首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits the causal bacteria of the devastating citrus disease huanglongbing (HLB). Because of the variation in spatial and temporal uptake and systemic distribution of imidacloprid applied to citrus trees and its degradation over time in citrus trees, ACP adults and nymphs are exposed to concentrations that may not cause immediate mortality but rather sublethal effects. The objective of this laboratory study was to determine the effects of sublethal concentrations of imidacloprid on ACP life stages. RESULTS: Feeding by ACP adults and nymphs on plants treated daily with a sublethal concentration (0.1 µg mL?1) of imidacloprid significantly decreased adult longevity (8 days), fecundity (33%) and fertility (6%), as well as nymph survival (12%) and developmental rate compared with untreated controls. The magnitude of these negative effects was directly related to exposure duration and concentration. Furthermore, ACP adults that fed on citrus leaves treated systemically with lethal and sublethal concentrations of imidacloprid excreted significantly less honeydew (7–94%) compared with controls in a concentration‐dependent manner suggesting antifeedant activity of imidacloprid. CONCLUSIONS: Sublethal concentrations of imidacloprid negatively affect development, reproduction, survival and longevity of ACP, which likely contributes to population reductions over time. Also, reduced feeding by ACP adults on plants treated with sublethal concentrations of imidacloprid may potentially decrease the capacity of ACP to successfully acquire and transmit the HLB causal pathogen. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Vector‐borne plant disease management can be enhanced by deployment of antifeedants in addition to the use of broad‐spectrum neurotoxic insecticides. The effects of pymetrozine on Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, feeding behaviour, survival and transmission of Candidatus Liberibacter asiaticus (Las), the presumed causal pathogen of huanglongbing, were investigated. RESULTS: Pymetrozine applied at 52 and 104 µg mL?1 to citrus plants [Swingle citrumelo (X Citroncirus webberi Ingram and Moore)] modified the feeding behavior of ACP and increased the amount of time spent performing non‐penetration behaviors while decreasing the time spent performing ingestion behaviors compared with the controls 1 day after treatment. However, the antifeedant effect of pymetrozine subsided 5 days after application. Pymetrozine reduced the survival of both adults and nymphs on treated plants compared with the control. However, it had a greater impact on survival of nymphs than on survival of adults. Pymetrozine applied at 52 and 104 µg mL?1 on Las‐infected ‘Valencia’ sweet orange plants [Citrus sinensis L. (Osbeck)] reduced acquisition (12 and 21% respectively) and transmission (11 and 18% respectively) of Las by feeding ACP adults compared with the controls; however, these reductions were not statistically significant. CONCLUSIONS: Pymetrozine exhibited moderate antifeedant effects by modifying the feeding behavior of ACP adults with short residual activity. The impact of pymetrozine on survival of nymphs was greater than on adults at the higher concentrations tested. Pymetrozine also reduced the acquisition and transmission of Las by feeding ACP adults up to 21 and 18%, respectively, compared with untreated controls. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
BACKGROUND: In the present investigation, the effect of Candidatus Liberibacter asiaticus (Las), a bacterium considered to be responsible for causing huanglongbing (HLB) disease in citrus, on the physiology of its vector, the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama, was determined. Specifically, the effects of Las infection on the susceptibility of ACP to selected insecticides were determined. Furthermore, total protein content and general esterase activity were quantified in Las‐infected and uninfected ACP to gain insight into the possible mechanism(s) responsible for altered susceptibility to insecticides owing to Las infection. RESULTS: LC50 values were significantly lower in Las‐infected than in uninfected ACP adults for chlorpyrifos and spinetoram. Furthermore, there was a general trend towards lower LC50 values for three other insecticides for Las‐infected ACP; however, the differences were not statistically significant. Total protein content (µg mL?1) was significantly lower in Las‐infected (23.5 ± 1.3 in head + thorax; 27.7 ± 1.9 in abdomen) than in uninfected (29.7 ± 2.1 in head + thorax; 35.0 ± 2.3 in abdomen) ACP. Likewise, general esterase enzyme activity (nmol min?1 mg?1 protein) was significantly lower in Las‐infected (111.6 ± 4.5 in head + thorax; 109.5 ± 3.7 in abdomen) than in uninfected (135.9 ± 7.5 in head + thorax; 206.1 ± 23.7 in abdomen) ACP. CONCLUSION: Susceptibility of ACP to selected insecticides from five major chemistries was greater in Las‐infected than in uninfected ACP. The lower total protein content and reduced general esterase activity in Las‐infected than in uninfected ACP may partly explain the observed higher insecticide susceptibility of Las‐infected ACP. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a cosmopolitan insect pest of citrus and vectors the bacterium Candidatus Liberibacter asiaticus, a suspected causal organism of citrus greening or ‘huanglongbing’ disease. Aldicarb 150 g kg?1 GR (Temik® 15 G) was evaluated at three rates, two placements and three timings for ACP control in orange trees. RESULTS: Application of aldicarb at 5.6, 2.8 and 1.4 kg AI ha?1 in March 2006 reduced adults by 58–66%, 45–46% and 25–37% respectively compared with untreated controls in two separate trials. No difference was observed in placement (one versus two sides of the tree) or tree size (8 years old versus 12 years old). Application at 5.6 kg ha?1 in January 2007 reduced adults by 86% and shoot infestation by 77% in spring, and was generally better than the November and especially February applications. Even more striking results were evident on adults caged on treated plants for 25 days in March. Spiders and ladybeetles were equally abundant in treated and untreated trees. CONCLUSION: Aldicarb application at 5.6 kg ha?1 to the bed side of mature citrus trees 2–3 months before spring growth can suppress ACP through spring without a direct effect on principal psyllid natural enemies. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Diaphorina citri populations in Florida are developing resistance to commonly used neurotoxic insecticides. Alternatives to neurotoxins, such as insect growth regulators, are needed to control this season-long subtropical pest to prevent or delay development of insecticide resistance. In the present investigation, two insect growth regulators (IGRs), buprofezin and diflubenzuron, were evaluated against various developmental stages of D. citri. RESULTS: The 0–1-day-old D. citri eggs were more susceptible to buprofezin and diflubenzuron than the 3–4-day-old eggs. Adult emergence was completely suppressed by treating first- or third-instar nymphs with buprofezin or diflubenzuron at 30–240 or 23–184 µg mL−1 rates respectively. Treatment of fifth-instar nymphs with diflubenzuron at a rate of 184 µg mL−1 and with buprofezin at 30–240 µg mL−1 rates resulted in approximately 20 and 15–80% reductions in adult emergence respectively. The mean number of eggs per plant was reduced at 5 days after topical treatment with diflubenzuron. Mean egg hatch per plant was reduced at 5 and 6–15 days after topical treatments with buprofezin and diflubenzuron respectively. CONCLUSION: Buprofezin and diflubenzuron effectively suppressed D. citri adult emergence. D. citri were more susceptible as early (first–third-instar) than late (fifth-instar) nymphs. Both IGRs inhibited egg production and egg hatch. Reduction in the number of subsequent offspring suggests reduced vertical transmission of Candidatus Liberibacter asiaticus, the pathogen thought to cause citrus greening disease. The present results indicate that both IGRs tested here should be effective tools for rotation in insecticide-based D. citri management programs. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important international pest of citrus because it transmits the bacteria that cause huanglongbing (HLB). HLB limits citrus production globally. We evaluated the toxicity of sulfoxalor against D. citri and its parasitoid, Tamarixia radiata Waterston. Sulfoxaflor was as toxic as imidacloprid to adult D. citri. The LC50 values for sulfoxaflor and imidacloprid were 8.17 and 5.7 µg AI mL?1, respectively. The LC50 of sulfoxaflor for T. radiata adults was 3.3 times greater than for D. citri adults. Treatment with sulfoxaflor resulted in reduced oviposition, development of nymphs, and emergence of adult D. citri on plants, as compared with controls. The lowest concentration that reduced adult emergence was 0.6 µg AI mL?1. There was reduced feeding by D. citri adults on leaves treated with sulfoxaflor. The residual toxicity of sulfoxaflor was equivalent to imidacloprid. Under field conditions, formulated sulfoxaflor reduced populations of D. citri compared with untreated controls. Sulfoxaflor is a novel mode of action and is an effective tool for D. citri management.  相似文献   

7.
Pyriproxyfen, a novel juvenile hormone mimic, is a potent suppressor of embryogenesis and adult formation of the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Dipping of cotton or tomato seedlings infested with 0 to 1-day-old eggs in 0.1 mg litre?1 resulted in over 90% suppression of egg hatch of both B. tabaci and T. vaporariorum. Older eggs were affected to a lesser extent. Exposure of whitefly females to cotton or tomato seedlings treated with pyriproxyfen resulted in oviposition of non-viable eggs. The LC90 values for egg viability of B. tabaci and T. vaporariorum exposed to treated plants were 0.05 and 0.2 mg litre?1, respectively. Treatment of whitefly larvae with 0.04–5 mg litre?1 resulted in normal development until the pupal stage; however, adult emergence was totally suppressed. Second instars of B. tabaci exposed to 5 mg litre?1 pyriproxyfen, excreted honeydew at a level similar to the control level until the fourth instar (pupation), after which a strong reduction was observed. Inhibition of egg-hatch on the lower surface of cotton leaves was observed when their upper surface was treated with 1–25 mg litre?1, indicating a pronounced translaminar effect. These findings indicate that pyriproxyfen is an efficient control agent of both B. tabaci and T. vaporariorum. The compound has been used successfully for controlling whiteflies in Israeli cotton fields since 1991. Adults of B. tabaci collected from a rose greenhouse and from adjacent cotton fields were monitored during 1991–1993 for their susceptibility to pyriproxyfen. A high level of resistance was recorded in whiteflies collected from a greenhouse after three successive applications of pyriproxyfen. Based on LC50 values, the resistance ratio for egg-hatch suppression was 554-fold and, for adult emergence failure, 10-fold. However, a single treatment of pyriproxyfen in cotton fields during the summer season (according to an insecticide resistance management (IRM) strategy) did not alter appreciably the susceptibility of B. tabaci to this compound. In order to prevent development of resistance, an attempt should be made to restrict its use to one treatment per crop season applied during the peak activity of the pest. Pyriproxyfen can be alternated with other novel compounds such as buprofezin and diafenthiuron for controlling whiteflies in cotton, vegetables and ornamentals as part of integrated pest management (IPM) and IRM strategies. In pyriproxyfen- or buprofezin-resistant strains of B. tabaci or T. vaporariorum, no appreciable cross-resistance was observed among pyriproxyfen, buprofezin and diafenthiuron.  相似文献   

8.
BACKGROUND: Plant essential oils have been recognised as an important natural source of insecticide. This study analysed the chemical constituents and bioactivity of essential oils that were isolated via hydrodistillation from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) against eggs, second instar and adults of Nezara viridula (L.). RESULTS: The major component of oregano was p‐cymene, and, for thyme, thymol. The ovicidal activity was tested by topical application; the essential oil from thyme was more effective. The fumigant activity was evaluated in an enclosed chamber; the LC50 values for oregano were 26.8 and 285.6 µg mL?1 for nymphs and adults respectively; for thyme they were 8.9 µg mL?1 for nymphs and 219.2 µg mL?1 for adults. To evaluate contact activity, a glass vial bioassay was used; the LC50 values for oregano were 1.7 and 169.2 µg cm?2 for nymphs and adults respectively; for thyme they were 3.5 and 48.8 µg cm?2 respectively. The LT50 analyses for contact and fumigant bioassays indicated that thyme was more toxic for nymphs and adults than oregano. Both oils produced repellency on nymphs and adults. CONCLUSION: These results showed that the essential oils from O. vulgare and T. vulgaris could be applicable to the management of N. viridula. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Pristine® (pyraclostrobin + boscalid) is a fungicide registered for the control of alternaria late blight in pistachio. A total of 95 isolates of Alternaria alternata collected from orchards with and without a prior history of Pristine® sprays were tested for their sensitivity towards pyraclostrobin, boscalid and Pristine® in conidial germination assays. The EC50 values for 35 isolates from orchards without Pristine® sprays ranged from 0·09 to 3·14 µg mL?1 and < 0·01 to 2·04 µg mL?1 for boscalid and Pristine®, respectively. For pyraclostrobin, 27 isolates had EC50 < 0·01 µg mL?1 and six had low resistance (mean EC50 value = 4·71 µg mL?1). Only one isolate was resistant to all three fungicides tested, with EC50 > 100 µg mL?1. Among 59 isolates from the orchard with a history of Pristine® sprays, 56 were resistant to pyraclostrobin; only two were sensitive (EC50 < 0·01 µg mL?1) and one was weakly resistant (EC50 = 10 µg mL?1). For the majority of these isolates EC50 values ranged from 0·06 to 4·22 µg mL?1 for boscalid and from 0·22 to 7·74 µg mL?1 for Pristine®. However, seven isolates resistant to pyraclostrobin were also highly resistant to boscalid and Pristine® and remained pathogenic on pistachio treated with Pristine®. Whereas strobilurin resistance is a common occurrence in Alternaria of pistachio, this is the first report of resistance to boscalid in field isolates of phytopathogenic fungi. No cross resistance between pyraclostrobin and boscalid was detected, suggesting that Pristine® resistance appears as a case of multiple resistance.  相似文献   

10.
BACKGROUND: High resistance of brown planthopper (BPH) Nilaparvata lugens Stål to common insecticides is a challenge for control of the pest. An alternative control strategy based on the combined application of fungal and chemical agents has been evaluated. RESULTS: Three gradient spore concentrations of oil‐formulated Metarhizium anisopliae (Metschnikoff) Sorokin (Ma456) were sprayed onto third‐instar nymphs in five bioassays comprising the low buprofezin rates of 0, 10, 20, 30 and 40 µg mL?1 respectively. Fungal LC50 after 1 week at 25 °C and 14:10 h light:dark photoperiod decreased from 386 conidia mm?2 in the buprofezin‐free bioassay to 40 at the highest chemical rate. Buprofezin (LC50: 1647, 486 and 233 µg mL?1 on days 2 to 4) had no significant effect on the fungal outgrowths of mycosis‐killed cadavers at the low application rates. The fungal infection was found to cause 81% reduction in reproductive potential of BPH adults. In two 40 day field trials, significant planthopper (mainly BPH) control (54–60%) was achieved by biweekly sprays of two fungal candidates (Ma456 and Ma576) at 1.5 × 1013 conidia ha?1 and elevated to 80–83% by incorporating 30.8 g buprofezin ha?1 into the fungal sprays. CONCLUSION: The combined application of the fungal and chemical agents is a promising alternative strategy for BPH control. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The current study investigates, for the first time, the mosquito larvicidal activities of leaf and twig essential oils from Clausena excavata Burm. f. and their individual constituents against Aedes aegypti L. and Aedes albopictus Skuse larvae. The yields of essential oils obtained from hydrodistillation were compared, and their constituents were determined by GC‐MS analyses. RESULTS: The LC50 values of leaf and twig essential oils against fourth‐instar larvae of Ae. aegypti and Ae. albopictus were 37.1–40.1 µg mL?1 and 41.1–41.2 µg mL?1 respectively. This study demonstrated that C. excavata leaf and twig essential oils possess mosquito larvicidal activity, inhibiting the growth of mosquito larvae for both species at a low concentration. In addition, results of larvicidal assays showed that the effective constituents in leaf and twig essential oils were limonene, γ‐terpinene, terpinolene, β‐myrcene, 3‐carene and p‐cymene. The LC50 values of these constituents against both mosquito larvae were below 50 µg mL?1. Among these effective constituents, limonene had the best mosquito larvicidal activity, with LC50 of 19.4 µg mL?1 and 15.0 µg mL?1 against Ae. aegypti and Ae. albopictus larvae respectively. CONCLUSION: The findings suggested that the essential oils from Clausena excavata leaf and twig and their effective constituents may be explored as a potential natural larvicide. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Diflubenzuron, topically applied (0·5 μg insect?-1) to Cydia pomonella (L.) at pupal ecdysis disturbed growth and development of oocytes. It delayed the adult ecdysis and caused a decrease in both thickness of the follicular epithelium and the size of the basal oocyte during the pupal development. On the other hand, the size of basal oocytes, the protein content per ovary and the number of oocytes per ovary recorded in newly emerged adults were significantly reduced after diflubenzuron treatment. These results, together with observations in several other species, indicate that the reduction in fecundity and egg viability is probably due to interference of diflubenzuron with the vitellogenesis process.  相似文献   

13.
14.
 1973-1978年用从田间病树上采集的柑桔木虱成虫放饲在398株健康柑桔苗上,有32株发病。用病树上采集的柑桔木虱高龄若虫置健苗上所羽化的成虫放饲的56株,有5株发病。未接虫的110株没有发病。初步说明柑桔木虱成虫可以传病。  相似文献   

15.
BACKGROUND: The cotton bollworm, Helicoverpa armigera (Hübner), is one of the most serious insect pests of cotton. It has developed resistance to almost all groups of chemical insecticides because of their intensive use. The failure of insecticides to control H. armigera has been a strong incentive for the adoption of transgenic cotton (Bt cotton). However, the value of Bt could be diminished by widespread resistance development to Bt toxins in insect populations. Therefore, understanding the genetic basis of resistance is essential for developing and implementing strategies to delay and monitor resistance. RESULTS: A resistant strain designated as BM‐R was obtained from the cross of adults from Bathinda () and Muktsar (), Punjab, India, which showed the highest survival (60.68%) and LC50 value (1.396 µg mL?1 diet). Similarly, a laboratory‐maintained strain from Hoshiarpur, Punjab, showed maximum susceptibility to Cry1Ac toxin with the lowest LC50 value (0.087 µg mL?1), and was designated as HP‐S. The genetic purity of both strains was confirmed by RAPD profile analysis at each generation, and genetic similarity reached more than 90% after the third generation. Continuous maintenance of the resistant BM‐R strain on Cry1Ac resulted in an increase in LC50 from 0.531 µg mL?1 in F0 to 4.28 µg mL?1 in F14 and 7.493 µg mL?1 in F19, while the LC50 values for HP‐S larvae on diet without Cry1Ac increased to 0.106 and 0.104 µg mL?1, which lay within the fiducial limits of the baseline LC50 value. The mode of inheritance of resistance was elucidated through bioassay response of resistant, susceptible heterozygotes and backcross progeny to Cry1Ac incorporated in semi‐synthetic diet. CONCLUSION: Based on dominance, degree of dominance and backcross values, resistance was inferred to be polygenic, autosomal and inherited as a recessive trait. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second‐stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. RESULTS: The 96 h EC50 values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL?1, respectively, in an immersion bioassay. Benzaldehyde (9 µg mL?1) was the most toxic compound, followed by γ‐eudesmol (50 µg mL?1) and estragole (180 µg mL?1), based on 96 h EC50 values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans‐anethole/geraniol, trans‐anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. CONCLUSION: This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry  相似文献   

17.

The toxicity of two juvenile hormone analogues, pyriproxyfen (Nemesis®) and fenoxycarb (Insegar®), and two contact insecticides, methomyl (Lannate) and methidathion (Ultracide), was evaluated against immature stages (LI, LII, LIII) of Ceroplastes destructor Newstead in the field. The effects of these chemicals and one moulting inhibitor, triflumuron (Alsystin®), and three insecticides: methyl-parathion (Penncap-M), profenofos (Selecron) and prothiofos (Tokuthion), on Aprostocetus (= Tetrastichus) ceroplastae (Girault) were assessed in the laboratory. Development of the first and second instar nymphs of C. destructor was completely arrested by the chemicals. Less than 1% of scales sprayed with pyriproxyfen at LII stage survived to adult female. Survival to the adult stage varied significantly between chemical treatments, and between chemicals and untreated controls for scales sprayed at the LIII stage. Female fecundity, fertility and body sizes of survivors of treatments applied at the LIII stage were not significantly affected by any of the chemicals. All the chemicals exhibited high toxicity to A. ceroplastae. Only triflumuron was slightly harmful, while methomyl was the most toxic (harmful), causing 100% mortality in the first 30 min after treatment. Although all the chemicals evaluated had effectively arrested the first and second instars of C. destructor, none of them exhibited sufficient selectivity to A. ceroplastae to warrant recommendation for integrated management of C. destructor in citrus orchards in South Africa, where A. ceroplastae plays an important role.  相似文献   

18.
BACKGROUND: The pea aphid, Acyrthosiphon pisum (Harris), is a cosmopolitan pest that attacks a wide range of legume crops and vectors important plant virus diseases. In this project, essential oils from the leaf (L) and bark (B) of Laurelia sempervirens (Ruiz & Pavón) Tul. (L) and Drimys winteri JR Forster & G Forster (D) were extracted, and their deterrent and insecticidal activities were tested under laboratory conditions. RESULTS: By use of GC‐MS, safrole was found as the main constituent in LL and LB oils, while the main constituents were more diverse in DL and DB oils. In the deterrent bioassays with A. pisum under choice conditions, the four oils were active, with LL being the most active, followed by LB, DB and DL. The respective deterrence indices were 1.0, 0.89, 0.87 and 0.46 when aphids were exposed for 24 h to 4 µL mL?1. Although there was no aphid mortality when oils were sprayed on faba bean leaves before aphid infestation, there was 58 and 42% mortality when settled aphids were directly sprayed with 4.0 µL mL?1 of LL and LB respectively; DB and DL oils caused ≤18% mortality. In a third series, the essential oils of LL and LB caused 100% mortality when applied at a dose of 64 µL L?1 air by fumigation to faba bean plants infested with A. pisum; at the same dose, DB and DL oils caused 68 and 63% mortality respectively. When fumigation was limited to 2 h, the respective LC50 values for LL and LB oils were 10.6–14.3 µL L?1 air and 9.8–13.2 µL L?1 air. CONCLUSION: Because of their high deterrent and insecticidal activities, the essential oils from leaf and bark of L. sempervirens may be explored as potential natural aphicides. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Mefenoxam is one of the most commonly used fungicides for managing diseases caused by Phytophthora spp. on ornamentals. The objectives of this study were to determine whether Phytophthora nicotianae, a destructive pathogen of numerous herbaceous annual and perennial plant species in nurseries, has developed resistance to mefenoxam, and to evaluate the fitness of mefenoxam‐resistant isolates. Ninety‐five isolates of P. nicotianae were screened for sensitivity to mefenoxam on 20% clarified V8 agar at 100 a.i. µg mL?1. Twenty‐five isolates were highly resistant to this compound with EC50 values ranging from 235·2 to 466·3 µg mL?1 and four were intermediately resistant with EC50 values ranging from 1·6 to 2·9 µg mL?1. Sixty‐six isolates were sensitive with EC50 values less than 0·04 µg mL?1. Nine resistant and seven sensitive isolates were tested for mefenoxam sensitivity on Pelargonium × hortorum cv. White Orbit. Mefenoxam provided good protection of pelargonium seedlings from colonization by sensitive isolates, but not by any resistant isolates. Four resistant and four sensitive isolates were compared for fitness components and their relative competitive ability on Lupinus Russell Hybrids in the absence of mefenoxam. Resistant isolates outcompeted sensitive ones within 3 to 6 sporulation cycles on lupin seedlings, regardless of their initial proportions in mixed zoospore inoculum. Resistant isolates exhibited greater infection rate and higher sporulation ability than sensitive ones when they were applied separately onto lupins. These results suggest that fungicide resistance may pose a serious challenge to the continued effectiveness of mefenoxam as a control option for nursery growers.  相似文献   

20.
In this study certain biological and prey consumption features of the predator of mealybug, namely Nephus kreissli Fürsch & Uygun (Coleoptera: Coccinellidae), fed on vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were determined under the laboratory conditions. Experiments were performed in the acclimatized room under 28?±?1°C, 60?±?10% r.h. and a photoperiod of 16:8 h(L:D) conditions. To determine the biological features of the coccinellid, predator individuals were continuously observed from egg stage to end of adult stage. The development, survival and fecundity of N. kreissli were determined and all the measured data were recorded daily. The total development time from egg to the eclosion of adult stage was determined as 31.6?±?0.4 days. The lifespan of males and females was 66.0?±?3.8 and 65.8?±?3.5 days, respectively; and a single female laid 122.6 eggs. The raw data related to life history were analyzed by using the age-stage, two-sex life table. The intrinsic rate of increase, the net reproductive rate, and the mean generation time were 0.0709?±?0.0036 d?1, 53.1?±?9.5 offspring and 55.8?±?1.3 days, respectively. The first and second instars of N. kreissli preferred egg stages of P. ficus to other stages of mealybug. On the other hand, third and fourth instars and adult predators preferred the second and third instar nymphs and adult females of the prey. It was determined that the egg consumption of N. kreissli increased with the development of larval stages, and that the highest consumption was recorded in its fourth instar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号