首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study proposes a combination for reciprocal reinforcement between warp knitting spacer fabrics and PU foams. PET/Kevlar nonwoven fabrics are made with an 80:20 ratio and an incorporation of various needle-punching speed of 100, 150, 200, 250, and 300 needles/min. Ascribing to having an optimal bursting strength, sound absorption coefficient, and limited oxygen index (LOI), the PET/Kevlar nonwoven fabric that is made by 200 needles/min are selected to be combined with a glass-fiber fabric by applying needle punch in order to form a surface layer. Next, warp knitting spacer fabrics and the nonwoven fabrics are laminated, followed by being combined with polyurethane (PU) foam that are featured with different densities of 200, 210, 220, 230, and 240 kg/m3 in order to form spacer fabric/PU foam composites with multiple functions. The composites are then tested with a drop-weight test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that all spacer fabric/PU foam composites reach a horizontal burning level of HF1, and their sound absorption coefficients at 2500-4000 Hz also suggest a satisfactory sound absorption. In particular, the optimal residual stress and compressive strength are present when the composites contain 210 kg/m3 PU foam. Similarly, the optimal bursting strength of the composites occurs when they are composed of 230 kg/m3 PU foam. The spacer fabric/PU foam composites are proven to have high strengths, sound absorption, and fire retardant, and thus have promising potentials for use as construction materials and light weight composite planks.  相似文献   

2.
This study used recycled fibers and inflaming retarding fibers to form composite nonwoven and then compounded with PU foam preparing composite board with sound-absorbing, thermal-insulating and cushion properties. Effects of foam density and composite nonwoven on three properties of PU composite board have studied. Result shows that, with increase of foam density, composite boards had higher sound absorbing coefficient at medium and high frequencies, lower thermal insulation as well as firstly improved and then decreased cushion property. After assessment, the optimal foam density was 60 kg/m3. For diverse requirements, PU foam matches with different kinds of composite nonwoven to achieve excellent cushion property. The resulting composite board can effectively ease hurts from rigid wall, and could be applied in kindergarten, music hall, audio-visual room, pub and recreational centre etc in the future.  相似文献   

3.
The energy of impact must decay and be transmitted after a bullet is shot through a ballistic-resistant cloth with a laminate structure. A rigid net structure transmits the impact stress to reduce the breakage of the material in the direction perpendicular to the fabric after the impacting of a projectile. This work combines the rigid net structure of stainless steel mesh with two layers a needle-punched polyamide nonwoven fabric to create a sandwich-like laminate structure. A compound fabric that is composed of a stainless steel mesh and polyamide nonwoven fabrics is placed in multi-layer Kevlar fabrics, and the buffer effect is measured by performing a dropping weight impact test and a bullet-shooting test. The specifications of the stainless steel mesh and the order of placement of the compound fabrics are varied to show the effect of these parameters on the energy of fracture propagation and the buffer effect of the multi-layered Kevlar compound fabric that includes a layer of compound fabric that is made of stainless steel mesh and polyamide nonwoven fabrics. In this study, the compound fabric replaces several layers of Kevlar unidirectional fabric, to be used to reduce the cost of bulletproof vests without reducing ballistic resistance.  相似文献   

4.
The aim of the presented research was to study the influence of surface layer material on improvement of impact, dielectric, EMI shielding and sound absorption properties of sandwich composites. The sandwich composite structure consisted of Kevlar or Carbon woven fabric at the surface layer, recycled high loft nonwoven in the center and a mixture of carbon particles/epoxy matrix as a binder to hold the surface layer and core together. The carbon particles were incorporated in epoxy in order to improve failure mechanism and enhance dielectric properties or electromagnetic shielding of sandwich composites. The biggest improvements on impact properties of sandwich composites were obtained when Kevlar fabric was used as surface layer. However, surface layer of carbon fabric was found to provide better dielectric properties and improve EMI shielding of sandwich composites against Kevlar fabric surface layer.  相似文献   

5.
The aim of this study is to examine the efficacy of the coconut fiber on the sound absorption and thermal insulation performance towards the composite nonwoven fabrics. The 2D polyester fiber and 12D fire retardant three-dimensional hollow crimp polyester fiber are individually mixed with 4D low-melting point polyester fiber (4DLMf) to produce 2D polyester nonwoven fabric (2D-PETF) and 12D polyester nonwoven fabric (12D-PETF) respectively. Subsequently, the coconut fiber (CF) is then laminated with the 2D-PETF and 12D-PETF to fabricate two types of PET/CF composite boards through the multiple needle-punching techniques. Accordingly, the sound absorption, thermal insulation, Limiting Oxygen Index and relative mechanical properties of the PET/CF composite boards are evaluated properly. The experimental results reveal that both types of PET/CF composite boards possess excellent thermal insulation performance and fire resistance property. Also, for both types of PET/CF composite boards, the average sound absorption coefficient increases with the increased amount of CF.  相似文献   

6.
Sound absorption property, viscoelastic property and the effect of plasma treatment of four automotive nonwoven fabrics on these properties are discussed in this research paper. Needle-punched fabrics used for vehicle headliner include 2 polyester fabrics made of hollow polyester fibers or solid polyester fibers, and 2 polypropylene-composite cellulose fabrics made of jute fibers or kenaf fibers, manufactured with the same web structure of apparent fabric density and fabric thickness. Hollow polyester fiber fabric has the highest sound absorption and the highest loss factor, the second highest is jute fiber fabric. The viscoelastic property is found to be related to the sound absorption property of fabric. The plasma treatment on nonwoven fabrics changes their sound absorption and viscoelastic property as well as their fabric weight and pore size. Hollow polyester fabric shows the increased sound absorption and viscoelastic property after the treatment with the increased pore sizes, while regular polyester fabric displays insignificant changes. The cellulose fabrics are more affected by plasma treatment compared to the polyester fabrics in terms of fabric weight loss and pore size, and jute fabric is more affected than kenaf fabric due to fiber weakness. The jute fabric demonstrates the decreased sound absorption and viscoelastic property, while kenaf fabric shows the increased sound absorption with the unchanged viscoelastic property after the treatment.  相似文献   

7.
For their functional enhancement, sanitary nonwoven fabrics with a relatively smooth surface were treated using chitosan, a natural polymer with excellent biocompatibility, and nanosilver colloid solution, which has strong antibacterial effects even when used in small amounts. The treatment effect was examined at various mixing ratios. When the mixing ratio of the nanosilver solution was higher, antibacterial and deodorization activity was increased. For CH3/NS1 treated fabric, when the mixing ratio of chitosan and nanosilver solution was 3:1, the air permeability was most excellent, and worked as a positive in improving the pleasantness of the sanitary nonwoven fabric. In all samples, the electrostatic propensity was reduced, regardless of the mixing ratio. In terms of the moisture characteristics of chitosan/nanosilver treated nonwoven fabrics, the moisture uptake was found to be superior in the CH3/NS1 treated fabric. When the mixing ratio of the nanosilver solution was higher, moisture permeability decreased, showing a similar tendency to that of air permeability. The vertical water permeability coefficient increased in all treated fabrics. The dynamic water absorption rate was good in CH4 and CH3/NS1 treated fabrics. This means that the absorption of water in the liquid state became easier, thus improving applicability as sanitary nonwoven fabrics.  相似文献   

8.
A simple and effective method for impregnation of p-aramid (Kevlar®) fabric with shear thickening fluid (STF) has been developed in this research. Kevlar fabric was impregnated with STF in two stages in a sequential manner. Three levels of pressure (0.5, 1 and 2 bar) were used in each stage of impregnation. It was observed that impact energy absorption by Kevlar fabrics, impregnated with STF in this newly developed method, increased significantly as compared to untreated Kevlar fabrics and Kevlar fabrics treated with STF in conventional way (single step impregnation). Better results were obtained when the first impregnation pressure was higher than that of the second, even with same combination of pressures. Such fabrics also showed a much higher STF add-on (~18 %) as compared to that of fabrics impregnated in single step (3-5 %). Low velocity ballistic tests also confirmed the advantages of the new method as sequentially impregnated fabric showed 124.8 % and 24.4 % increase in impact energy absorption compared to untreated and STF impregnated Kevlar fabrics in single step, respectively.  相似文献   

9.
Fabric porosity is the result of fabric constructional parameters combination and used technology of nonwoven production. The effects of fabric porosity structure, as well as the content of hydrophilic viscose and hydrophobic polyester fibres in the web mixture, on the vertical wicking rate by nonwoven fabrics have been explored in this research. Fibrous webs with a different content of viscose and polyester fibres, with the web volume mass range of 0.019-0.035 g/cm3 were utilized during this study. The samples were produced using a dry-laid method of web forming and two methods of web bonding, e.g. needle punching and calendar bonding. Results show that higher volume porosity gives higher vertical wicking rate by all groups of tested samples regarding the content of used hydrophilic/hydrophobic fibres and that fluid flow is faster in samples with larger pores. The higher content of viscose fibres improve the vertical wicking rate, but better rising height can be achieved at samples made from 100 % of coarser polyester fibres. A prediction model of vertical wicking rate of viscose/ polyester nonwovens was developed on the basis of the fundamental constructional parameters of nonwoven fabrics (fibre fineness, type of raw material, and web density) and a non-deterministic modelling method, e.g. genetic algorithms, which can serve as a useful tool for fabric engineers by developing a nonwoven fabric in order to fit desired wicking rate.  相似文献   

10.
Layered fabric systems with electrospun polyurethane fiber web layered on spunbonded nonwoven were developed to examine the feasibility of developing protective textile materials as barriers to liquid penetration using electrospinning. Barrier performance was evaluated for layered fabric systems, using pesticide mixtures that represent a range of surface tension and viscosity. Air permeability and water vapor transmission were assessed as indications of thermal comfort performance. Protection performance and air/moisture vapor transport properties were compared for layered fabric systems and existing materials for personal protective equipment (PPE). Layered fabric systems with electrospun nanofiber web showed barrier performance in the range between microporous materials and nonwovens used for protective clothing. Layered fabric structures with the web area density of 1.0 and 2.0 g/m2 exhibited air permeability higher than most PPE materials currently in use; moisture vapor transport was in a range comparable to nonwovens and typical woven work clothing fabrics. Comparisons of layered fabric systems and currently available PPE materials indicate that barrier/transport properties that may not be attainable with existing PPE materials could be achieved from layered fabric systems with electrospun nanofibrous web.  相似文献   

11.
Woven Kenaf/Kevlar Hybrid Yarn is the combination of natural and synthetic fibers in the form of thread or yarn. The yarn is weaved to form a fabric type of fiber reinforced material. Then, the fabric is fabricated with epoxy as the resin to form a hybrid composite. For composite fabrication, woven fabric Kenaf/Kevlar hybrid yarn composite was prepared with vacuum bagging hand lay-up method. Woven fabric Kenaf/Kevlar hybrid yarn composite was fabricated with total fiber content of 40 % and 60 % of Epoxy as the matrix. The fiber ratios of Kenaf/Kevlar hybrid yarn were varied in weight fraction of 30/70, 50/50 and 70/30 respectively. The composites of woven fabric Kenaf/Epoxy and woven fabric Kevlar/Epoxy were also fabricated for comparison. The mechanical properties of five (5) samples composites were tested accordingly. Result has shown that of value of strength and modulus woven fabric Kenaf/Kevlar Hybrid Yarn composite was increased when the Kevlar fiber content increased. Therefore, among the hybrid composite samples result showed the woven fabric Kenaf/Kevlar Hybrid Yarn composites with the composition of 30/70 ratio has exhibited the highest energy absorption with 148.8 J which 28 % lower than Kevlar 100 % sample. The finding indicated there is a potential combination of natural fiber with synthetic fiber that can be fabricated as the composite material for the application of high performance product.  相似文献   

12.
A novel graphene oxide/polyester (GO/PET) composite fabric as a recyclable adsorbent was prepared via electrostatic self-assembly. The structure, morphology, and properties of the GO/PET composite fabrics were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transformed infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and contact angle (CA), respectively. The absorption property was evaluated by the absorption amount and removal efficiency of methylene blue (MB) solution on the GO/PET composite fabric. The results indicated that the absorption amount was found to be 21.80 mg/g and the removal efficiency reached 99.93 % under the experimental conditions of GO concentration of 2 mg/ml, initial concentration of 50 mg/l, and area of 64 cm2. The experimental parameters were investigated including the concentration of GO, the initial concentration of MB solutions, and adsorbent area. Simultaneously, according to a series of dynamic analysis, the absorption process revealed that the kinetics was well-described by pseudo-second-order model. This study showed that the GO/PET composite fabric could be a recyclable, efficient adsorbent material for the environmental cleanup.  相似文献   

13.
This work deals with the study of acoustic performance of struto nonwovens and their relation to fabric air permeability. In order to achieve the objective of the research, sound absorption coefficient of struto nonwovens was determined via impedance tube method, the average value of sound absorption coefficient (α?) was calculated. Air permeability of struto nonwovens was examined by using FX3300 Textech Air Permeability Tester. Results showed that struto nonwoven exhibited good absorption ability at frequency bands 3000-6400 Hz while it was ineffective for frequency lower than 3000 Hz. Struto nonwovens with high GSM and fabric thickness showed better acoustic performance and lower air permeability. It was observed that α? was inversely proportional to air permeability, with correlation coefficient 0.95. It was concluded that air permeability can be used as a criterion of sound absorption behavior of struto nonwovens. A lower air permeability suggests a better sound absorption performance for struto nonwoven fabrics.  相似文献   

14.
This study prepared the novel laminated composites composed of a cushioning layer with double identical hybrid surface reinforcement laminates based on Kevlar fiber (KF)/carbon fiber (CF) and evaluated their acoustic and mechanical performance. The effects of reinforcing fiber type, fiber blending ratio, needle-punching frequency, and laminated sequence on the static bursting, dynamic cushioning and acoustic absorption ability of the composites were individually investigated. Results revealed that the cushioning capacity of the KF-hybrid composites was always superior to that of the CF-hybrid composites. The dynamic cushioning capacity of a hybrid composites with the cushioning layer at the intermediate position was superior to that of samples with a cushioning layer at the top and bottom positions. The CF-hybrid composites exhibited higher acoustic absorption coefficient at low (125 to 500 Hz) to mid frequencies (500 to 2000 Hz) but a lower value at high frequencies (2000 to 4000 Hz) than the KF-hybrid composites. The acoustic absorption curve and the corresponding sound absorption average were significantly affected by the needle-punching frequency. This influence diminished with an increase in needle-punching frequency. The cushioning layer at the top position enhanced the absorption ability at low to mid frequencies. Thus, the hybrid construction with a cushioning layer at the middle position and double hybrid laminated cover plies was the optimal structure for acoustic absorption.  相似文献   

15.
This study focused on the fabrication and acoustic property evaluation of sandwich cover-ply-reinforced highresilience thermal-bonding nonwoven hybrid composites. P-phenyleneterephthalamides and bicomponent high-resilience bonding polyester intra-ply hybrid nonwoven fabrics were compounded with glass plain fabric to produce the high strength sandwich structural cover ply by means of needle punching and thermal bonding to reinforce the whole composites and dissipate energy when being impacted. Then, the acoustic absorption properties of the homogenous intra-ply hybrid meshwork layer were investigated before and after being reinforced with the aforementioned cover ply. The influencing factors, including areal density, fiber blending ratio, needle punching depth, and air cavity thickness between back plate of the impedance tube and composites, were comparatively investigated. Results revealed that hybrid composites exhibited exceedingly high acoustic absorption properties. Acoustic absorption coefficients were promoted with increases in areal densities and fiber blending ratio of 3D crimped hollow polyester, particularly at low-mid frequency range. In addition, needle punching depths and back air cavity thicknesses considerably affected the average absorption coefficients. The meshwork center layer reinforced with sandwich structural cover-ply perform high resilience properties.  相似文献   

16.
The dyeing and color fastness properties of two reactive-disperse dyes containing a sulfatoethylsulfone group on nylon, PET and N/P mixture fabrics were examined. The rate of dyeing on nylon fabric was greatly dependent upon dye bath pH. The final dye uptakes at all pH, however, were as high as 97 %. Color strength of the dyed nylon fabric linearly increased up to 0.5 %owf and then slowed down over 1 %owf dyeing. Washing and rubbing fastness of the dyed nylon fabric were excellent, but grade of light fastness was moderate. Dyeability of the reactive-disperse dyes on PET fabric was not much affected by pH, and K/S values of PET fabric dyed at pH 5–8 were lower than those of nylon fabric at all pH examined. Buildup and color fastnesses properties on PET fabric showed the same tendency with nylon fabric. The rate of dyeing of the reactive-disperse dyes on nylon fabric was faster than on PET fabric when both fabrics were dyed simultaneously in the same dye pot, resulting in higher color strength of nylon than PET. The reactive-disperse dyes were found to be adequate to the one-bath, one-step dyeing of N/P mixture fabric when applied at pH 5 and 120 °C.  相似文献   

17.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

18.
Polylactides (PLAs) are a type of environmental friendly material. PLA fabrics feature excellent performance in terms of texture, comfort, curling effect, crystallinity, and transparency. However, because of its aliphatic polyester structure, PLA is relatively fragile as compared with the commercially available products like PET or Nylon. This study adopted water-based polyurethane (PU) to modify the surface of PLA fabrics, thereby enhancing the fabrics’ mechanical properties. Various polyols such as polytetrahydrofuran (PTMG), polycaprolactone diol (PCL), and polycarbonates diol (PC) were used and various NCO/OH molar ratios were designed in this study. As the PLA fabric was processed by dipping in various PU dispersions, it was found that the breaking strength of the fabric was increased, while its elongation at breakage decreased. Particularly, the breaking strength of the fabric modified by PUD50PC containing 50 weight percent of PC and two other polyols was the most prominent showing an 80 % increase in strength. Furthermore, the abrasion resistance of the PUD50PC-modified PLA fabric showed a roughly 6 times increase as compared to the plain PLA fabric. SEM images also reveal that after processing with water-based PU, the PLA fibers are bonded tightly with the water-based PU molecules to increase the breaking strength of the PLA fabrics.  相似文献   

19.
The present study deals with the effect of parallel-laid and cross-laid web of polypropylene needle punched nonwoven fabrics on compression properties (initial thickness, percentage compression, percentage thickness loss and percentage compression resilience) under wet condition. These compression properties of polypropylene needle-punched nonwoven under wet condition have also been compared with its dry condition. With the increase in needling density the initial thickness, percentage compression and percentage thickness loss of the fabrics under wet condition decrease to higher extent compared to its dry condition both in case of parallel-laid and cross-laid fabrics. Cross-laid nonwoven fabric presents lower value of initial thickness percentage compression and thickness loss compared to parallel-laid fabric which is very prominent at high needling density (350 punches/cm2). The percentage compression resilience shows increasing trend with the increase in needling density both under dry and wet conditions of parallel-laid web. It also follows similar trend in case of cross-laid nonwoven under wet condition. The optimum needling density for compression resilience of cross-laid nonwoven fabric under dry condition is 250 punches/cm2.  相似文献   

20.
Glass woven fabric interlayered nonwovens composed of Nylon 6 staple fibers, recycled Kevlar fibers, and low-Tm polyester fibers are prepared into the glass-interlayer plank. Afterwards, their tensile strength, bursting strength, quasistatic and dynamic puncture resistances are evaluated by changing low-Tm polyester and Kevlar fibers mass fractions. The results show that when comprising 30 wt% of low-Tm polyester fibers and 20 wt% of Kevlar fibers, the composite plank yields the maximum tensile strength, bursting strength, quasi-static and dynamic puncture resistances. The double planks arranged in cross direction have higher quasi-static and dynamic puncture resistances than those oriented in parallel direction. According to stereoscope observations, the quasi-static and dynamic puncture resistances of glass-interlayer plank have different fracture mechanism for resisting against spike penetration. In addition, the bursting strength is proportional to quasistatic puncture resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号