首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Enhanced atrazine degradation has been observed in agricultural soils from around the globe. Soils exhibiting enhanced atrazine degradation may be cross-adapted with other s-triazine herbicides, thereby reducing their control of sensitive weed species. The aims of this study were (1) to determine the field persistence of simazine in atrazine-adapted and non-adapted soils, (2) to compare mineralization of ring-labeled (14)C-simazine and (14)C-atrazine between atrazine-adapted and non-adapted soils and (3) to evaluate prickly sida control with simazine in atrazine-adapted and non-adapted soils.RESULTS: Pooled over two pre-emergent (PRE) application dates, simazine field persistence was 1.4-fold lower in atrazine-adapted than in non-adapted soils. For both simazine and atrazine, the mineralization lag phase was 4.3-fold shorter and the mineralization rate constant was 3.5-fold higher in atrazine-adapted than in non-adapted soils. Collectively, the persistence and mineralization data confirm cross-adaptation between these s-triazine herbicides. In non-adapted soils, simazine PRE at the 15 March and 17 April planting dates reduced prickly sida density at least 5.4-fold compared with the no simazine PRE treatment. Conversely, in atrazine-adapted soils, prickly sida densities were not statistically different between simazine PRE and no simazine PRE at either planting date, thereby indicating reduced simazine efficacy in atrazine-adapted soils.CONCLUSIONS: Results demonstrate the potential for cross-adaptation among s-triazine herbicides and the subsequent reduction in the control of otherwise sensitive weed species. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

2.
The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

3.
Rates of degradation and adsorption of acetochlor [2‐chloro‐N‐ethoxymethyl‐6′‐ethylaceto‐o‐ toluidide] and terbuthylazine [N 2tert‐butyl‐6‐chloro‐N4‐ethyl‐1,3,5‐triazine‐2,4‐diamine] in a Horotiu sandy loam soil (Typic Orthic Allophanic) were determined under controlled temperature and soil moisture regimes. These were then combined with site‐specific soil properties and climatic conditions in the Pesticide Root Zone Model (PRZM‐3) to predict dissipation and leaching of the herbicides in the field. PRZM‐3 significantly under‐estimated dissipation of both herbicides in the field using parameters derived from the laboratory incubation studies. When these parameters were derived from the field trials, PRZM‐3 adequately predicted dissipation of both herbicides using a two‐rate dissipation sub‐model but under‐predicted the dissipation when a simpler single‐rate sub‐model was used. Earlier‐than‐expected appearance of both herbicides in sub‐soil layers were postulated to result from the non‐equilibrium adsorption/transport of the herbicides and preferential flow, which cannot be simulated by PRZM‐3. © 2000 Society of Chemical Industry  相似文献   

4.
以稗草为生物测定材料,运用二次正交旋转组合设计,以土壤湿度和除草剂用量二因子为决策变量,对稗草的抑制率为目标函数,研究土壤湿度对三氮苯类除草剂药效的影响。结果表明,适当的土壤水分是三氮苯类除草剂发挥药效的重要因素,药效随土壤湿度的提高而提高。不同的土壤湿度对不同除草剂药效影响各异,高湿条件下,湿度差异对药效影响大小依次为嗪草酮、西草净、扑草净、莠去津,低湿条件下则相反。除草剂用量与土壤湿度存在最佳发挥药效的组合。  相似文献   

5.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

6.
The effects of application of the herbicides fluazifop‐p‐butyl and fomesafen and the commercial mixture of these herbicides on the microbial activity of a soil, cultivated with common bean under no‐till (NTS) and conventional‐till (CTS) systems, were evaluated. Microbial respiration was monitored for 63 days after application (DAA) of the herbicides, and the following evaluated at 12 and 51 DAA: microbial biomass carbon (MBC), microbial quotient (qMIC), metabolic quotient (qCO2), percentage of bean root colonisation by mycorrhizal fungi and grain yield at the end of the cycle. A greater microbial respiratory rate was observed under NTS, with fluazifop‐p‐butyl providing the lowest respiration. At 12 DAA, MBC and qMIC were most affected negatively by fomesafen and by the commercial mixture of the two herbicides. Mycorrhizal colonisation was affected by the herbicides only at 12 DAA under CTS; however, in both periods, the highest value was found under NTS. All the herbicides caused a decrease in the MBC and qMIC values at 51 DAA; the qCO2, which is related to the soil system stability, indicated a greater NTS balance over CTS. The herbicide fomesafen induced lower stability in the system. Lower grain yield was obtained without weed control (no herbicides) and with fomesafen‐only treatments, which may be attributed to the high weed infestation in the experimental area.  相似文献   

7.
Abstract

Field experiments were conducted to determine the effectiveness of herbicides in controlling Rottboellia cochinchinensis (Lour.) W. D. Clayton and Cyperus rotundus L. in upland rice (Oryza sativa L.) at different moisture regimes as imposed by a line source sprinkler system. Preemergence application of pendimethalin [N‐(1‐ethylpropyl)‐3,4‐dimethyl‐2,6‐dinitrobenzenamine] was highly effective in controlling R. cochinchinensis irrespective of soil moisture after herbicide application. Bentazon [3‐(1‐methylethyl)‐(1H)‐2,1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] and 2,4‐D [(2,4‐dichlorophenoxy)acetic acid] applied at postemergence effectively controlled C. rotundus when moisture supply was well above pan evaporation. These herbicides also had no adverse effect on rice stand and resulted in higher yield over the control. Water application rates above upland pan evaporation for a season‐long period was essential to obtain a high response to weed control either by herbicides or hand weeding. The data suggest that proper weed control by herbicides or hand weeding will not result in high upland rice grain yields if moisture level from rains fall below the critical level.  相似文献   

8.
In 393 field experiments in Baden‐Württemberg region in south‐western Germany, herbicide efficacy, yield loss and crop tolerance of maize (Zea mays) were investigated between 1981 and 2011. The collected data served to determine changes in weed frequencies, in herbicide use, yield loss functions and economic thresholds (ETs). Over 60 weed species were reported. Chenopodium album and Galium aparine were the most frequent broad‐leaved weeds, the former becoming more frequent over time. Species of the genera Lamium, Polygonum, Veronica and Matricaria occurred in about every fifth trial. Alopecurus myosuroides and Echinochloa crus‐galli were the most frequent grass weeds; the former declining in frequency by 1.1% per year, the latter increasing by 1.5%. Results suggest a weed population shift towards thermophilic species. aceto‐lactate‐synthase and 4‐HPPD‐inhibitor herbicides became important in the 1990s. Pendimethalin and bromoxynil have been integral components of weed control since the 1980s. ETs, the point at which weed control operations provide economic returns over input costs, ranged between 3.7% and 5.8% relative weed coverage. Without weed control, no yield increase was found over 24 years. Yield increased by 0.2 t ha ? 1 year ? 1, if weeds were controlled chemically. Despite intensive use of effective herbicides in maize, problematic weed species abundance and yield losses due to weed competition have increased in Baden‐Württemberg over a period of 30 years.  相似文献   

9.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

10.
BACKGROUND: Grass seed crops are minor crops that cannot support the development of selective herbicides for grass weed control in grass seed crops. An option is to screen for selective herbicides with the use of logarithmic spraying technology. The aim of this paper is to assess selectivity of various herbicides in grass seed crops by using dose–response curves. RESULTS: Six grass species were subjected to logarithmic spraying with 11 herbicides and with Poa pratensis L. as a weed. The ratio between the doses that caused 10% of damage to the crop and 90% of damage to the weed was used as a selectivity index. Compounds with selectivity indices above 2 can be safely used in a crop. The two ACCase herbicides clodinafop‐propargyl and fenoxaprop‐P‐ethyl and a mixture of the two ALS herbicides mesosulfuron and iodosulfuron could be used selectively to control P. pratensis in Festuca rubra L., although the selectivity indices in no instances were greater than the desired 2.0. CONCLUSION: The logarithmic sprayer can be a rapid screening tool for identifying compounds with favourable selectivity indices. Good experimental design is needed to alleviate rates being systematically distributed and confounded with growth rate and soil fertility gradients. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The longevity of buried Rottboellia cochinchinensis (Lour.) W.D. Clayton seed represents a major survival mechanism for the weed, enabling the persistence of a continuing source of weed seeds in crop land. The pattern of seed persistence and depletion of R. cochinchinensis in cultivated maize soils was investigated by means of (1) studies on the effect of depth and duration of burial on the viability of the weed seeds, (2) quantitative estimation of the seed population and viability in cultivated fields, and (3) the periodicity of emergence and effects of cultivation on seed germination both in the field and in the greenhouse. The results indicated that the mode of persistence was innate (8.5%) and enforced (35%) dormancy after 1 year of burial, and that the persistency component of the seed population on cultivated soils ranged from 40.60%. The weed was able to remain viable at depths of 45 cm, indicating an excellent mechanism of escaping the effects of most soil-applied herbicides, and it was shown that tillage increases the depletion rate of the weed seed reserve by 32% per year.  相似文献   

12.
The 1995/6 International Survey of Herbicide-Resistant Weeds recorded 183 herbicide-resistant weed biotypes (124 different species) in 42 countries. The increase in the number of new herbicide-resistant weeds has remained relatively constant since 1978, at an average of nine new cases per year worldwide. Whilst 61 weed species have evolved resistance to triazine herbicides, this figure now only accounts for one-third of all documented herbicide-resistant biotypes. Triazine-resistant weeds have been controlled successfully in many countries by the use of alternative herbicides. Due to the economic importance of ALS and ACCase inhibitor herbicides worldwide, and the ease with which weeds have evolved resistance to them, it is likely that ALS and ACCase inhibitor-resistant weeds will present farmers with greater problems in the next five years than triazine-resistant weeds have caused in the past 25 years. Thirty-three weed species have evolved resistance to ALS-inhibitor herbicides in 11 countries. ALS-inhibitor-resistant weeds are most problematic in cereal, corn/soybean and rice production. Thirteen weed species have evolved resistance to ACCase inhibitors, also in 11 countries. ACCase inhibitor resistance in Lolium and Avena spp. threatens cereal production in Australia, Canada, Chile, France, South Africa, Spain, the United Kingdom and the USA. Fourteen weed species have evolved resistance to urea herbicides. Isoproturon-resistant Phalaris minor infesting wheat fields in North West India and chlorotoluron-resistant Alopecurus myosuroides in Europe are of significant economic importance. Although 27 weed species have evolved resistance to bipyridilium herbicides, and 14 weed species have evolved resistance to synthetic auxins, the area infested and the availability of alternative herbicides have kept their impact minimal. The lack of alternative herbicides to control weeds with multiple herbicide resistance, such as Lolium rigidum and Alopecurus myosuroides, makes these the most challenging resistance problems. The recent discovery of glyphosate-resistant Lolium rigidum in Australia is a timely reminder that sound herbicide-resistant management strategies will remain important after the widespread adoption of glyphosate-resistant crops. ©1997 SCI  相似文献   

13.
The behaviour and fate of chlorsulfuron in aqueous and soil systems were examined in laboratory studies. Aqueous hydrolysis was pH-dependent and followed pseudo-first-order degradation kinetics at 25°C, with faster hydrolysis occurring at pH 5 (half-life 24 days) than at either pH 7 or 9 (half-lives >365 days). Degradation occurred primarily by cleavage of the sulfonylurea bridge to form the major metabolites chlorobenzenesulfonamide (2-chlorobenzenesulfonamide) and triazine amine (4-methoxy-6-methyl-1,3,5-triazin-2-amine). This route is a major degradation pathway in water and soil systems. Aqueous photolysis (corrected for hydrolysis) proceeded much more slowly (half-life 198 days) than aqueous hydrolysis and is not expected to contribute significantly to overall degradation. Hydrolysis in soil thin-layer plates exposed to light (half-life 80 days), however, progressed at a much faster rate than in dark controls (half life 130 days), which suggests that a mechanism other than direct photolysis may have been operative. An aerobic soil metabolism study (25°C) in a Keyport silt loam soil (pH 6·4, 2·8% OM) showed that degradation was rapid (half-life 20 days). Dissipation in an anaerobic sediment/water system (initial pH of water phase 6·7, final pH 7·4) progressed much more slowly (half-life >365 days) than in aerobic soil systems. Major degradation products in aerobic soil included the chlorobenzenesulfonamide and triazine amine as in the aqueous hydrolysis study. Neither of these degradation products exhibited phytotoxicity to a variety of crop and weed species in a glasshouse experiment, and both exhibited an acute toxicological profile similar to that of chlorsulfuron in a battery of standard tests. Demethylation of the 4-methoxy group on the triazine moiety and subsequent cleavage of the triazine ring is another pathway found in both aqueous solution and soils, though different bonds on the triazine amine appear to be cleaved in the two systems. Hydroxylation of the benzenesulfonamide moiety is a minor degradation pathway found in soils. Two soils amended with 0·1 and 1·0 mg kg-1 chlorsulfuron showed slight stimulation of nitrification. The 1·0 mg kg-1 concentration of chlorsulfuron resulted in minor stimulation and inhibition of 14C-cellulose and 14C-protein degradation, respectively, in the same soils. Batch equilibrium adsorption studies conducted on four soils showed that adsorption was low in this system (Koc 13–54). Soil thin-layer chromatography of chlorsulfuron (Rf=0·55–0·86) and its major degradation products demonstrated that the chlorobenzenesulfonamide (Rf=0·34–0·68) had slightly less mobility and that the triazine amine (Rf=0·035–0·40) was much less mobile than chlorsulfuron. In an aged column leaching study, subsamples of a Fallsington sandy loam (pHwater 5·6, OM 1·4%) or a Flanagan silt loam (pHwater 6·4, OM 4·0%) were treated with chlorsulfuron, aged moist for 30 days in a glasshouse and then placed upon a prewet column of the same soil type prior to initiation of leaching. This treatment resulted in the retention of much more total radioactivity (including degradation products) than by a prewet column, where initiation of leaching began immediately after chlorsulfuron application, without aging (primarily chlorsulfuron parent). © 1998 SCI  相似文献   

14.
BACKGROUND: Pyrazosulfuron ethyl, a new rice herbicide belonging to the sulfonylurea group, has recently been registered in India for weed control in rice crops. Many field experiments revealed the bioefficacy of this herbicide; however, no information is available on the persistence of this herbicide in paddy soil under Indian tropical conditions. Therefore, a field experiment was undertaken to investigate the fate of pyrazosulfuron ethyl in soil and water of rice fields. Persistence studies were also carried out under laboratory conditions in sterile and non‐sterile soil to evaluate the microbial contribution to degradation. RESULTS: High‐performance liquid chromatography (HPLC) of pyrazosulfuron ethyl gave a single sharp peak at 3.41 min. The instrument detection limit (IDL) for pyrazosulfuron ethyl by HPLC was 0.1 µg mL?1, with a sensitivity of 2 ng. The estimated method detection limit (EMDL) was 0.001 µg mL?1 and 0.002 µg g?1 for water and soil respectively. Two applications at an interval of 10 days gave good weed control. The herbicide residues dissipated faster in water than in soil. In the present study, with a field‐soil pH of 8.2 and an organic matter content of 0.5%, the pyrazosulfuron ethyl residues dissipated with a half‐life of 5.4 and 0.9 days in soil and water respectively. Dissipation followed first‐order kinetics. Under laboratory conditions, degradation of pyrazosulfuron ethyl was faster in non‐sterile soil (t1/2 = 9.7 days) than in sterile soil (t1/2 = 16.9 days). CONCLUSION: Pyrazosulfuron ethyl is a short‐lived molecule, and it dissipated rapidly in field soil and water. The faster degradation of pyrazosulfuron in non‐sterile soil than in sterile soil indicated microbial degradation of this herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
In 1997 and 1998, five field studies were conducted at four Portuguese wine‐growing regions in order to evaluate the effectiveness of the chemical control of vineyard weeds under Mediterranean conditions using either reduced doses of residual herbicides or only foliar herbicides. Amitrole (3440 g a.i. ha?1), amitrole + glyphosate mono‐ammonium salt (1720 + 900 g a.i. ha?1), amitrole (3400 g a.i. ha?1), amitrole + diuron (2580 + 1500 g a.i. ha?1), amitrole + simazine (2580 + 1500 g a.i. ha?1), amitrole + terbuthylazine (2580 + 1500 g a.i. ha?1) and amitrole + diuron + simazine (2580 + 1300 + 1400 g a.i. ha?1) were assayed and compared with the following reference herbicides: glyphosate isopropylamine salt (1800 g a.i. ha?1), amitrole + diuron (2520 + 1680 g a.i. ha?1), diuron + glyphosate + terbuthylazine (1275 + 900 + 1425 g a.i. ha?1), amitrole + simazine (1900 + 3900 g a.i. ha?1) and glyphosate + simazine (800 + 2200 g a.i. ha?1). The herbicides were applied during late winter. The results indicated that good control was achieved by the application of foliar herbicides alone or of reduced rates of a mixture of residual herbicides with foliar herbicides for at least 2 months. Three months after application, the efficacy of post‐emergence herbicides and lower rates of residual herbicides decreased significantly in clay soils and under heavy rainfall conditions. Convolvulus arvensis– a weed that is becoming increasingly significant in Portuguese vineyards – was poorly controlled, even when glyphosate was used. Despite this, it can be assumed that in those regions in which the trials were conducted, it is possible to employ weed control strategies that entail the elimination or a reduction in the rate of residual herbicides.  相似文献   

16.
Mesotrione is a new callistemone herbicide that inhibits the HPPD enzyme (p-hydroxyphenylpyruvate dioxygenase) and introduces a new naturally selective tool into weed-management programmes for use in maize. Mesotrione provides control of the major broad-leaved weeds, and it can be used in integrated weed-management programmes depending on the grower's preferred weed-control strategy. At post-emergence rates of 150 g AI ha-1 or less, mesotrione provides naturally selective control of key species that may show triazine resistance (TR), e.g. Chenopodium album L, Amaranthus species, Solanum nigrum L, as well as species of weed that show resistance to acetolactase synthase (ALS) inhibitors e.g. Xanthium strumarium L, Amaranthus spp and Sonchus spp. The data presented show that resistant and susceptible biotypes of these species with resistance to triazine herbicides, such as atrazine, simazine, terbutylazine and metribuzin, or ALS-inhibitor herbicides, such as imazethepyr, remain susceptible to mesotrione. These results confirm that there is no cross-resistance in biotypes with target site resistance to triazine or ALS-inhibiting herbicides. It is important that herbicide choice and rotation becomes an integral part of planning weed management, so as to minimise the risks of crop losses from weed competition, build-up of weed seed in the soil and the further development of weed resistance across a range of herbicide modes of action.  相似文献   

17.
Littleseed canarygrass (Phalaris minor Retz.), a troublesome weed of wheat in India, has evolved multiple herbicide resistance across three modes of action: photosynthesis at the photosystem II site A, acetyl‐coA carboxylase (ACCase), and acetolactate synthase inhibition. The multiple herbicide‐resistant (MHR) populations had a low level of sulfosulfuron resistance but a high level of resistance to clodinafop and fenoxaprop (ACCase inhibitors). Some of the populations had GR50 (50% growth reduction) values for clodinafop that were 11.7‐fold greater than that of the most susceptible population. The clodinafop‐resistant populations also showed a higher level of cross‐resistance to fenoxaprop (fop group) but a low level of cross‐resistance to pinoxaden (den group). Although clodinafop and pinoxaden are from two different chemical families (fop and den groups), their same site of action is responsible for cross‐resistance behavior. The populations that were resistant to four groups of herbicides (phenylureas, sulfonylurea, aryloxyphenoxypropionate, and phenylpyrazolin) were susceptible to the triazine (metribuzin and terbutryn) and dinitroaniline (pendimethalin) herbicides. The P. minor populations that were resistant to the aryloxyphenoxypropionate and phenylurea herbicides were effectively controlled by the sulfonylurea herbicide, sulfosulfuron. In the fields infested with P. minor that was resistant to clodinafop, a sulfosulfuron application (25 g ha?1) increased the wheat yield by 99.2% over that achieved using the recommended rate of clodinafop (60 g ha?1). However, the evolution of multiple resistance against the four groups is a threat to wheat production. To prevent the spread of MHR P. minor populations, as well as the extension of multiple resistance to new chemicals, concerted efforts in developing and implementing a sound, integrated weed management program are needed. The integrated approach, consisting of crop and herbicide rotation with cultural and mechanical weed control tactics, should be considered as a long‐term resistance management strategy that will help to sustain wheat productivity and farmers' income.  相似文献   

18.
In 2003, a random survey was conducted across the Western Australian wheatbelt to establish the extent and frequency of herbicide resistance in Raphanus raphanistrum populations infesting crop fields. Five hundred cropping fields were visited, with 90 R. raphanistrum populations collected, representative of populations present in crop fields throughout the Western Australian wheatbelt. Collected populations were screened with four herbicides of various modes of action that are commonly used for the control of this weed. The majority of Western Australian R. raphanistrum populations were found to contain plants resistant to the acetolactate synthase (ALS)‐inhibiting herbicide chlorsulfuron (54%) and auxin analogue herbicide, 2,4‐D amine (60%). This survey also determined that over half (58%) of these populations were multiple resistant across at least two of the four herbicide modes of action used in the screening. Only 17% of R. raphanistrum populations have retained their initial status of susceptibility to all four herbicides. The distribution patterns of the herbicide‐resistant populations identified that there were higher frequencies of resistant and developing resistance populations occurring in the intensively cropped northern regions of the wheatbelt. These results clearly indicate that the reliance on herbicidal weed control in cropping systems based on reduced tillage and stubble retention will lead to higher frequencies of herbicide‐resistant weed populations. Therefore, within intensive crop production systems, there is a need to diversify weed management strategies and not rely entirely on too few herbicide control options.  相似文献   

19.
Amaranthus hybridus L. populations (A, B and C) obtained from escapes in Massac County and Pope County fields in southern Illinois, USA were subjected to greenhouse and laboratory experiments to measure multiple resistance to triazine and acetolactate synthase (ALS)‐inhibiting herbicides and cross‐resistance between sulfonylurea and imidazolinone herbicides. Phytotoxicity responses of the three populations revealed that only population B exhibited multiple resistances to triazine and ALS‐inhibiting herbicides. This population was >167‐, >152‐ and >189‐fold resistant to atrazine, imazamox and thifensulfuron, respectively, at the whole plant level compared with the susceptible population. Population A was only resistant to triazines and population C was only resistant to ALS‐inhibiting herbicides. Results from in vivo ALS enzyme and chlorophyll fluorescence assays confirmed these findings and indicated that an altered site‐of‐action mediated resistance to both triazine and ALS‐inhibiting herbicides. Gene sequencing revealed that a glycine for serine substitution at residue 264 of the D1 protein, and a leucine for tryptophan substitution at residue 574 of ALS were the causes of resistance for the three populations.  相似文献   

20.
Cyperus rotundus (purple nutsedge) is considered one of the most noxious weeds affecting agricultural areas worldwide. With its fast growth rate, it competes with annual crops for water, minerals, light and space. It excretes allelopathic materials that impede crop development. Controlling this weed is difficult and is done mostly by manual weeding, cultivation and herbicides, with limited effectiveness. A method was developed for the control of C. rotundus. A machine penetrates the soil and rearranges it, so that the tubers are lifted to the upper soil layer, where they are left exposed to the hot summer climate, dehydrate and die. The method was tested in seven field experiments on various soil types. Two months after the experimental plots were irrigated, 70–100% weed control was observed. The machine's speed (at 1.2 or 1.8 km h?1) and the number of treatments (one, or two treatments a month apart) did not influence the level of weed control. The method has a very high potential to replace manual weeding and application of herbicides. Further work will test whether the treatment has a long‐term effect or should be repeated every season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号