镰刀菌分生孢子的产生与萌发。  相似文献   

6.
甘肃省马铃薯镰刀菌干腐病优势病原的分离鉴定   总被引:11,自引:0,他引:11  
 为明确甘肃马铃薯镰刀菌干腐病的优势病原,2006 年12 月~ 2007 年3 月由西至东从甘肃张掖、天祝、永登、临洮、渭源和西和等6 县市的马铃薯贮藏窖中采集表现有镰刀菌干腐病症状的马铃薯薯块,以组织分离法分离病原,单孢纯化镰刀菌(Fusarium spp. )菌株后,以形态学为基础,参照Nelson 镰刀菌分类系统进行鉴定。结果表明:6 个采样区共分离到293株镰刀菌菌株,其中以接骨木镰刀菌(F. sambucinum)和茄病镰刀菌(F. solani)出现频率高,是优势种。分析发现第一优势种随采样区而异,张掖、天祝和渭源采集的样品中茄病镰刀菌分离频率分别为42. 6% 、42. 1% 和32. 4% ,接骨木镰刀菌分离频率分别为14. 8% 、5. 3% 和26. 5% ,茄病镰刀菌为第一优势种;永登、临洮和西和采集的样品中接骨木镰刀菌分离频率分别为52郾1% 、50. 9% 和55. 2% ,茄病镰刀菌的分离频率分别为23. 3% 、32. 7% 和20. 7% ,接骨木镰刀菌为第一优势种。本文进一步对其在PDA、CLA 上的培养特征进行了观察和描述。按照柯赫氏法则用混合菌株接种法对大西洋(Atlantic)、夏波蒂(Shepody)以及一地方品种进行致病性测定,证实了优势菌种对块茎的致病性。利用EF鄄1琢基因引物(EF鄄1H 和EF鄄2T)对接骨木镰刀菌菌株GAUF鄄F12 进行基因组DNA 的PCR 扩增,将PCR 产物回收测序后在GenBank 上比对,菌株GAUF鄄F12 与GenBank 登记的接骨木镰刀菌5 个菌株的同源性均达99% ;用DNASTAR 分析软件将同源性较高的登记菌株的序列与GAUF鄄F12 菌株构建同源性树,结果表明:该菌株与以上5 个接骨木镰刀菌菌株均位于同源性树的同一分支,聚为一类,与形态学的鉴定结果一致。  相似文献   

7.
美国大豆中链格孢的分离鉴定研究   总被引:1,自引:0,他引:1  
本文通过对美国进境大豆病害分离,共得到36个菌株,并对其中5株链格孢菌进行了形态学和分子生物学鉴定(其中2株),确认了它们分别是细极链格孢(Alternaria tenuissima(Kunze)Wiltshire)、樱桃链格孢(Alternaria cerasiPotebnia)、苘麻链格孢(Alternaria abutilonis(Speg.)Schwarze)、百日菊链格孢(Al-ternaria zinniaeH.Pape)、落葵链格孢(Alternaria basellaeT.Y.Zhang)。本研究证实了美国大豆中链格孢菌的多样性,不仅充实了正在构建的大豆病害数据库和菌种资源库,也可为港口的植物检疫工作提供借鉴。  相似文献   

8.
 2014~2016年,由于栽培管理及重茬等原因,大白菜枯萎病在我国大面积发生,造成了巨大的经济损失。为了明确引起大白菜枯萎病的病原菌,本课题组从山东、内蒙古、河北、甘肃等大白菜主产区采集了具有典型枯萎病症状的病样,并对样品中的病原菌进行了分离和鉴定。形态学鉴定结果表明:分离物分别具有尖孢镰刀菌 (Fusarium oxysporum)、茄病镰刀菌 (F. solani) 和木贼镰刀菌 (F. equiseti)的形态学特征。柯赫氏法则验证结果表明:3种病原菌均能使大白菜发病,且发病症状与田间症状一致。此外,基于病原菌的rDNA-ITS和mt SSU序列的测序比对,3种病原菌与尖孢镰刀菌、茄病镰刀菌和木贼镰刀菌的同源性分别达99%~100%,这与形态学鉴定结果相一致。尖孢镰刀菌引起白菜枯萎病为国内首次报道,而茄病镰刀菌和木贼镰刀菌引起白菜枯萎病为国内外首次报道。  相似文献   

9.
为确定引起呼和浩特市苜蓿根腐病的病原菌种类,采用常规组织分离法对采集的疑似苜蓿根腐病病样进行病原菌分离与培养,利用形态学观察结合分子生物学方法对分离物代表菌株进行鉴定,并采用土壤接种法对代表菌株的致病性进行测定。结果表明,共分离获得6类形态学特征不同的分离物,各随机选择1株代表菌株进行鉴定,结合分子生物学鉴定结果确定呼和浩特市苜蓿根腐病病原菌有6种,分别是麦根腐平脐蠕孢菌Bipolaris sorokiniana、立枯丝核菌Rhizoctonia solani、木贼镰刀菌Fusarium equiseti、变红镰刀菌F. incarnatum、锐顶镰刀菌F. acuminatum和织球壳枯萎菌Plectosphaerella cucumerina,分别分离到1、7、14、26、7和14株菌株,占总分离菌株数的1.45%、10.14%、20.29%、37.68%、10.14%和20.29%。其中,立枯丝核菌的致病力最强,接种苜蓿幼苗发病的病情指数达82.67,其次为木贼镰刀菌、变红镰刀菌、锐顶镰刀菌、麦根腐平脐蠕孢菌和织球壳枯萎菌,病情指数分别为72.67、62.67、58.67、52....  相似文献   

10.
浙江省荸荠上镰刀菌种类及其致病性   总被引:8,自引:0,他引:8  
作者从浙江省11个县市采集病、健株及球茎标样共669个,经分离、纯化、鉴定,获以下7个镰刀菌种;尖孢镰刀菌(Fusarium oxysporum)、锐顶镰刀菌(F.acuminatum)、半裸镰刀菌(F.semitectum)、层出镰刀菌(F.proliferatum)、茄病镰刀菌(F.solani)、禾谷镰刀菌(F.graminearum)和木贼镰刀菌(F.equiseti)。田间观察和接种试验证明:F.oxysporum是引起荸荠茎秆枯萎的主要病原,这是一种新的危险性病害。病株矮小、黄化、基腐、后期倒伏。1986~1990年少数县市发病率达40%~50%。人工接种证明:F.acuminatum也属强致病性的种类。而F.proliferatum和F.solani则是引起贮藏期球茎腐烂的主要病原。其余种类仅具微弱或无致病性。  相似文献   

11.
Brazilian Fusarium isolates causing soybean sudden death syndrome (SDS) were characterized by comparing them with other Fusarium isolates associated with soybean root rot, as well as F. solani f.sp. glycines isolates associated with the disease in the USA, using molecular (mitochondrial and nuclear rDNA), morphological, cultural and pathogenic characteristics. On the basis of pathogenicity data, and restriction fragment length polymorphism and sequence analysis of the rDNA internal transcribed spacer (ITS) regions, isolates formed a group distinct from nonSDS F. solani isolates, as well as other Fusarium species. ITS sequence analysis also revealed that Brazilian isolates were distinct from the majority of SDS pathogens from the USA ( Fusarium virguliforme ) and conformed to Fusarium tucumaniae .  相似文献   

12.
大豆枯萎病菌尖孢镰孢遗传多样性及大豆品种抗性   总被引:2,自引:0,他引:2  
 了解大豆枯萎病菌的群体遗传特征及明确大豆种质对大豆枯萎病的抗性,对抗病育种、抗性品种的合理布局以及制定更有效的病害防治策略具有重要的参考价值。本研究利用随机扩增多态性DNA(random amplified polymorphic DNA,RAPD),对采自我国不同地区的大豆枯萎病菌—尖孢镰孢菌(Fusarium oxysporum)进行遗传多样性分析,筛选到10个多态性随机引物,共扩增出75条RAPD条带,其中55条为多态性条带,占73.3%。利用UPGMA法对DNA扩增图谱进行聚类分析,以相似系数0.68为阈值,55个分离物可分为9个遗传聚类组,表明我国大豆枯萎病菌具有丰富的种内遗传多样性,所划分的群体与分离物来源地不相关。同时,对上述分离物进行致病性分析,发现我国的大豆枯萎病菌具有明显的致病力分化现象。进一步利用3个代表性分离物对来自我国不同大豆产区的180个大豆品种(资源)进行抗大豆枯萎病鉴定,发现皖豆28、中黄13、中黄51、中作X08076和5D034等5个品种对大豆枯萎病具有良好抗性,占供试材料的2.8%,表明不同大豆品种对枯萎病的抗性存在一定的差异。  相似文献   

13.
Soybean (Glycine max) is the most important crop in Argentina. At present Fusarium graminearum is recognized as a primary pathogen of soybean in several countries in the Americas, mainly causing seed and root rot and pre‐ and post‐emergence damping off. However, no information about infections at later growth stages of soybean development and pathogenicity of F. graminearum species complex is available. Therefore, the objectives of this study were to compare the pathogenicity of F. graminearum and F. meridionale isolates towards soybean under field conditions and to evaluate the degree of pathogenicity and trichothecene production of these two phylogenetic species that express different chemotypes. Six isolates of F. graminearum and F. meridionale were evaluated during 2012/13 and 2013/14 soybean growing seasons for pod blight severity, percentage of seed infected in pods and kernel weight reduction. The results showed a higher aggressiveness of both F. graminearum and F. meridionale species during the 2013/14 season. However, the differences in pathogenicity observed between the seasons were not reflected in a distinct trichothecene concentration in soybean seeds at maturity. Fusarium meridionale isolates showed similar pathogenicity to F. graminearum isolates but they were not able to produce this toxin in planta during the two field trials.  相似文献   

14.
Asparagus decline is a disease associated with several species of Fusarium . In order to assess the relative significance of causative species, single-stranded conformational polymorphism (SSCP) analysis of the ITS2 (internal transcribed sequence) region of the ribosomal DNA was used to rapidly and objectively identify the fusarial populations associated with the roots of two intensively sampled asparagus crops, one in the UK and the other in Spain. Over 360 fusarial isolates were obtained from fields showing symptoms of asparagus decline, and most were easily differentiated by SSCP into four principal species, F. oxysporum f. sp. asparagi , F. proliferatum , F. redolens and F. solani . Fusarium oxysporum f. sp. asparagi (Foa) was most frequently isolated from the UK site (69%), whilst Foa and F. proliferatum were found in similar proportions overall (40 and 39%, respectively) from the Spanish site, although individual fields showed considerable intraregional variation. Other minor populations, such as F. culmorum , were also found. Most isolates were highly pathogenic to asparagus in vitro , although F. solani isolates comprised both pathogenic and nonpathogenic populations. Two populations of Foa were distinguished by a single ITS2 base transition, and the dominance of these two populations differed between Europe and the USA. Fusarium proliferatum was more abundant in Spain than in the UK. Phylogenetic analysis using EF1α sequences indicated that isolates of F. oxysporum pathogenic to asparagus are spread across a number of clades within the species complex, supporting the hypothesis that pathogenicity to asparagus in this species is a relatively unspecialized trait.  相似文献   

15.
The genetic diversity and pathogenicity of isolates of Fusarium graminearum and F. asiaticum isolated from wheat heads in China were examined and compared with those of isolates of F. graminearum , F. asiaticum and F. meridionale from Europe, USA and Nepal. Genetic diversity was assessed by SSCP (single strand conformation polymorphism) and AFLP (amplified fragment length polymorphism) analysis and by molecular chemotyping. SSCP analysis of the Fg16F/Fg16R PCR amplicon differentiated F. graminearum , F. asiaticum and F. meridionale and revealed three haplotypes among sequence-characterized amplified region (SCAR) type 1 F. graminearum isolates. AFLP analysis showed a high level of genetic diversity and clustered the majority of Chinese isolates in one group along with other isolates of Asian origin. The second cluster contained F. graminearum isolates from China, Europe and the USA. Of the Chinese isolates, 79% were F. asiaticum and 81% of these were of the 3-AcDON chemotype, with only 9·5% of either chemotype 15-AcDON or NIV. All the Chinese and USA isolates of F. graminearum were 15-AcDON, whereas among the isolates from Europe, 21% were NIV and 8% were 3-AcDON chemotype. No evidence was found for possible differences in aggressiveness between F. graminearum and F. asiaticum . Highly aggressive isolates were present in each region and no evidence was found for any association between aggressiveness and geographical origin or chemotype among the isolates examined. No difference was observed in pathogenicity towards wheat seedlings between Chinese isolates and those from Europe, the USA or Nepal.  相似文献   

16.
Mango malformation is a serious disease in tropical and subtropical areas of the world and has been attributed to various Fusarium spp., including F. mangiferae , F. proliferatum , F. sacchari , F. sterilihyphosum and F. subglutinans . Isolates of Fusarium associated with mango malformation from Brazil, Egypt, India, South Africa and the United States were evaluated through amplified fragment length polymorphisms (AFLPs) and partial DNA sequences of the genes encoding β-tubulin ( tub2 ) and translation elongation factor 1-α ( tef1 ). These techniques were used to delimit species and to estimate the genetic and phylogenetic relatedness of the isolates. In the AFLP analysis, most of the Brazilian isolates formed a unique cluster. Additionally, one small cluster was formed by isolates of F. sterilihyphosum from Brazil and South Africa, and another by isolates of F. mangiferae from Egypt, India, South Africa and the United States. In the phylogenetic analysis, most of the Brazilian isolates represented a new phylogenetic lineage in the Gibberella fujikuroi species complex, where they formed a sister clade to F. sterilihyphosum. Representatives of both clades were pathogenic to mango (cv. Tommy Atkins) and Koch's postulates were completed for isolates belonging to the new lineage and to F. sterilihyphosum . Thus, most of the mango malformation disease in Brazil is due to a distinct phylogenetic lineage of Fusarium , and to a lesser extent by F. sterilihyphosum. The new phylogenetic lineage identified in this study, together with F. mangiferae and F. sterilihyphosum , are the only known taxa of Fusarium proven to be capable of causing mango malformation.  相似文献   

17.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

18.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

19.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号