首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Southern Forests》2013,75(3):235-245
Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha?1 (SD 21.3) and mean topsoil (0–20 cm depth) SOC stock was 42.2 Mg C ha?1 (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p < 0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p < 0.001) and AGC and Shannon index (r = 0.375, p < 0.05). The correlation between AGC and SOC was weak (r = 0.17, p < 0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.  相似文献   

2.
Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha?1, (168.26±9.04) Mg·ha?1 and (84.13±4.18) Mg·ha?1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha?1 and 774.77 Mg·ha?1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha?1 and ranged from (144.97±11.98) m3·ha?1 for Pinus wallichiana to (7.78±1.78) m3·ha?1 for Benthamidia capitata.  相似文献   

3.
We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots of 0.1 ha each (50m×20m) at six locations enumerating all plants≥10cm girth at breast height. We pooled the data and computed various structural parameters. There were 152 species of 120 genera and 51 families of the study area. Of these, 118 (77%) were trees, 24 were climbers (16%) and 10 were shrubs (7%). Species richness varied from 58 99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2. Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats. Fifteen species are listed in various threat categories. Aglaia and Litsea were the most species-rich genera. Numbers of families ranged from 27 43 per 0.5 ha sample. Euphorbiaceae and Lauraceae were the most species-rich families. Stand density varied from 1714 to 2244 stems·ha -1 and basal area from 53.6 to 102.1 m 2 ·ha -1 . The vegetation was dominated by 3 6 species and six dominance patterns characterized the species composition within the hill complex. The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.  相似文献   

4.
Quantitative assessment of tree species diversity from sample plots in seven forest ranges of Nayagarh Forest Division in Odisha state in the Eastern Ghats of India was made during the period April, 2011 to November, 2013. A total of 120 transects(1000 m × 5 m) were laid in Nayagarh, Odogaon, Pancharida, Khandapada, Dasapalla,Mahipur, and Gania forest ranges and tree stems of at least 30 cm GBH were measured. The regeneration potential of trees was assessed from 5 m × 5 m sample plots located within the main transect. A total of 177 tree species belonging to 120 genera and 44 families were recorded from the study area. Shorea robusta, Buchanania lanzan, Lannea coromandelica, Terminalia alata and Cleistanthus collinus were the predominant tree species. The stand density varied in the range of 355.33–740.53 stems h~a)-1) while basal area ranged from 7.77 to 31.62 m~2 ha~(-1). The tree density and species richness decreased with increasing girth class. The highest number of species and maximum density was recorded in the girth class of 30–60 cm. The Shannon–Weiner and Simpson Indices with respect to trees with C30 cm GBH varied in the range of 2.07–3.79 cm and 0.03–0.37 cm respectively and the values of diversity indices are within the reported range for tropical forests of Indian sub-continent. The families, Dipterocarpaceae,Anacardiaceae, Combretaceae and Euphorbiaceae contributed to maximum species richness, stand density, and basal area. Regeneration of many tree species was observed to be poor. The present study provides baseline data for further ecological studies, forest management, and formulation of site-specific strategies for conservation of biological diversity in moist deciduous forests of Eastern India.  相似文献   

5.
The changes in species composition, abundance and forest stand structure were analyzed across altitudinal regimes in tropical for- ests of Eastern Ghats of northern Andhra Pradesh, India. Three 1-ha plots were established with one each in low, medium and high altitudes. A total of 153 species, 2129 stems (709 stems ·ha -1 ) of ≥10 cm girth were enumerated. Species richness and diversity pattern varied along altitud- inal gradient and increased with the altitude. Species richness varied from 52 to 110 species·ha -1 and stand density from 639 to 836 stems·ha -1 with average basal area of 34.39 m 2 ·ha -1 . Shannon-Wiener index (H’) ranged from 4.55 to 5.17. Low altitude (i.e., Site 1) is dominated by Xylia xylocarpa (59.22) and Lagerstroemia parviflora (23.90), medium altitude (i.e., Site 2) by Xylia xylocarpa (45.50) Bursera serrata (17.29), and high altitude (i.e., Site 3) has Schleichera oleosa (28.25) Pterocarpus marsu- pium (26.55) as predominant species. Taxonomically, Rubiaceae (12 species), Fabaceae (12), Euphorbiaceae (11), Rutaceae (7) and Lauraceae (7) were dominant families. Density-wise, Fabaceae, Combretaceae, Euphorbiaceae, Anacardiaceae and Myrtaceae were abundant. Thus, conservation assessment based on altitudinal regimes and the information on species structure and function can provide baseline information for monitoring and sustaining the biodiversity.  相似文献   

6.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

7.
We studied variations in tree biomass and carbon sequestration rates of Chir Pine(Pinus roxburghii. Sarg.) forest in three categories of forest disturbance, protected, moderately disturbed, and highly disturbed. In the first year, total biomass was 14.7 t?ha-1 in highly disturbed site, 94.46 t?ha-1 in moderately disturbed forest, and 112.0 t?ha-1 in protected forest. The soil organic carbon in the top 20 cm of soil ranged from 0.63 to 1.2%. The total rate of carbon sequestration was 0.60(t/ha)·a-1on the highly disturbed site, 1.03(t/ha)·a-1 on the moderately disturbed site, and 4.3(t/ha)·a-1 on the protected site.  相似文献   

8.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

9.
We examined the effects of intercropping with Acacia senegal (L.) Willd on growth and yield of sorghum (Sorghum bicolor L.), sesame (Sesamum indicum L.) and roselle (Hibiscus sabdariffa). Field experiments were conducted in El-Obeid Research farm (13°10’ N; 30°12’ E), North Kordofan State, Sudan, during 2002 2003 in an 11-year-old A. senegal plantation. The experimental design was randomized complete block design (RCBD) with four replications. Data were recorded for plant height (cm), fresh weight (kg ha -1 ), dry weight (kg ha -1 ), crop yield (kg ha -1 ), and gum yield (kg ha -1 ). We used Land Equivalent Ratios (LER) and simple financial analyses of gross surpluses to evaluate the productivity and profitability of the different treatments. The results indicated that A. senegal trees had a beneficial effect on crop performance and yield as well as gum yield. Significant differences (p<0.05) were obtained for plant height, fresh weight, dry weight and crop yield. Therefore, yield of sorghum, sesame and roselle under intercropping system were 13.7%, 23.8% and 20.9% higher than that obtained in the sole cropping system respectively. The highest yield increase was observed with sesame (23.8%). Gum yield (g/tree/picking) was signifi- cantly (p<0.05) increased for sorghum, sesame and roslle under inter-cropping system. The highest yield of (298g/tree/picking) was obtained when roselle was intercropped with A. senegal, while the least gum yield of (239 g tree-1 ) was recorded in pure A. senegal plot. All the treatments gave land equivalent ratio (LER) of more than one-indicating the superiority of growing the field crops in intercropping over the sole cropping systems. The highest LER of 3.8 was obtained for sesame intercropped with A. senegal (Hashab), followed by 3.7, when sorghum was intercropped with A. senegal and 3.3 when roselle intercropped with A. senegal. All the treatments gave positive net revenues, the highest being for intercropped sorghum (558 SDG ha -1 ) (SDG=Sudanese gienh). The intercropping of roselle gave the second net revenue (518 SDG ha -1 ),while the sole sorghum gave the lowest net revenue (501 SDG ha -1 ).  相似文献   

10.
欧阳华 《林业研究》1995,6(1):27-38
INTRODUCTIoNChangesinsoilNmineralizationratescouIdbeanearlywarningofsoilNavaila-bilityoreventualforestdeclinesinceNisoftenan.importantnutrientforgrowth(Keeneyl98O;Leaetal.l982;Vitouseketal-l982).Nitrogenmineralizationinvolvestwodistinctprocessesfammonification,inwhichNH:isformedfromorganiccom-pounds,andnitrification,theoxidationofNH:toNO3.ManystudiesofatmosphericdepositionimpactsonforestshavetargetedsoilNmineraIizationusingsimulatedaciddepositionundercontrolledlaboratoryconditions(T…  相似文献   

11.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

12.
Forest management practices which may represent various forms of disturbance regimes could influence liana species richness, abundance and relationship with their hosts. The study sought to determine the impacts of three management systems, namely, the Selection, Tropical Shelterwood and Post Exploitation Systems (SS, TSS and PES respectively) on liana species richness, abundance and relationship with trees in the Bobiri forest reserve, Ghana. Lianas with dbh ≥ 2 cm found on trees with dbh ≥ 10 cm were enumerated in 1 ha plot each in the SS, TSS and PES. All trees (dbh ≥ 10 cm) within the plots that did not carry lianas were also enumerated. A total of 640 liana individuals belonging to 27 species, 22 genera and 13 families were identified in the management systems. Griffonia simplicifolia (Vahl ex DC.) Baill., Motandra guineensis (Thonn.) A.DC. and Calycobolus africanus (G.Don) Heine were the abundant species in all the management systems. Unlike in SS, lianas in the TSS and PES were dominated by a few species. Larger diameter lianas were more abundant in the PES (32%) compared with the SS (18.3%) and the PES (13.1%). Liana diversity (H′) (species richness and abundance) was quantitatively higher in the SS (2.8) than the TSS (2.2) and the PES (2.0). The numbers of lianas carried by tree species differed significantly in the management systems (p < 0.001 each). Liana infestation in the forest was high. The level of liana infestation did not reflect the extent of liana load per tree in the management systems. Larger trees carried significantly more liana individuals than smaller trees in the PES (p = 0.019, r2 = 0.15). There was a positive significant relationship between host dbh and liana dbh in the PES (p < 0.001, r2 = 0.23) and TSS (p = 0.024, r2 = 0.11). Tree diversity appeared to have influenced liana species richness and abundance.  相似文献   

13.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

14.
We evaluated the effects of planting densities (500, 1,000,1,500 and 2,000 trees·ha-1) on tree growth performance (diameter atbase, diameter at breast height, and clear bole height) of two clones(RRIM 2020 and RRIM 2025) of nine years old plantations of rubber tree(Hevea brasiliensis Muell. Arg) in Malaysia. For the four planting densities of the two clones, basal area and diameter at breast height declined with increasing planting density. Clear bole heights were greatest at 1,500 trees·ha-1 and lowest at 500 trees·ha-1 for the clone RRIM 2020, andat 2,000 trees·ha-1 and 500 trees·ha-1 for clone RRIM 2025. We conclude that the ideal planting density is 2,000 trees·ha-1 for obtaining high volume of wood production and 500 trees·ha-1 for high wood quality.  相似文献   

15.
We construct dry weight equations for hybrid aspen growing on former farmland in Sweden. Dry weight equations for fractions of hybrid aspen trees were also made. We estimated biomass production in 24 stands. The stands were located in Sweden at latitudes ranging from 55 to 60o N. The mean age was 18 years (range 15-23), the mean stand density 1090 stems·ha-1 (range 378 2374), and the mean diameter at breast height (over bark) 178 mm (range 85 244 mm). Soil types in the hybrid aspen stands were mainly clay (21 stands), tills (2 stands) and other (1 stand). The mean total standing dry weight above stump level (≈ 200 mm) for the hybrid aspen stands was 135±53 t·ha-1 with a range of 42 219 t·ha-1 . In addition to estimating conventional dry weights of trees and tree components, basic density, specific leaf area (SLA), projected leaf area (PLA) and leaf area index (LAI) were estimated and were in agreement with published figures.  相似文献   

16.
During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing forest ecosystem services. We examined forest cover and runoff relationships in northern China using published data from a variety of sources. In the Loess Plateau region, forest cover is not correlated with annual precipitation (r = 0.08, p > 0.05) at micro (<50 km2) and meso scales (50-1000 km2), while they are positively correlated at macro (>1000 km2) scale (r = 0.77, p < 0.05). Moreover, forest cover is negatively correlated with the runoff coefficient (r = −0.64, p < 0.05). In Northwest China, natural forest distribution is highly correlated with annual precipitation (r = 0.48, p < 0.05) but not with the runoff coefficient (r = −0.09, p > 0.05). In Northeast China, we found a positive relationship between forest cover and the runoff coefficient (r = 0.77, p < 0.05), but the correlation between forest cover and precipitation was not significant (r = 0.28, p > 0.05). The multiple stepwise regression analysis indicated that runoff was influenced by altitude, annual precipitation, forest cover, and PET (potential evapotranspiration) in Northeast China. We concluded that geographic differences could mask the true role of forests in the partitioning of rainfall into runoff and evapotranspiration (ET) in a catchment. In determining the forest-water relationship, one must consider climatic controls on ET in addition to forest cover. Forests could potentially enhance the complementary relationship between ET and PET. Therefore, a greater amount of ET in forested areas may decrease the PET on a regional scale.  相似文献   

17.

Context

Recruitment is an important process in forest stand dynamics, especially in uneven-aged stands. Continuous recruitment is a prerequisite for diverse, uneven-aged silvicultural systems, but patterns may vary significantly.

Aims

The main goals of the study were to examine the recruitment of the main tree species in selection and irregular shelterwood stands in silver fir?CEuropean beech?CNorway spruce forests and to determine the main predictors of the recruitment occurrence.

Methods

Data from 5,486 permanent inventory plots were used to study recruitment of saplings into the tree layer (diameter at breast height ??10?cm).

Results

Recruitment rate differed significantly between selection (7.6?trees?ha?1?year?1) and irregular shelterwood (26.1?trees?ha?1?year?1) stands. Shade-tolerant fir and beech recruited with higher probability in selection stands, while light-dependent sycamore recruited with higher probability in irregular stands. In addition, forest types, soil pH, stand basal area, mean diameter, and the basal area of the same tree species with respect to recruitment were found to be important predictors of recruitment occurrence.

Conclusions

The application of different uneven-aged silvicultural systems and their forms makes it possible to considerably influence the future tree species composition of uneven-aged forests.  相似文献   

18.
We studied the carbon density and accumulation in trees at five sites in a tropical dry forest (TDF) to address the questions: how is the TDF structured in terms of tree and carbon density in different DBH (diameter at breast height) classes? What are the levels of carbon density and accumulation in the woody species of TDF? Is the vegetation carbon density evenly distributed across the forest? Does carbon stored in the soil reflect the pattern of aboveground vegetation carbon density? Which species in the forest have a high potential for carbon accumulation? The WSG among species ranged from 0.39 to 0.78 g cm−3. Our study indicated that most of the carbon resides in the old-growth (high DBH) trees; 88-97% carbon occurred in individuals ?19.1 cm DBH, and therefore extra care is required to protect such trees in the dry forest. Acacia catechu, Buchanania lanzan, Hardwickia binata, Shorea robusta and Terminalia tomentosa accounted for more than 10 t ha−1 carbon density, warranting extra efforts for their protection. Species also differed in their capacity to accumulate carbon indicating variable suitability for afforestation. Annually, the forest accumulated 5.3 t-C ha−1 yr−1 on the most productive, wettest Hathinala site to 0.05 t-C ha−1 yr−1 on the least productive, driest Kotwa site. This study indicated a marked patchy distribution of carbon density (151 t-C ha−1 on the Hathinala site to 15.6 t-C ha−1 on the Kotwa site); the maximum value was more than nine times the minimum value. These findings suggest that there is a substantial scope to increase the carbon density and accumulation in this forest through management strategies focused on the protection, from deforestation and fire, of the high carbon density sites and the old-growth trees, and increasing the stocking density of the forest by planting species with high potential for carbon accumulation.  相似文献   

19.
This paper presents a synthesis of experiments conducted in a tropical tree plantation established in 2001 and consisting of 22 plots of 45 m × 45 m with either one, three or six native tree species. We examined the changes in carbon (C) pools (trees, herbaceous vegetation, litter, coarse woody debris (CWD), and mineral topsoil at 0-10 cm depth) and fluxes (decomposition of CWD and litter, as well as soil respiration) both through time and among diversity levels. Between 2001 and 2009 the aboveground C pools increased, driven by trees. Across diversity levels, the mean observed aboveground C pool was 7.9 ± 2.5 Mg ha−1 in 2006 and 20.4 ± 7.4 Mg ha−1 in 2009, a 158% increase. There was no significant diversity effect on the observed aboveground C pool, but we found a significant decrease in the topsoil C pool, with a mean value of 34.5 ± 2.4 Mg ha−1 in 2001 and of 25.7 ± 5.7 Mg ha−1 in 2009 (F1,36 = 52.12, p < 0.001). Assuming that the biomass C pool in 2001 was negligible (<1 Mg ha−1), then the plantation gained in C, on average, ∼20 and lost ∼9 Mg ha−1 in biomass and soil respectively, for an overall gain of ∼11 Mg ha−1 over 8 years. Across the entire data set, we uncovered significant effects of diversity on CWD decomposition (diversity: F2,393 = 15.93, p < 0.001) and soil respiration (monocultures vs mixtures: t = 15.35, df = 11, p < 0.05) and a marginally significant time × diversity interaction on the loss of total C from the mineral topsoil pool (see above). Monthly CWD decomposition was significantly faster in monocultures (35.0 ± 24.1%) compared with triplets (31.3 ± 21.0%) and six-species mixtures (31.9 ± 26.8%), while soil respiration was higher in monocultures than in mixtures (t = 15.35, df = 11, p < 0.001). Path analyses showed that, as diversity increases, the links among the C pools and fluxes strengthen significantly. Our results demonstrate that tree diversity influences the processes governing the changes in C pools and fluxes following establishment of a tree plantation on a former pasture. We conclude that the choice of tree mixtures for afforestation in the tropics can have a marked influence on C pools and dynamics.  相似文献   

20.
There are conflicting reports on the role of disturbances in maintaining liana community structure, and in determining their relationship with trees. The effects of plant invasion on these attributes of lianas are not known. The study investigated the effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana, in three distinct forest types to reflect both human disturbances and invasion: Undisturbed, Disturbed-Invaded and Disturbed Forests (UF, DIF and DF respectively). Trees ≥10 cm dbh were identified and their dbh measured in two 0.25 ha plots in each forest type. The trees were examined for the presence of lianas (≥2 cm dbh) and their dbh measured. A total of 380 lianas ≥2 cm dbh belonging to 20 genera and 12 families were identified in the 1.5 ha forest. Twelve liana species were unique to the DIF suggesting the probable positive influence of plant invasion on their colonisation. Liana density differed significantly across the forest types (df = 2, p = 0.043) with the UF recording the greatest number. The mean liana stem diameter and basal area were greater in the DF. Large diameter lianas were absent in the UF. Tree density and number of trees hosting lianas were greater in the UF followed by the DIF and DF. Liana infestation was generally high with 90% in the DF, 88.2% in the UF, and 85.7% in the DIF. Both liana load per tree species and mean liana load per infested tree were highest in the UF followed by the DIF and then the DF. Liana density was highly dependent on tree density in all the forest types (df = 1, r2 = 0.50, p = 0.007; df = 1, r2 = 0.99, p = 0.000 and df = 1, r2 = 0.72, p = 0.000 in the UF, DIF and DF respectively). There was a significant positive relationship between liana dbh and host dbh in the UF (df = 1, r2 = 0.096, p = 0.000), DIF (df = 1, r2 = 0.11, p = 0.000) and DF (df = 1, r2 = 0.16, p = 0.008). There was no significant relationship between host dbh and liana loads in all the forest types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号