首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The present study deals with the effects of addition of sulfur along with other acidifying agents for their ability to lower and maintain the pH in a given range for a longer period of time. The chemicals were subjected to batch test individually and in combinations. Treatments were applied to three soils of different textures: sandy clay loam, clay loam, and silt loam. A 1:1 soil/water paste along with the added amendment was maintained at room temperature for 2 months. Most of the chemical treatments lowered the pH significantly. Combinations containing S/Al2(SO4)3/H2SO4, S/Al2(SO4)3/H2O2, and S/H2O2/H2SO4 were found to be very effective in lowering the pH. The soil pH remained acidic for 2 months, indicating the suitability of chemically amended soil for the plantations requiring acidic soil pH.  相似文献   

2.
Summary Research was conducted to study the effect of nutrient compositions, at different levels, added in peat hydrolysates on biomass yields and protein of Candida tropicalis. Samples of Minnesota sphagnum peat were hydrolyzed by boiling at 100°C with 1-1 H2SO4 solutions to produce peat hydrolysates which can support the growth of yeast. Peat hydrolysates were adjusted to pH 5.5 and mixed with mineral nutrients (NH4NO3, NaH2PO4 + Na2HPO4, KCl, and MgSO4) and glucose. Among the single nutrients tested, glucose produced the most significant enhancement of biomass yields, followed by NH4NO3, NaH2PO4 + Na2HPO4, KCl, and MgSO4. NH4NO3 was found to be the most important single nutrient affecting protein accumulation in yeast cells, followed by glucose > NaH2PO4 + Na2HPO4 > KCl > MgSO4. However, protein and biomass production was significantly (P 0.05) greater for combined nutrients than for any single-nutrient enrichment. The level of residual reducing sugars in peat hydrolysate was inversely proportional to cell counts and optical densities. Addition of high concentrations of nutrients delayed the time of reaching to stationary phase in optical density, cell counts, and pH of yeast cultures. In general, as nutrients were increased, significant (P 0.05) increases in productivity and cell density were observed. However, specific growth rate decreased with increasing nutrient concentrations. It was concluded that nutrient amendments containing supplementary sources of C/N/P/K/S = 400:36:3.3:3.8:1 are most suitable for biomass production and the biosynthesis of protein by C. tropicalis.  相似文献   

3.

Purpose

The purpose of the present study is to examine the effect of phosphate on the aggregation kinetics of hematite and goethite nanoparticles.

Materials and methods

The dynamic light scattering method was used to study the aggregation kinetics of hematite and goethite nanoparticles.

Results and discussion

Specific adsorption of phosphates could promote aggregation through charge neutralization at low P concentrations, stabilize the nanoparticle suspensions at medium P concentrations, and induce aggregation through charge screening by accompanying cations at high P concentrations. Two critical coagulation concentration (CCC) values were obtained in each system. In NaH2PO4, the goethite CCC at low phosphate concentrations was smaller than hematite and vice versa at high phosphate concentrations. Stronger phosphate adsorption by goethite rapidly changed the zeta potential from positive to negative at low phosphate concentrations, and the zeta potential became more negative at high phosphate concentrations. The clusters of hematite nanoparticles induced by phosphate adsorption had an open and looser structure. Solution pH and the phosphate adsorption mechanisms in NaH2PO4, KH2PO4, and Na3PO4 solutions affected zeta potential values and controlled the stability of hematite suspensions during aggregation. High pH and preference for non-protonated inner-sphere complexes in Na3PO4 solution decreased the zeta potential of positively charged hematite and promoted aggregation. Activation energies followed the order NaH2PO4 > KH2PO4 > Na3PO4 at low P concentrations. K+ was more effective than Na+ in promoting hematite aggregation due to the non-classical polarization of cations.

Conclusions

Phosphate can enhance or inhibit the aggregation of hematite and goethite nanoparticles in suspensions by changing surface charge due to specific adsorption onto the particles. The phosphate-induced aggregation of the nanoparticles mainly depended on the initial concentration of phosphate.
  相似文献   

4.
A computer simulation was done to illustrate how the equilibrium solubility and speciation of Al in well-aerated soil solutions may be affected by pH (from 2.0 to 10.0), organic acids (citric, oxalic, phthalic, and salicylic acid), metal ions (K, Mg, Ca, Al, Fe), inorganic ligands (F, OH, SO4, PO4, CO3, and SiO3), and type of Al-containing solid [kaolinite, gibbsite, or amorphous Al(OH)3] thought to be present. The simulation indicated that the type of Al-oxide/hydroxide considered has a substantial influence on the inorganic and organic equilibrium composition of the soil solution, and on the occurrence (or non-occurrence) of other Al-minerals such as KA13(SO4)2(OH)6 (alunite) and Al(SO4)(OH)-5H2O (jurbanite).  相似文献   

5.
The pH and amount of rainfall from over 60 selected stations throughout northern and lower Michigan was determined from September 1972 to December 1974. Precipitation pH was determined for each station by calibrated electrode meters. The seasonal weighted average and median pH from all stations in the study was 5.0 and 6.3, respectively. Daily readings from stations throughout Michigan indicate that pH is dependent on the amount of rainfall and that variations in it are often locally controlled. Collectively the pH values suggest carbonic acid control for most of the state. Annual median pH varied from a high of 8.45 at Dimondale, a station located 1.5 km from a concrete tile plant in central Michigan to 4.65 at Vassar, a small town located east of several industrial centers in the thumb region of the state. A comparison of annual nutrient loading for NO 3 ? , SO 4 = , Cl?,PO 4 , Ca++, Mg++ Na+ K+ and pH of rainwater from selected stations revealed that the eastern U.S. stations reporting pHs < 4.02 have similar loadings for NO3 but twice the SO4 input found for rural areas of Michigan.  相似文献   

6.
An extraction mixture comprised of 0.67 m H3PO4, 2 m urea, 20% DMSO, 1.8 mg of adenosine, 20 mM EDTA, and 1% Zwittergent 3,10 and a procedure to extract ATP from soil have been developed. The reagents and method were tested on six different Oklahoma soils and yielded a recovery of 99% of the ATP from added Escherichia coli cells. The extraction mixture was designed to minimize interference from soil-derived materials. The phosphoric acid provides acid to extract ATP and to inactivate proteins, and phosphate to saturate phosphate-binding sites. It also complexes or precipitates metal ions. The EDTA chelates metal ions, prevents inhibition of luciferase, and aids lysis of bacterial cells. The adenosine serves to saturate ATP binding-sites. Urea denatures proteins and prevents hydrogen bonding of the released ATP. DMSO, the Polytron treatment, and Zwittergent 3,10 remove cells from surfaces and lyse them. An internal standard of E. coli cells is used to determine efficiency of extraction and assay. When compared with the 12 best methods suggested by previous studies, the newly-formulated extractant and procedure yielded the greatest amount of ATP from soil.  相似文献   

7.
Suspensions of Al(OH)3 gel, gibbsite or alumina were loaded with varying amounts of Cu, Cd, Zn, or Pb ions by varying the system pH. A complex relationship between metal uptake and equilibrium pH was noted (due to substrate buffering) but total loss of metal ion from solution was observed at pH > 6.5. The pre-loaded particles were back-extracted with fifteen different chemical solutions and the percentage of sorbed ion retrieved generally varied along the sequence NaCl, CaCl2 < MgCl2, NH4NO3 < CH3OOONH4, Na citrate, Na4P2O7, EDTA, DTPA ≈ CH3OOOH, H2C2O4, HCI, HN03. The recovery value varied with initial surface loading and an observed minimum around 1 gruel M2+ per 20 mg solid is considered to reflect changes in metal species nature (e.g., bonded M2+, MOH+, precipitated M(OH)2) and substrate surface charge. In the ‘minima’ region less than 10% of metal ion was displaced by many reagents. With different loadings up to 40% was displaceable by salts (i.e., weakly sorbed) while acids or complex formers at times released over 90 % of the pre-sorbed metal species. It was concluded that the degree of metal ion interaction varied with the initial system pH, with retention being due to a combination of weak adsorption, occlusion in gels, chemi-sorption and precipitation of M(OH)2.  相似文献   

8.
盐渍化土壤水分有效性是制约土地生产能力的关键因素之一。研究不同盐分类型及矿化度的盐溶液对土壤水分有效性的影响, 可为微咸水合理灌溉以及促进土壤生产潜力的发挥提供科学依据。本研究采用离心法在室内研究了脱水过程中灌溉水的溶质类型(NaCl和Na2SO4)与矿化度(0、1 g·L-1、3 g·L-1、5 g·L-1、10 g·L-1)对半干旱盐渍化地区果园土壤水分有效性的影响。结果表明: 不同矿化度的NaCl和Na2SO4处理均可使田间持水量、暂时萎蔫系数、永久萎蔫系数、迟效水和无效水较对照有所降低。不同矿化度的NaCl处理以及1 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照增加, 3 g·L-1、5 g·L-1和10 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照减小。不同矿化度的NaCl和Na2SO4处理均可使土壤通气孔隙和毛管孔隙相对减少, 非活性孔隙增大, 其中矿化度为5 g·L-1的NaCl和Na2SO4处理对其影响最为明显, 通气孔隙分别较对照减小16.8%和14.8%, 毛管孔隙分别较对照减小5.2%和6.5%, 非活性孔隙分别较对照增加15.7%和14.4%。NaCl对于土壤比水容量和毛管断裂的延迟效果比NaSO4明显。且土壤溶液盐分含量增加, 土壤持水能力下降、供水性能增加而土壤抗旱性降低。  相似文献   

9.
Stability of humus in the plow layer soil is considered to affect the quantity and quality of dissolved organic matter leached from the plow layer soil. Therefore, a model experiment was conducted to analyze the effect of soil reduction under submerged conditions on the stability of humus in the plow layer soil. The changes in the stability of humus in the plow layer soil during submerged incubations with and without rice straw application were evaluated based on the changes in the binding type of humus. Binding type of humus in the plow layer soil was analyzed by successive extractions of organic matter with water, 0.25 M Na2SO4, 0.1 M Na4P2O7 (pH 7.0), 0.1 M Na4P2O7 (pH 10.5), and 0.1 M Na4P2O7 (pH 10.5) with NaBH4. Amounts of Fe, Mn, and Mg in each fraction were also determined to estimate the relationships between humus and metals.

The successive extraction of humus indicated that the amount of organic carbon which was extractable with the (NaBH4 +0.1 M Na4P2O7) solution decreased while that of the 0.1 M Na4P2O7 (pH 7.0}-extractable organic carbon increased during submerged incubation with rice straw application. The origin of the increase in the amount of organic carbon in the Na4P2O7 (pH 7.0)-extractable fraction during submerged incubation was investigated further by another incubation experiment using 13C-glucose as a reducing agent. Atom- 13C% analysis showed that the contribution of organic carbon derived from compounds other than glucose to the increase in the contents of humic acids and fulvic acids in the Na4P2O7 (pH 7.0)-extractable fractions was ca. 80%. Therefore, it was concluded that the binding type of humus changed from (NaBH4 + Na4P2O7)-extractable to Na4P2O7 (pH 7.0)-extractable humus under reducing conditions. Since the amounts of organic carbon and Fe increased in the Na4P2O7 (pH 7.0)-extractable fraction and decreased in the (NaBH4 +0.1 M Na4P2O7)-extractable fraction simultaneously, iron reduction was presumably associated with the change in the binding type of humus in submerged paddy soil.  相似文献   

10.
Knowledge of clay dispersion behaviour [which is highly influenced by ion concentration in the aqueous phase and by related surface charge (SC) of colloids] is important for rating soil erosion risk (by water). It can also be useful for improving soil management systems. Clay fractions separated from samples of the A‐horizon of a Vertisol, Ultisol and Oxisol were collected, representing typical soils of North Cameroon. These soils were very different in physicochemical and mineral parameters. The effect of pH and the multivalent ions Ca2+, SO42− and PO43− on SC and dispersion characteristics were determined. The water dispersible clay was found to be higher in the Vertisol and Ultisol than in the Oxisol, indicating that the <2 µm fractions from the Vertisol and Ultisol are more dispersible than that from the Oxisol. The clay dispersion ratio together with the dispersion ratio were found to be in good agreement with water dispersible clay and are negatively correlated with the amount of organic matter and dithionite citrate bicarbonate soluble Fe and Al. Generally, SC of the <2 µm fraction was found to be negative when the pH was in the region of 3 to 9; thus the absolute value is highly pH‐dependent. At pH 6 and 8, CaCl2, Na2SO4 and Na2HPO4 additions had antagonistic effects on SC: Ca2+ increased SC, whereas SO42− and PO43−decreased SC indicating the adsorption of positively as well as negatively charged multivalent ions by soil colloids. Along with the increase of SC, there was a fall in repulsive forces and formation of Ca‐bridges, the addition of Ca2+ induced flocculation more rapidly than SO42− and PO43− amendments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

12.
The atmospheric deposition of air pollutants at a forest edge was studied by means of monitoring canopy throughfall at the edge and at five different parallel lines in the forest behind the edge. The investigation was carried out at a pine forest on the Swedish west coast. Throughfall and bulk deposition samples were analyzed for volume, SO 4 2? , NO 3 ? , Cl?, NH 4 + , Na+, K+, Mg2+, Ca2+, and for pH. The results show that the throughfall flow at the edge was increased substantially for most ions. The ratios in throughfall flows between the edge and the line 50 m into the forest were for SO 4 2? , 1.5, NO 3 ? 2.9, NH 4 + 2.7, and Na+ 3.1. Since this effect is not only valid for forest edges but also for hillsides, hilltops, and edges between stands of different age, etc., there might be substantial areas which get much larger total deposition than the normally considered closed forest.  相似文献   

13.
The relations between pH, different fractions of Fe and A1 and Na4P2O7-soluble C and the amount of adsorbed SO2-4 were assessed by analysing 63 soil samples from 14 podsolized soils in Sweden. The amount of adsorbed SO2-4 was significantly better correlated with the calculated amount of the inorganic fraction of Fe and A1 oxides obtained by subtracting Na4P2O7-soluble Fe and A1 from oxalate-soluble Fe and Al than with the oxalate extraction alone. There was a close correlation between C and organically-bound S in the Na4P2O7 extract which shows that the C:S ratio of the extracted fulvic acids is about constant in the soils studied. It was found that, as the proportion of organically-complexed Fe and Al increases, the ability of the soil to adsorb SO2-4 decreases. The amount of adsorbed SO2-4 expressed on the basis of the amounts of oxalate-soluble Fe and Al was generally smaller in areas with low S deposition (< 60 mmol m-2 a-1). The ratio between pyrophosphate-soluble C and oxalate-extractable Fe and Al was negatively correlated with pH in water. It was concluded that Fe and Al associated with organic matter cannot adsorb SO2-4 and that the degree of this association is pH dependent. These observations have important implications regarding the effects of anthropogenic acidification.  相似文献   

14.
The condition around coniferous trees in the soil is becoming gradually acidic when acid rain falls continuously. Nutrient uptake by the roots of coniferous trees could be affected in such environmental change of root zone. The experiments of water culture of coniferous seedlings in modified systems were carried out using (2-and, 3-year-old) of Japanese cedar(Cryptomeria japonica) and, Japanese cypress(Chamaecyparis obtusa) that are the typical Japanese forest trees. Nine major nutrients such as Na+, NH4 +, K+, Ca2+, Mg2+, Cl?, NO3 ?, PO4 3?, and SO4 2?, were given in the water culture solution and growth of trees was observed for two years. The aspects of nutrient uptake by these seedlings and the effects of acidity in culture solution were observed. The following results were obtained. 1) Japanese cedar of 50% and Japanese cypress of 30 % in tested seedlings could live for two years. 2) All Japanese cedar and cypress that started in the strong acidic condition ( pH=3.0) were dead within three months. 3) The minimum pH value in the acidic condition is estimated as 3.2 for these coniferous seedlings, and it means that they can live at least for two years in this condition. 4) The seasonal pattern of the uptake of nitrogen nutrient by Japanese cedar was determined.  相似文献   

15.
Low atmospheric H2 concentrations (0.55 ppmv) are oxidized in soils by a high-affinity activity with typical characteristics of an abiontic soil enzyme. This activity was measured in a meadow cambisol and a forest cambisol. In both soils, the maximum activity was reached at a soil moisture of about 20% water-holding capacity, and was localized in the top Ah horizon. The soils were fractionated by dry sieving and wet filtration into nine different particle-size fractions, ranging from 3 to 2000 m in size. H2 oxidation was measured by three different assays and was compared to the ATP content and microscopic counts of bacteria in the same fractions. In the meadow soil, the specific activities of H2 oxidation increased with the particle size (maximum at 200–500 m), whereas ATP and bacterial counts showed no trend. In the forest soil, the specific activities of H2 oxidation increased with the particle size up to 50–100 m, and then decreased again. ATP and bacterial counts, however, showed the opposite trend, i.e., decreased with an increasing particle size. Thus the H2-oxidizing activity was not correlated with characteristic microbial biomass parameters. Although significant percentage (29–64%) of randomly isolated heterotrophic bacteria was able to oxidize H2, this activity was too small to account for the H2 oxidation in the soil. In both soils, most of the activity present was found in particles of 100–500 m in size. The recovery shifted to smaller size fractions when larger soil aggregates were broken up by wet instead of dry sieving. Attempts to extract the H2-oxidizing activity from the soil particles were unsuccessful.  相似文献   

16.
The aim of this trial was to study the spatio-temporal variability in solution nutrient concentration under intensive greenhouse tomato production, to determine the number of suction-cups needed to obtain a representative sample and the influence by the position in the greenhouses. Twenty sampling points were selected within the greenhouse with one suction-cup per sampling point. One soil solution were sampled per point at weekly intervals to analyze for pH, electrical conductivity, chloride, nitrate, phosphate, sulfate, sodium, potassium, calcium, and magnesium (EC, Cl?, NO3?, H2PO4?, SO42—, Na+, K+, Ca2+, and Mg2+) concentrations. The pH, Cl?, H2PO4?, and SO42? concentrations showed no spatio-temporal variation but EC, NO3?, and K+ showed temporal variation. The spatial variability in EC, K+, Na+, Mg2+, and Ca2+ can be influenced by microclimate and topography. The numbers of suction cups required for a representative sample ranged from 1 to 10 depending on nutrient.  相似文献   

17.
The Nandong Underground River System (NURS) is located in Southeast Yunnan Province, China. Groundwater in NURS plays a critical role in socio-economical development of the region. However, with the rapid increase of population in recent years, groundwater quality has degraded greatly. In this study, the analysis of 36 groundwater samples collected from springs in both rain and dry seasons shows significant spatial disparities and slight seasonal variations of major element concentrations in the groundwater. In addition, results from factor analysis indicate that NO 3 ? , Cl?, SO 4 2? , Na+, K+, and EC in the groundwater are mainly from the sources related to human activities while Ca2+, Mg2+, HCO 3 ? , and pH are primarily controlled by water–rock interactions in karst system with Ca2+ and HCO 3 ? somewhat from anthropogenic inputs. With the increased anthropogenic contaminations, the groundwater chemistry changes widely from Ca-HCO3 or Ca (Mg)-HCO3 type to Ca-Cl (+NO3) or Ca (Mg)-Cl (+NO3), and Ca-Cl (+NO3+SO4) or Ca (Mg)-Cl (+NO3+SO4) type. Concentrations of NO 3 ? , Cl?, SO 4 2? , Na+, and K+ generally show an indistinct grouping with respect to land use types, with very high concentrations observed in the groundwater from residential and agricultural areas. This suggests that those ions are mainly derived from sewage effluents and fertilizers. No specific land use control on the Mg2+ ion distribution is observed, suggesting Mg2+ is originated from natural dissolution of carbonate rocks. The distribution of Ca2+ and HCO 3 ? does not show any distinct land use control either, except for the samples from residential zones, suggesting the Ca2+ and HCO 3 - mainly come from both natural dissolution of carbonate rocks and sewage effluents.  相似文献   

18.
Short-term and medíum-term effects of liming (CaCO3), fertilization [5Ca(NO)3)2·NH4NO3], and acidification on soil bioactivity were measured in a spruce stand in Southern Germany. The experiment was set up in a randomized block design. Acid precipitation lowered the pH, liming increased the pH, while fertilization caused only small alterations in pH values. Significant differences in soil moisture occurred only in the mineral horizons. The soil ATP content of the humus layers decreased in all plots (control included) up to day 100. On all sampling dates, a pronounced decrease in ATP content followed the acidification. Minor decreases in ATP were observed after fertilization, while liming produced no defined effects. Similar trends, but less pronounced, were observed in the mineral horizons. Only a few significant correlations were found between pH values and ATP or between moisture and ATP within a treatment and sampling date. Present address: Institut für Biologie II (Zoologie), RWTH Aachen, Kopernikusstrasse 16, D-52056 Aachen, Germany  相似文献   

19.
A simple method is presented and used to estimate the portions of SO inf4 sup2? and NO inf? sup3 that contribute to the strong acidity in weekly precipitation samples collected at three NADP sites in the eastern United States. The method assumes that, in general, the difference between SO inf4 sup2? and NH inf+ sup4 represents acidic sulfate and the difference between NO inf? sup3 and soil-derived materials (the sum of Ca2+, Mg2+, and K+) represents acidic nitrate. Acidic sulfate and nitrate are considered to be the predominant source of H+ (determined from laboratory pH) in the weekly precipitation samples. Most of the acidity for all three sites was attributed to acidic sulfate. The highest fraction of acidic SO inf4 sup2? to H+ wet deposition values was for the east-central Tennessee site (0.95) and the northeastern Illinois site (0.90), and the lowest fraction occurred at the central Pennsylvania site (0.75). The Tennessee site had the greatest acidic fraction of sulfate (0.84) and the Pennsylvania site had the greatest acidic fraction of nitrate (0.59).  相似文献   

20.
The purpose of the present study was to assess the rate of recovery of acidified lakes located near the town of Coniston following an abrupt reduction in atmospheric SO2 and metal emissions at the Coniston smelter which closed in 1972. The water chemistry of several lakes was studied over a period of 16 yr (1968–1984). In one extremely acidic lake close to the smelter, the pH increased from 4.05 in 1972 to 5.8 in 1984. Conductivity, as well as concentrations of SO4, Cu, Ni, Co, Mn, and Zn decreased by 60% to 90% in the lake water during the same period. In another initially less acidic lake nearby, the increase in pH was less dramatic, while the decrease in conductivity, SO4, and some metals was similar to that of the more acidic lake. Local SO4 deposition decreased approximately 75 % while Cu and Ni deposition decreased by 90% following closure of the Coniston smelter. These results indicate that even severely acidified lakes can improve within a few years following a substantial reduction in atmospheric S emissions; and that in some regions recovery can occur due to reductions in SO2 emissions even in the absence of concurrent NOx control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号