首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of spatial and environmental factors at different scales (plot, patch and landscape), we analyzed changes in Collembola community structure along a gradient of forest fragmentation, testing predictions of the Hierarchical Patch Dynamics Paradigm (HPDP) in different European biogeographic regions (Boreal, Continental, Atlantic, Mediterranean, Alpine). Using variance partitioning methods, based on partial CCAs, we observed that the independent effect of environmental processes was significantly explaining Collembola community variance in all regions, while the relative effect of spatial variables was not significant, due to the observed high levels of landscape heterogeneity along the gradient. Environmental factors at the patch and plot scales were generally significant and explained the larger part of community changes. Landscape variables were not significant across all study sites. Yet, at the landscape level, an increase in forest habitat and proximity of forest patches were showed to have an indirect influence on local community changes, by influencing microhabitat heterogeneity at lower spatial scales in all studied regions. In line with HPDP, large-scale landscape features influenced spatio-temporal changes in soil fauna communities by constraining small-scale environmental processes. In turn, these provided mechanistic understanding for diversity patterns operating at the patch scale, via shifts in community weighted mean of Collembola life-forms occurring in local communities along the fragmentation gradient.  相似文献   

2.
Habitat amount and fragmentation usually covary in natural and simulated landscapes. A common way of distinguishing between their effects is to take the residuals of the fragmentation index or indices regressed on habitat amount, as the index of habitat fragmentation. We used data on prairie songbird relative abundances from southern Alberta, Canada to compare this approach with the reverse: taking the residuals of habitat amount regressed on habitat fragmentation as the index of habitat amount. We used generalized additive models (GAMs) to derive residuals, and modeled relative abundances using linear mixed-effects models. The modeling approach used strongly influenced the statistical results. Using residuals as an index of fragmentation resulted in an apparently stronger effect of habitat amount relative to habitat fragmentation. In contrast, habitat fragmentation appeared more influential than habitat amount when residuals were used as an index of habitat amount. Regression of residuals may eliminate statistical collinearity, but cannot distinguish between the ecological effects of habitat amount and fragmentation. Habitat fragmentation may therefore have a larger effect on species than previously studies have shown, but experimental manipulations of underlying mechanisms are ultimately required to address this debate.  相似文献   

3.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

4.
The effects of woodlot size and isolation, in relation to habitat fragmentation, on the distribution of the red squirrel were studied. In The Netherlands, 50 woodlots (0.55–13.78 ha) were surveyed in an agricultural landscape for the presence of red squirrel. In 26 woodlots squirrel dreys (nests) were found. Logit regression analysis showed that woodlot size and the area per woodlot covered with coniferous trees were the best predictors of squirrel presence. Addition of isolation variables by means of a stepwise forward regression method showed significant effects of the distance to a large, permanently inhabited wood and the amount of surrounding wood. No effect was found for the distance to the nearest woodlot (>0.5 ha). The model could be further improved by adding a measure of the amount of hedgerows surrounding a woodlot.  相似文献   

5.
While studies have found that bat abundance is positively related to the amount of forest cover in a landscape, the effects of forest fragmentation (breaking apart of forest, independent of amount) are less certain, with some indirect evidence for positive effects of fragmentation. However, in most of these studies, the variables used to quantify fragmentation are confounded with forest amount, making it difficult to interpret the results. The purpose of this study was to examine how forest amount and forest fragmentation independently affect bat abundance. We conducted acoustic bat surveys at the centers of 22 landscapes throughout eastern Ontario, Canada, where landscapes were chosen to avoid a correlation between forest amount and forest fragmentation (number of patches) at multiple spatial scales, while simultaneously controlling for other variables that could affect bat activity. We found that the effects of forest amount on bat relative abundance were mixed across species (positive for Lasiurus borealis, negative for Perimyotis subflavus and Lasionycteris noctivagans). When there was evidence for an effect of forest fragmentation, independent of forest amount, on bat relative abundance, the effect was positive (Myotis septentrionalis, Myotis lucifugus and Lasiurus borealis). We suggest that the mechanism driving the positive responses to fragmentation is higher landscape complementation in more fragmented landscapes; that is, increased access to both foraging and roosting sites for these bat species. We conclude that fragmented landscapes that maximize complementation between roosting and foraging sites should support a higher diversity and abundance of bats.  相似文献   

6.
The use of large grid cell databases (1/2° to 5°) to drive nonlinear ecosystem process models may create an incompatibility of scales which can often lead to biased outputs. Global simulations of net primary production (NPP) often assume that bias due to averaging of sub-grid variations in climate, topography, soils, and vegetation is minimal, yet the magnitude and behavior of this bias on estimates of NPP are largely unknown. The effects of averaging sub-grid land surface variations on NPP estimates were evaluated by simulating a 1° × 1° land surface area as represented by four successive levels of landscape complexity, ranging from a single computation to 8,456 computations of NPP for the study area. Averaging sub-grid cell landscape variations typical of the northern US Rocky Mountains can result in overestimates of NPP as large as 30 %. Aggregating climate within the 1° cell contributed up to 50 % of the bias to NPP estimates, while aggregating topography, soils, and vegetation was of secondary importance. Careful partitioning of complex landscapes can efficiently reduce the magnitude of this overestimation.  相似文献   

7.
Understanding the relative influence of environmental and spatial variables in driving variation in species diversity and composition is an important and growing area of ecological research. We examined how fire, local vegetation structure and landscape configuration interact to influence dung beetle communities in Amazonian savannas, using both hierarchical partitioning and variance partitioning techniques to quantify independent effects. We captured a total of 3,334 dung beetles from 15 species at 22 savanna plots in 2003. The species accumulation curve was close to reaching an asymptote at a regional scale, but curves were variable at the plot level where total abundance ranged from 17 to 410 individuals. Most plots were dominated by just three species that accounted for 87.7% of all individuals sampled. Hierarchical partitioning revealed the strong independent and positive effect of percentage forest cover in the surrounding landscape on total dung beetle abundance and species richness, and richness of uncommon species and the tunneler guild. Forest cover also had a negative effect on community evenness. None of the variables that related to fire affected community metrics. The minimal direct influence of fire was supported by variance partitioning: partialling out the influence of spatial position and vegetation removed all of the individual explanation attributable to fire, whereas 8% of the variance was explained by vegetation and 28% was explained by spatial variables (when partialling out effects of the other two variables). Space-fire and vegetation-fire joint effects explained 14 and 10% of the dung beetle community variability, respectively. These results suggest that much of the variation in dung beetle assemblages in savannas can be attributed to the spatial location of sites, forest cover (which increased the occurrence of uncommon species), and the indirect effects of fires on vegetation (that was also dependent on spatial location). Our study also highlights the utility of partitioning techniques for examining the importance of environment variables such as fire that can be strongly influenced by spatial location.  相似文献   

8.
Landscape Ecology - The relative importance of habitat fragmentation versus loss on species richness has been much debated. However, recent findings that fragmentation effects are relatively weak...  相似文献   

9.
The response of animal communities to habitat quality and fragmentation may vary depending on microhabitat associations of species. For example, sensitivity of species to woody habitat fragmentation should increase with their degree of association with woody plants. We investigated effects of local and landscape factors on spider communities in different microhabitats within Swiss apple orchards. We expected a stronger negative effect of woody habitat fragmentation on spiders inhabiting tree canopies compared to spiders living in the meadow. The 30 orchards that we sampled varied in woody habitat amount and isolation at landscape and patch scales. Local factors included management intensity and plant diversity. Spiders associated with meadow were affected by plant diversity, but not by fragmentation. In contrast, spiders associated with canopies responded to isolation from other woody habitats. Surprisingly, we found both positive and negative effects of habitat isolation on local abundance. This indicates that differences in dispersal and/or biotic interactions shape the specific response to habitat isolation. The relative importance of local and landscape factors was in accordance with the microhabitat of the spiders. Thus, considering microhabitat associations can be important for identifying processes that would be overlooked if sampling were pooled for the whole habitat.  相似文献   

10.
Previous research has suggested that ducks and songbirds may benefit from prairie landscapes that consist primarily of contiguous grasslands. However, the relative importance of landscape-level vs. local characteristics on mechanisms underlying observed patterns is unclear. We measured effects of grassland amount and fragmentation on upland and wetland songbird and duck density and nest success, and on some nest predators, across 16 landscapes in southern Alberta, Canada. We compared these landscape-level effects with local-scale responses, including distance to various edges and vegetation characteristics. We also evaluated several statistical approaches to comparing effects of habitat characteristics at multiple spatial scales. Few species were influenced by grassland amount or fragmentation. In contrast, distance to edge and local vegetation characteristics had significant effects on densities and nest success of many species. Previous studies that reported effects of landscape characteristics may have detected patterns driven by local mechanisms. As a corollary, results were very sensitive to statistical model structure; landscape level effects were much less apparent when local characteristics were included in the models.  相似文献   

11.
Zhang  Minghua  Geng  Shu  Ustin  Susan L. 《Landscape Ecology》1998,13(1):37-54
Quantitative agricultural landscape indices are useful to describe functional relationships among climatic conditions, groundwater dynamics, soil properties and agricultural land use for mathematical models. We applied methods of regression statistics, variance component estimation and a Geographical Information System (GIS) to construct indices describing crops and soils and to establish functional relationships among these variables. This paper describes the development of indices and the partitioning of the spatial and temporal variation in groundwater models using the data from Tulare County, California, which was selected as the study area. Indices of ground surface elevation, total crop water demand, soil water infiltration rate, and soil production index explain 91% of the variation in average spring groundwater level. After relating spatial patterns of groundwater use to indices of crop and soil properties, we found that mean groundwater use is positively related to total crop water demand and soil water infiltration rate while the variation in groundwater use was negatively correlated with the crop water demand and soil water infiltration rate and positively related to soil water holding capacity. The spatial variation in groundwater use was largely influenced by crops and soil types while the temporal variation was not. We also found that groundwater use increased exponentially with decreasing annual precipitation for most townships. Based on these associations, groundwater use in each township can be forecast from relative precipitation under current methods of agricultural production. Although groundwater table depth is strongly affected by topography, the statistically significant indices observed in the model clearly show that agricultural land use influences groundwater table depth. These simple relationships can be used by agronomists to make water management decisions and to design alternative cropping systems to sustain agricultural production during periods of surface water shortages.  相似文献   

12.
Globally, modification of landscapes for agriculture has had a strong influence on the distribution and abundance of biota. In particular, woodland-dependent birds are under threat across agricultural landscapes in Britain, North America and Australia, with their decline and extirpation attributed to the loss and fragmentation of habitat. Other native species have become over-abundant in response to anthropogenic landscape change and have strong interactive effects on avian assemblage structure. In eastern Australia, the hyper-aggressive noisy miner (Manorina melanocephala) often dominates woodlands in agricultural landscapes through interspecific competition, resulting in declines of species richness of woodland-dependent birds. We aimed to determine the relative influence and importance of interspecific competition, in situ habitat structure and landscape structure for woodland-dependent bird species at the landscape level. We recorded species-specific landscape incidence of woodland-dependent birds in 24 agricultural-woodland mosaics (25 km2) in southern Queensland, Australia. We selected extensively cleared landscapes (10–23 % woodland cover) where fragmentation effects are expected to be greatest. We applied generalised linear models and hierarchical partitioning to quantify the relative importance of the landscape-level incidence of the noisy miner, mistletoe abundance, shrub cover, woodland extent, woodland subdivision and land-use intensity for the incidence of 46 species of woodland birds at the landscape-scale. The landscape-level incidence of the noisy miner was the most important explanatory variable across the assemblage. Both in situ habitat structure and landscape structure were of secondary importance to interspecific aggression, although previous research suggests that the increasing incidence of the noisy miner in fragmented agricultural landscapes is itself a consequence of anthropogenic changes to landscape structure. Species’ responses to fragmentation varied from positive to negative, but complex habitat structure had a consistently positive effect, suggesting in situ restoration of degraded habitats could be a conservation priority. Landscape wide conservation of woodland-dependent bird populations in agricultural landscapes may be more effective if direct management of noisy miner populations is employed, given the strong negative influence of this species on the incidence of woodland-dependent birds among landscapes.  相似文献   

13.
Despite good theoretical knowledge about determinants of plant species richness in mosaic landscapes, validations based on complete surveys are scarce. We conducted a case study in a highly fragmented, traditional agricultural landscape. In 199 patches of 20 representative multi-patch-plots (MPPs, 1 ha) we recorded a total of 371 plant species. In addition to an additive partitioning of species diversity at the (a) patch- and (b) MPP-scale, we adopted the recently proposed ‘specificity’ measure to quantify the contribution of a spatial subunit to landscape species richness (subunit-to-landscape-contribution, SLC). SLC-values were calculated at both scales with respect to various spatial extents. General regression models were used to quantify the relative importance of hypothesis-driven determinants for species richness and SLC-values. At the patch scale, habitat type was the main determinant of species richness, followed by area and elongated shape. For SLC-values, area was more important than habitat type, and its relevance increased with the extent of the considered landscape. Influences of elongated shape and vegetation context were minor. Differences between habitat types were pronounced for species richness and also partly scale-dependent for SLC-values. Relevant predictors at the MPP-scale were nonlinear habitat richness, the gradient from anthropogenic to seminatural vegetation, and the proportions of natural vegetation and rare habitats. Linear elements and habitat configuration did not contribute to species richness and SLC. Results at the MPP-scale were in complete accordance with the predictions of the mosaic concept. Hence, our study represents its first empirical validation for plant species diversity in mosaic landscapes.  相似文献   

14.
Habitat clustering results from processes of habitat loss and fragmentation, which operate at different resolutions and with different intensities, e.g. forest clear-cutting or thinning. Individual movements also vary at different spatial scales according to landscape structure and species dispersal strategies. Disentangling the relative impact of habitat loss and fragmentation on the long-term survival of species requires understanding how clustering at one resolution interacts with the amount of habitat, dispersal distance and clustering at other resolutions, to affect dispersal success. We addressed this problem by quantifying the magnitude of these interactions and how they were affected by the intensity of habitat removal. Individual-based simulations were conducted on artificial fractal landscapes where the intensity of habitat removal and the amount of clustering were varied independently at two nested resolutions, while the total amount of habitat in the landscape was controlled for. We show that the way the amount of habitat, the dispersal distance and the amount of clustering affect dispersal success depends on the resolution at which habitat clustering occurs, the intensity at which habitat is removed, and the strength of habitat selection. Our findings highlight: (a) the importance of explicitly considering scale-dependent biological responses to landscape change; and (b) the need to identify the appropriate scale at which to manage fragmentation, thus avoiding mismatches between the scale of ecological processes and the scale of management.  相似文献   

15.
Hierarchical,Multi-scale decomposition of species-environment relationships   总被引:7,自引:1,他引:7  
We present an adaptation of existing variance partitioning methods todecompose species-environment relationships in hierarchically-structured,multi-scaled data sets. The approach translates a hierarchical, multi-scaleconceptual model into a statistical decomposition of variance. It uses a seriesof partial canonical ordinations to divide the explained variance inspecies-environment relationships into its independent and confoundedcomponents, facilitating tests of the relative importance of factors atdifferent organizational levels in driving system behavior. We discuss themethod in the context of an empirical example based on forest bird communityresponses to multiple habitat scales in the Oregon Coast Range, USA. Theexamplepresents a two-tiered decomposition of the variation in the bird community thatis explainable by a series of habitat factors nested within three spatialscales(plot, patch, and landscape). This method is particularly suited for theproblems of hierarchically structured landscape data. The explicit multi-scaleapproach is a major step forward from conducting separate analyses at differentscale levels, as it allows comprehensive analysis of the interaction of factorsacross scales and facilitates ecological interpretation in theoretical terms.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

16.
In banana on-farm studies in the East African Highlands, quantification of production has been difficult because plants are at different stages of development at any given time. Production is continuous and quantification would therefore require permanent presence of an observer. Hence, most on-farm surveys have resorted to estimations from farmers or ‘experts’ through recall or visual qualitative observations. These methods are highly inaccurate. This study aims to develop and validate allometric relationships for quantitative estimation of bunch weights, based on rapid, inexpensive and non-destructive methods of data collection that take into consideration genotypic, spatial and developmental variability. The study was conducted in 179 farmer fields in central, south, southwest, and east Uganda. Bunch weights were estimated through linear regression with log-transformed girth of pseudostem at base and 1m, number of hands, and number of fingers in the lower row of the second lowest hand. The number of hands and fingers relate to the potential sink size (i.e. bunch), and the girth at base and 1m were used as a proxy for pseudostem volume, which relates to the potential of the plant to fill the sink. Bunch weight was significantly (P ≤ 0.001) and positively (R2 = 0.73) related to log-transformed pseudostem volume, and number of hands and fingers. When data were partitioned and regressed, regression coefficients did not differ significantly for cultivars (i.e. Enyeru, Kibuzi, Nakabululu and Nakitembe), developmental stages (flowering, early fruiting, late fruiting and full maturity), regions (central, south, southwest and east Uganda), foliar and soil N, P, K, Ca and Mg concentrations. Data partitioning improved the accuracy of prediction significantly for different cultivars, regions, and foliar Ca, but not for bunch developmental stages, foliar N, P, K and Mg and soil N, P, K, Ca and Mg concentrations. However, the residuals of all the regressions of partitioned data correlated highly (R2 between 0.92 and 1.00) to those of the regression based on pooled data. On validation of the regression based on pooled data, the bias (−9.97%) and modeling efficiency statistic (0.64), suggested that predictions were not always accurate. Still, the total predicted bunch weights were higher than the observed bunch weight by only 2%. This study therefore concludes that the regression derived using pooled data is suitable for on-farm prediction of bunch weight, for the East African Highland cooking banana, regardless of genotypic, developmental and spatial variations.  相似文献   

17.
The relation between landscape structure and its drivers is a central issue in studies of landscape ecology. However, agricultural land fragmentation is dealt with in only a few such studies. We have investigated the effects of ownership and soil quality on agricultural land fragmentation in the highly fragmented ownership patterns that characterize some of the transition countries of Central and Eastern Europe. Using patch-scale spatial data generated from GIS, Minimal Adequate Models, based on ANOVA, were performed to test for the effects of ownership and soil quality patterns on arable land and grassland fragmentation across 483 study areas. The results show that there are important differences in the predictors of fragmentation between arable land and grassland. Grassland fragmentation was found to be associated particularly with ownership fragmentation, whereas arable land fragmentation tended to be driven mainly by soil conditions. A higher proportion of public ownership supports the more frequent appearance of larger patches. We found a significantly positive relationship between natural soil fertility and arable land fragmentation, while there was a strongly negative relationship between natural soil fertility and grassland fragmentation. Soil quality diversity was observed to be the most important driver affecting arable land fragmentation, but only a non-significant driver of grassland fragmentation. The study provides arguments for intervention aimed at reducing the huge differences between the levels of land-ownership and the land-use fragmentation.  相似文献   

18.
Although many empirical and theoretical studies have elucidated the effects of habitat fragmentation on the third trophic level, little attention has been paid to the impacts of this driver on more generalist groups of non-hymenopteran parasitoids. Here, we used the highly-diverse group of tachinid flies as an alternative model to test the effects of landscape fragmentation on insect parasitoids. Our aims were: (i) to evaluate the relative importance of habitat area and connectivity losses and their potential interaction on tachinid diversity, (ii) to test whether the effects of habitat fragmentation changes seasonally, and (iii) to further assess the effect of habitat diversity on tachinid diversity and whether different parasitoid-host associations modify the species richness response to fragmentation. In 2012 a pan-trap sampling was conducted in 18 semi-natural grasslands embedded in intensive agricultural landscapes along statistically orthogonal gradients of habitat area, connectivity and habitat diversity. We found an interaction between habitat area and connectivity indicating that tachinid abundance and species richness were more negatively affected by habitat loss in landscapes with low rather than with relatively large habitat connectivity. Although tachinid communities exhibited large within-year species turnover, we found that the effects of landscape fragmentation did not change seasonally. We found that habitat diversity and host association did not affect tachinid species diversity. Our results have important implications for biodiversity conservation as any attempts to mitigate the negative effects of habitat loss need to take the general level of habitat connectivity in the landscape into account.  相似文献   

19.
Because organisms respond to the environment at different scales, it is important to develop ways of determining the appropriate scales for a specific ecological process and organism. We consider whether the relative importance of different scales is associated with organism mobility, and whether this relationship is independent of landscape characteristics. We observed abundances of particular species for vascular plants, ground-dwelling beetles and breeding birds along eight 2-km transects of 40 sampling stations each, distributed over four sites along the regional gradient from shortgrass steppe in central Colorado to tallgrass prairie in central Kansas. For each transect and taxonomic group, the relative importance of factors measured at the trap scale (1 m; soil texture and hardness, vegetation height, bare ground), at the local scale (10 m; density of shrubs and cacti) and at the landscape scale (30 m; Landsat 7 TM spectral bands, slope and elevation) was assessed using hierarchical canonical variance partitioning with forward selection of explanatory variables. Plant, beetle and bird community composition was explained by environmental factors measured at all three scales. Factor influence was more consistent between transects and between plants and beetles for the more homogeneous landscapes of the shortgrass steppe than for the more heterogeneous landscapes of the tallgrass prairie. We conclude that, independent of the mobility of a taxonomic group, factors at several scales are important in explaining community composition. The importance of different scales shifts along a regional gradient, and the variability between sites is high even for nearby sites.  相似文献   

20.
Empirical studies of the relative effects of landscape variables may compromise inferential strength with common approaches to landscape selection. We propose a methodology for landscape sample selection that is designed to overcome some common statistical pitfalls that may hamper estimates of relative effects of landscape variables on ecological responses. We illustrate our proposed methodology through an application aimed at quantifying the relationships between farmland heterogeneity and biodiversity. For this project, we required 100 study landscapes that represented the widest possible ranges of compositional and configurational farmland heterogeneity, where these two aspects of heterogeneity were quantified as crop cover diversity (Shannon diversity index) and mean crop field size, respectively. These were calculated at multiple spatial extents from a detailed map of the region derived through satellite image segmentation and classification. Potential study landscapes were then selected in a structured approach such that: (1) they represented the widest possible range of both heterogeneity variables, (2) they were not spatially autocorrelated, and (3) there was independence (no correlation) between the two heterogeneity variables, allowing for more precise estimates of the regression coefficients that reflect their independent effects. All selection criteria were satisfied at multiple extents surrounding the study landscapes, to allow for multi-scale analysis. Our approach to landscape selection should improve the inferential strength of studies estimating the relative effects of landscape variables, particularly those with a view to developing land management guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号