首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Twenty-five percent, 50%, and 67% nitrous oxide was administered to 12 horses anesthetized with halothane and oxygen. Compared to halothane-oxygen alone, there was no significant difference in heart rate, systolic, diastolic, or mean blood pressure values, arterial pH, PaCO2, or plasma bicarbonate values when nitrous oxide was included. A significant linear reduction in PaO2 values could be correlated with N2O:O2 concentrations. The halothane level required to maintain surgical anesthesia was reduced when nitrous oxide was administered, but it was not affected by changing the nitrous oxide concentrations. Nitrous oxide concentrations greater than 25% provide no additional reduction in halothane requirement and may be accompanied by PaO2 values that pose risk to the horse.  相似文献   

2.
OBJECTIVE: To determine whether maintenance of anesthesia with halothane or sevoflurane is associated with a lower incidence of gastroesophageal reflux (GER) than the use of isoflurane in dogs undergoing orthopedic surgery. ANIMALS: 90 dogs. PROCEDURES: Dogs were evaluated during elective orthopedic surgery. Dogs with a history of vomiting or that had received any drugs that would alter gastrointestinal tract function were excluded from the study. The anesthetic protocol used was standardized to include administration of acepromazine maleate and morphine prior to induction of anesthesia with thiopental. Dogs were allocated to receive halothane, isoflurane, or sevoflurane to maintain anesthesia. A sensor-tipped catheter was placed to measure esophageal pH during anesthesia. Gastroesophageal reflux was defined as an esophageal pH < 4 or > 7.5. RESULTS: 51 dogs had 1 or more episodes of acidic GER during anesthesia. Reflux was detected in 14 dogs receiving isoflurane, 19 dogs receiving halothane, and 18 dogs receiving sevoflurane. In dogs with GER, mean +/- SD time from probe placement to onset of GER was 36 +/- 65 minutes and esophageal pH remained < 4 for a mean of 64% of the measurement period. There was no significant association between GER and start of surgery or moving a dog on or off the surgery table. Dogs that developed GER soon after induction of anesthesia were more likely to regurgitate. CONCLUSIONS AND CLINICAL RELEVANCE: Maintenance of anesthesia with any of the 3 commonly used inhalant agents is associated with a similar risk for development of GER in dogs.  相似文献   

3.
The cardiopulmonary effects of sevoflurane (mean, 2·6, 3·8–3·9 and 5·2 per cent) were compared with those of halothane (1·2, 1·8 and 2·4 per cent), enflurane (2·4, 3·6 and 4·8 per cent) and isoflurane (1·6, 2·4 and 3·2–3·3 per cent) at end-tidal concentrations equivalent to 1, 1·5 and 2 minimal alveolar concentrations (macs) during spontaneous or controlled ventilation (sv or cv) in 57 cats. Cats were assigned to four groups of nine animals each in sv trial and four groups of five or six animals each in cv trial. During sv, respiration rate was decreased by sevoflurane and isoflurane at 2 mac and by enflurane at each mac multiple when compared with control values, whereas halothane increased respiration rate at 2 mac. The degree of hypercapnia and acidosis induced by sevoflurane was not different from that induced by isoflurane and was less than that induced by halothane at 1 to 1·5 mac or enflurane at 2 mac. During sv and cv, four anaesthetics decreased heart rate at 2 mac when compared with control values, but there was no significant difference between anaesthetics. Sevoflurane, like halothane and isoflurane, induced hypotension at 2 mac when compared with 1 mac.  相似文献   

4.
The anesthetic potency and cardiopulmonary effects of sevoflurane were compared with those of isoflurane and halothane in goats. The (mean +/- SD) minimal alveolar concentration (MAC) was 0.96 +/- 0.12% for halothane, 1.29 +/- 0.11% for isoflurane, and 2.33 +/- 0.15% for sevoflurane. Cardiopulmonary effects of sevoflurane, halothane and isoflurane were examined at end-tidal concentrations equivalent to 1, 1.5 and 2 MAC during either spontaneous or controlled ventilation (SV or CV). During SV, there were no significant differences in respiration rate, tidal volume and minute ventilation between anesthetics. Dose-dependent decreases in both tidal volume and minute ventilation induced by halothane were greater than those by either sevoflurane or isoflurane. Hypercapnia and acidosis induced by sevoflurane were not significantly different from those by either isoflurane or halothane at 1 and 1.5 MAC, but were less than those by halothane at 2 MAC. There was no significant difference in heart rate between anesthetics during SV and CV. During SV, all anesthetics induced dose-dependent decreases in arterial pressure, rate pressure product, systemic vascular resistance, left ventricular minute work index and left ventricular stroke work index. Systemic vascular resistance with isoflurane at 2 MAC was lower than that with sevoflurane. During CV, sevoflurane induced dose-dependent circulatory depression (decreases in arterial pressure, cardiac index, rate pressure product, systemic vascular resistance, left ventricular minute work index and right ventricular minute work index), similar to isoflurane. Halothane did not significantly alter systemic vascular resistance from 1 to 2 MAC.  相似文献   

5.
Induction and recovery from inhalation anesthesia of Dumeril's monitors (Varanus dumerili) using isoflurane, sevoflurane, and nitrous oxide (N2O) were characterized using a randomized crossover design. Mean times to induction for isoflurane in 100% oxygen (O2), sevoflurane in 100% O2, sevoflurane in 21% O2:79% nitrogen (N2; room air), and sevoflurane in 66% N2O:34% O2 were 13.00 +/- 4.55, 11.20 +/- 3.77, 10.40 +/- 2.50, and 9.40 +/- 2.80 min, respectively, at 26 degrees C (n = 10). Mask induction with sevoflurane was significantly faster than with isoflurane. There was no significant difference between the induction time for sevoflurane in O2 or in room air, but sevoflurane combined with N2O resulted in significantly faster inductions than were obtained with sevoflurane in 100% O2. All treatments resulted in a significantly higher respiratory rate than in undisturbed animals. There were no significant differences in respiratory rate among lizards receiving O2, isoflurane in 100% O2, sevoflurane in room air, and sevoflurane combined with N2O, but animals receiving sevoflurane in O2 had a lower respiratory rate than those receiving pure O2. The sequence of complete muscle relaxation during induction was consistent and not significantly different among the four treatments: front limbs lost tone first, followed by the neck and the hind limbs; then the righting reflex was lost and finally tail tone. There were no significant differences in recovery times between isoflurane and sevoflurane or between sevoflurane in 100% O2 and sevoflurane combined with N2O. Similar recovery times were observed in animals recovering in 100 and 21% O2.  相似文献   

6.
新型吸入麻醉剂七氟醚在犬、猫、马、鼠的 MAC分别为 2 .1 0~ 2 .36 ,2 .5 8,2 .31 ,2 .40~ 2 .5 0 Vol%。像异氟醚那样 ,七氟醚可降低脑血管阻力、脑代谢率、脑耗氧量、心肌收缩功能和血压。七氟醚可引起猫惊厥。虽然猪的心跳在七氟醚麻醉下维持稳定 ,但研究表明犬的心率则升高。七氟醚麻醉下引起心律失常的肾上腺素剂量与异氟醚相似 ,但大大高于氟烷或安氟醚。七氟醚对呼吸道的刺激性明显低于其他吸入麻醉剂。尚未见其肝肾毒性。七氟醚已向理想的吸入麻醉剂方向迈出了更进一步  相似文献   

7.
新型吸入麻醉剂七氟醚在犬、猫、马、鼠的MAC分别为2.10~2.36, 2.58, 2.31, 2.40~2.50 Vol%。像异氟醚那样,七氟醚可降低脑血管阻力、脑代谢率、脑耗氧量、心肌收缩功能和血压。七氟醚可引起猫惊厥。虽然猪的心跳在七氟醚麻醉下维持稳定,但研究表明犬的心率则升高。七氟醚麻醉下引起心律失常的肾上腺素剂量与异氟醚相似,但大大高于氟烷或安氟醚。七氟醚对呼吸道的刺激性明显低于其他吸入麻醉剂。尚未见其肝肾毒性。七氟醚已向理想的吸入麻醉剂方向迈出了更进一步。  相似文献   

8.
A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 X MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously. There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign-test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater. The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head-lift and righting-reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

9.
Summary

A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 × MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously.

There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign‐test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater.

The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head‐lift and righting‐reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

10.
Anaesthesia was maintained with 4 different techniques in each of 12 dogs of ASA grades I or 11 undergoing 4 treatment sessions of mega-voltage x-ray therapy at weekly intervals. After induction of anaesthesia with propofol, these dogs received either: i) continiious pi-opofol iv infusion together with nitrous oxide/oxygen by inhalation: ii) halothane in nitrous oxiddoxygen; iii) entluraiie in nitrous oxide/oxygen; or iv) isollurane in nitrous oxide/oxygen. Anaesthesia dways enabled irradiation to be performed but stable anaesthesia was achieved more easily when enflurnne was used. The incidence of undesirable effects during anaesthesia wiis low. Recovery from the end of anaesthesia to swallowing was fastest Lifter enfluraiie (2.2 min median) but the recovery times to walking were similar (medians: halothane 12.5 min; entlurane 12.0 min; isoflurane 12.5 min; propofol I3 min). Personal preferences. local facilities and cost are likely to be the deciding factors in choice of any one of these techniques for dogs undergoing short procedures unussociatcd with surgical stimulation.  相似文献   

11.
Cardiopulmonary effects were assessed in 12 yearling steers anesthetized with guaifenesin and thiamylal sodium, intubated, and allowed to breathe isoflurane or halothane in oxygen spontaneously. Light surgical anesthesia, determined using eye position as a clinical indication of anesthetic depth, was maintained during surgical placement of a rumen cannula. Heart rate and respiratory rate were measured while the steers were standing quietly (baseline). Atropine (0.06 mg/kg of body weight, IM) was given after baseline measurements were taken. Heart rate, respiratory rate, arterial blood pressures, pHa, PaCO2, PaO2, arterial [HCO3-], esophageal temperature, and end-tidal anesthetic concentration were measured every 15 minutes for 90 minutes after induction of anesthesia. Mean heart rate increased significantly (P less than 0.05) above baseline in the isoflurane group at 15 and 30 minutes. Mean respiratory rate increased significantly (P less than 0.05) above baseline in the halothane group at 45 minutes. At 45 minutes, mean respiratory rate was lower (P less than 0.05) in the isoflurane group, compared with that in the halothane group. Mean values for arterial blood pressures and arterial gases were similar for both agents at comparable times. Mean end-tidal isoflurane concentrations were less than mean end-tidal halothane concentrations at each comparable time during maintenance of similar anesthetic depth. Maintenance of anesthesia with isoflurane resulted in higher heart rates and lower respiratory rates, compared with maintenance of anesthesia with halothane in these steers.  相似文献   

12.
The relative myocardial irritant properties of halothane, isoflurane, and pentobarbital were evaluated in chickens. Sixteen adult male broiler chickens were randomly assigned to 1 of 3 groups: group-1 chickens were anesthetized with pentobarbital (30 mg/kg, IV), group-2 chickens were anesthetized with halothane (end tidal halothane 1.2%), and group-3 chickens were anesthetized with isoflurane (end tidal isoflurane 2.1%). Birds in any 2 of the 3 treatment groups were tested on any 1 day. Local anesthesia was induced, and blood pressure, heart rate, ECG, and blood gas variables were measured before general anesthesia was induced. Positive-pressure ventilation with an inspired O2 fraction greater than 0.95 was adjusted to result in an end tidal CO2 concentration that reflected a Paco2 similar to that obtained prior to anesthesia and ventilation. All measurements were repeated. The threshold for ventricular fibrillation in response to electrical stimulation of the heart was then determined for all birds. Effects of anesthesia on hemodynamic and blood gas variables were similar in all 3 groups. Compared with halothane or pentobarbital, isoflurane anesthesia resulted in a significantly (P less than 0.05) lower threshold for electrical fibrillation of the heart.  相似文献   

13.
The effects of halothane, isoflurane and sevoflurane anaesthesia on hepatic function and hepatocellular damage were investigated in dogs, comparing the activity of hepatic enzymes and bilirubin concentration in serum. An experimental study was designed. Twenty-one clinically normal mongrel dogs were divided into three groups and accordingly anaesthetized with halothane (n = 7), isoflurane (n = 7) and sevoflurane (n = 7). The dogs were 1-4 years old, and weighed between 13.5 and 27 kg (18.4 +/- 3.9). Xylazine HCI (1-2 mg/kg) i.m. was used as pre-anaesthetic medication. Anaesthesia was induced with propofol 2 mg/kg i.v. The trachea was intubated and anaesthesia maintained with halothane, isoflurane or sevoflurane in oxygen at concentrations of 1.35, 2 and 3%, respectively. Intermittent positive pressure ventilation (tidal volume, 15 ml/kg; respiration rate, 12-14/min) was started immediately after intubation and the anaesthesia lasted for 60 min. Venous blood samples were collected before pre-medication, 24 and 48 h, and 7 and 14 days after anaesthesia. Serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH GGT) activities and bilirubin concentration were measured. Serum AST, ALT and GGT activities increased after anaesthesia in all groups. In the halothane group, serum AST and ALT activities significantly increased all the time after anaesthesia compared with baseline activities. But in the isoflurane group AST and ALT activities increased only between 2 and 7 days, and in the sevoflurane group 7 days after anaesthesia. GGT activity was increased in the halothane group between 2 and 7 days, and in the isoflurane and sevoflurane groups 7 days after anaesthesia. All dogs recovered from anaesthesia without complications and none developed clinical signs of hepatic damage within 14 days. The results suggest that the use of halothane anaesthesia induces an elevation of serum activities of liver enzymes more frequently than isoflurane or sevoflurane from 2 to 14 days after anaesthesia in dogs. The effects of isoflurane or sevoflurane anaesthesia on the liver in dogs is safer than halothane anaesthesia in dogs.  相似文献   

14.
Isoflurane was compared with halothane as an anesthetic agent for emergency colic surgery in a series of 38 juvenile and adult horses. After presurgical stabilization with fluids and supportive medications, anesthesia was induced by intravenous xylazine and/or diazepam followed by ketamine. Anesthesia was maintained with isoflurane or halothane in oxygen with controlled ventilation. Heart rates (HR), arterial blood gases, mean arterial pressures (MAP), rate pressure products (RPP), requirements for cardiovascular support medications, and recovery times to standing were compared using nonparametric methods. Cardiopulmonary responses to isoflurane and halothane anesthesia were generally comparable although some temporal differences were observed. Higher HR (p less than 0.02) and lower PaCO2 levels (p less than 0.01) were identified during the course of isoflurane anesthesia. Recovery times to standing were significantly shorter (0.02 less than p less than 0.05) after isoflurane than halothane anesthesia.  相似文献   

15.
Epinephrine-induced arrhythmias were studied in 4 cats (group A), using a 4 X 4 Latin square design. Each cat was anesthetized 4 times, 1 week apart, with halothane (1.5% end expired), isoflurane (2.0% end expired), and halothane or isoflurane preceded by ketamine administered IM (8.8 mg/kg). Lead II of the ECG and femoral artery pressure were recorded. Epinephrine was infused in progressively doubled rates (initial rate = 0.125 micrograms/kg/min) for a maximum of 2.5 minutes or until at least 4 ventricular premature depolarizations occurred within 15 s of each other. The arrhythmogenic dose of epinephrine (ADE; micrograms/kg) was calculated as the product of infusion rate and time to arrhythmia. The ADE (means +/- SD) during anesthesia with halothane alone and with ketamine-halothane anesthesia were 1.33 +/- 0.65 and 1.37 +/- 0.59 micrograms/kg, respectively; during anesthesia with isoflurane alone and ketamine-isoflurane anesthesia, the ADE were 9.34 +/- 1.29 and 16.16 +/- 3.63 micrograms/kg, respectively. The ADE was significantly greater (P less than 0.05) during isoflurane anesthesia and ketamine-isoflurane anesthesia than during halothane anesthesia. The percentages of change in systolic blood pressure (means +/- SD) at the ADE during halothane, ketamine-halothane, isoflurane, and ketamine-isoflurane were 31 +/- 34, 41 +/- 17, 127 +/- 27, and 148 +/- 57, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the present study the influence of three volatile agents (halothane, isoflurane and sevoflurane) in oxygen at two concentrations [1.5 and 2 minimum alveolar concentration (MAC)] on non-invasive cardio-respiratory parameters (heart and respirators rates, non-invasive blood pressures at 15, 30, 60 min and after extubation) and on the recovery times (appearance of the first eyelid reflex, emergence time) after clinical anaesthesia was studied. After premedication with fentanyl-droperidol (5 microg/kg and 0.25 mg/kg, intramuscularly) and induction with propofol (5 mg/kg, intravenously) six dogs were randomly anaesthetized for 1 h for a standard neurologic stimulation test. A wide individual variation in respiration rate (induced by an initial hyperpnea) was observed in the 1.5 MAC protocols, without significant differences. Heart rate was significantly lower during 1.5 and 2 MAC halothane when compared to isoflurane and sevoflurane. An increase from 1.5 to 2 MAC induced significant decreases in diastolic (DAP) and mean arterial blood pressure in all groups without significant changes in the systolic arterial pressures. Only DAP in sevoflurane protocol was significantly different at 1.5 and 2 MAC compared to halothane. Time had no significant influences in the non-invasive blood pressures in all protocols. Extubation induced a significant increase of all parameters in all protocols. The time for a first eyelid reflex was significantly longer after 2 MAC compared to the 1.5 MAC protocol. There was no significant difference between the three anaesthetic agents. Although emergence time was longest for halothane at both anaesthetic concentrations, no significant difference in emergence time was observed for the three volatile agents.  相似文献   

17.
An inhalational technique for rapid induction of anaesthesia in unsedated cats using sevoflurane and nitrous oxide is described. Using a pliable, tight-fitting, face mask, sevoflurane (7.5-8%) was delivered from an out-of-circuit precision vaporiser connected to a coaxial non-rebreathing system using a fresh gas flow of 1 l oxygen and 2 l nitrous oxide per min. Cats were restrained with gentle but firm pressure applied by scruffing the dorsal cervical skin until the righting reflex was lost and the patient could be positioned in lateral recumbency. Typically, cats could be positioned on their side in a light plane of anaesthesia within 1 min of applying the mask, at which time the sevoflurane concentration was reduced to 5% or less. A similar protocol, using a lower initial concentration of sevoflurane, is recommended for old or debilitated patients. Maintenance of light sevoflurane (2-4%) anaesthesia by mask permitted minor interventions to be performed readily, including blood collection, intravenous chemotherapy, abdominal palpation, radiography and ultrasonography. More painful procedures, such as bone marrow aspiration, required a deeper plane of anaesthesia. Cats were sufficiently deep to be intubated, if this was required, about 3 min after commencing the induction. Recovery from sevoflurane/nitrous oxide anaesthesia was smooth and rapid, with most cats being able to right within 5 min of discontinuing the agents. This protocol for rapid inhalational induction and recovery is particularly suited to feline practice, where rendering an uncooperative patient unconscious greatly facilitates the completion of many minor diagnostic and therapeutic procedures, especially when these must be performed on successive days or when peripheral vascular access is limited. For longer procedures, isoflurane may be substituted for sevoflurane for maintenance of anaesthesia in order to minimise cost.  相似文献   

18.
OBJECTIVE: To determine the hemodynamic effects of nitrous oxide in isoflurane-anesthetized cats. ANIMALS: 12 healthy adult domestic shorthair cats. PROCEDURE: Cats were anesthetized by administration of isoflurane in oxygen. After instruments were inserted, end-tidal isoflurane concentration was set at 1.25 times the individual minimum alveolar concentration, and nitrous oxide was administered in a Latin-square design at 0, 30, 50, and 70%. Each concentration was administered for 25 minutes before measurements were obtained to allow for stabilization. Heart rate; systemic and pulmonary arterial pressures; central venous pressure; pulmonary artery occlusion pressure; cardiac output; body temperature; arterial and mixed-venous pH, PCO2, PO2, and hemoglobin concentrations; PCV; and total protein and lactate concentrations were measured before and during noxious stimulation for each nitrous oxide concentration. Arterial and mixed-venous bicarbonate concentrations and oxygen saturation, cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, left and right ventricular stroke work indices, arterial and mixed-venous oxygen contents, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-to-arterial oxygen difference, and venous admixture were calculated. RESULTS: Arterial pressure, central venous pressure, pulmonary arterial pressure, rate-pressure product, systemic and pulmonary vascular resistance indices, arterial PCO2, and PCV increased during administration of 70% nitrous oxide. Arterial and mixed-venous pH, mixed-venous PO2, and alveolar-to-arterial oxygen difference decreased during administration of 70% nitrous oxide. Results before and during noxious stimulation were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of 70% nitrous oxide to isoflurane-anesthetized cats resulted in improved arterial pressure, which was related to a vasoconstrictive effect.  相似文献   

19.
The effects of thiopental, ketamine, diazepam, xylazine and nitrous oxide, and combinations of thiopental-nitrous oxide and ketamine-nitrous oxide on electroencephalographic (EEG) spike activity and convulsive behaviors in atropinized cats at surgical depth of enflurane anesthesia were assessed quantitatively for 60 minutes during spontaneous ventilation. Mean inspired enflurane concentrations (MIEC) were reduced 16% to 29% by pretreatment with thiopental, ketamine, diazepam, and xylazine, and were reduced 19% by 66% nitrous oxide. The MIEC of cats anesthetized with thiopental-nitrous oxide-enflurane and ketamine-nitrous oxide-enflurane were 35% to 38% lower than that with nitrous oxide-enflurane. Pretreatment with thiopental, ketamine, diazepam, and xylazine did not reduce the EEG spike frequency during anesthesia but did markedly reduce the spike amplitude. The addition of 66% nitrous oxide did not alter the spike frequency during anesthesia but tended to reduce the spike amplitude. Combinations of thiopental-nitrous oxide and ketamine-nitrous oxide almost abolished the spike activity. The addition of 66% nitrous oxide prevented convulsive responses elicited by photic and auditory stimulation during enflurane anesthesia. Treatment with thiopental, ketamine, diazepam and xylazine, and combinations of thiopental-nitrous oxide and ketamine-nitrous oxide, completely prevented convulsive responses during enflurane anesthesia.  相似文献   

20.
Effects of halothane, isoflurane and sevoflurane on laryngeal drive receptor activity were studied in the afferent activity of the superior laryngeal nerve in anesthetized spontaneously breathing dogs. Of 40 single units recorded, most of them (65%) responded to the volatile anesthetics applied to the isolated larynx at a concentration of 5%. The exposure to the anesthetics resulted in either an inspiratory increase (15%), both inspiratory and expiratory decrease (54%), or both inspiratory increase and expiratory decrease (31%) responses. The average discharge frequency of the receptors tended to be decreased on inhalation of the anesthetics, where significant decreases were observed in both respiratory phases for halothane and at expiration for isoflurane, but in neither respiratory phase for sevoflurane. These results support an advantage of sevoflurane over halothane and isoflurane for induction of anesthesia to minimize the influence of the activity of laryngeal drive receptors on the breathing pattern and airway stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号