首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
2.
An Eleusine indica population was previously reported as the first global case of field‐evolved glufosinate resistance. This study re‐examines glufosinate resistance and investigates multiple resistance to other herbicides in the population. Dose–response experiments with glufosinate showed that the resistant population is 5‐fold and 14‐fold resistant relative to the susceptible population, based on GR50 and LD50 R/S ratio respectively. The selected glufosinate‐resistant subpopulation also displayed a high‐level resistance to glyphosate, with the respective GR50 and LD50 R/S ratios being 12‐ and 144‐fold. In addition, the subpopulation also displayed a level of resistance to paraquat and ACCase‐inhibiting herbicides fluazifop‐P‐butyl, haloxyfop‐P‐methyl and butroxydim. ACCase gene sequencing revealed that the Trp‐2027‐Cys mutation is likely responsible for resistance to the ACCase inhibitors examined. Here, we confirm glufosinate resistance and importantly, we find very high‐level glyphosate resistance, as well as resistance to paraquat and ACCase‐inhibiting herbicides. This is the first confirmed report of a weed species that evolved multiple resistance across all the three non‐selective global herbicides, glufosinate, glyphosate and paraquat.  相似文献   

3.
Glyphosate is one of the most commonly used broad‐spectrum herbicides over the last 40 years. Due to the widespread adoption of glyphosate‐resistant (GR) crop technology, especially corn, cotton and soybean, several weed species have evolved resistance to this herbicide. Research was conducted to confirm and characterize the magnitude and mechanism of glyphosate resistance in two GR common ragweed ( A mbrosia artemisiifolia L.) biotypes from Mississippi, USA. A glyphosate‐susceptible (GS) biotype was included for comparison. The effective glyphosate dose to reduce the growth of the treated plants by 50% for the GR1, GR2 and GS biotypes was 0.58, 0.46 and 0.11 kg ae ha?1, respectively, indicating that the level of resistance was five and fourfold that of the GS biotype for GR1 and GR2, respectively. Studies using 14 C‐glyphosate have not indicated any difference in its absorption between the biotypes, but the GR1 and GR2 biotypes translocated more 14 C‐glyphosate, compared to the GS biotype. This difference in translocation within resistant biotypes is unique. There was no amino acid substitution at codon 106 that was detected by the 5‐enolpyruvylshikimate‐3‐phosphate synthase gene sequence analysis of the resistant and susceptible biotypes. Therefore, the mechanism of resistance to glyphosate in common ragweed biotypes from Mississippi is not related to a target site mutation or reduced absorption and/or translocation of glyphosate.  相似文献   

4.
The diagnosis of novel unidentified viral plant diseases can be problematic, as the conventional methods such as real‐time PCR or ELISA may be too specific to a particular species or even strain of a virus, whilst alternatives such as electron microscopy (EM) or sap inoculation of indicator species do not usually give species level diagnosis. Next‐generation sequencing (NGS) offers an alternative solution where sequence is generated in a non‐specific fashion and identification is based on similarity searching against GenBank. The conventional and NGS techniques were applied to a damaging and apparently new disease of maize, which was first identified in Kenya in 2011. ELISA and TEM provided negative results, whilst inoculation of other cereal species identified the presence of an unidentified sap transmissible virus. RNA was purified from material showing symptoms and sequenced using a Roche 454 GS‐FLX+. Database searching of the resulting sequence identified the presence of Maize chlorotic mottle virus and Sugarcane mosaic virus, a combination previously reported to cause maize lethal necrosis disease. Over 90% of both viral genome sequences were obtained, allowing strain characterization and the development of specific real‐time PCR assays which were used to confirm the presence of the virus in material with symptoms from six different fields in two different regions of Kenya. The availability of these assays should aid the assessment of the disease and may be used for routine diagnosis. The work shows that next‐generation sequencing is a valuable investigational technique for rapidly identifying potential disease‐causing agents such as viruses.  相似文献   

5.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
BACKGROUND: Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non‐crop systems. A glyphosate‐resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucidate its resistance mechanism. RESULTS: The investigation was conducted on resistant and susceptible plants from a population in Desha County, Arkansas (Des03). The amounts of glyphosate that caused 50% overall visual injury were 7 to 13 times greater than those for susceptible plants from the same population. The EPSPS gene did not contain any point mutation that has previously been associated with resistance to glyphosate, nor were there any other mutations on the EPSPS gene unique to the Des03 resistant plants. The resistant plants had 6‐fold higher basal EPSPS enzyme activities than the susceptible plants, but their I50 values in response to glyphosate were similar. The resistant plants contained up to 25 more copies of EPSPS gene than the susceptible plants. The level of resistance to glyphosate correlated with increases in EPSPS enzyme activity and EPSPS copy number. CONCLUSION: Increased EPSPS gene amplification and EPSPS enzyme activity confer resistance to glyphosate in the Des03 population. This is the first report of EPSPS gene amplification in glyphosate‐resistant Italian ryegrass. Other resistance mechanism(s) may also be involved. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Enhanced crop competition could aid in the management of annual sowthistle (Sonchus oleraceus L.), a dominant weed of Australian cropping systems. A two‐year pot study was conducted to evaluate the effect of wheat (Triticum aestivum L.) planting densities (0, 82, and 164 wheat plants/m2) on growth and seed production of glyphosate‐resistant (GR) and glyphosate‐susceptible (GS) biotypes of annual sowthistle. Without competition, both biotypes produced a similar number of leaves and biomass, but the GS biotype produced 80% more seeds (46,050 per plant) than the GR biotype. In competition with 164 wheat plants/m2, the number of leaves in the GR and GS biotypes was reduced by 62 and 61%, respectively, in comparison with the no‐competition treatment, and similarly, weed biomass was reduced by 78 and 77%, respectively. Compared to no‐competition treatment, the seed production of GR and GS biotypes was reduced by 33 and 69%, respectively, when grown with 82 wheat plants/m2, but increasing wheat density from 82 to 164 plants/m2 reduced the number of seeds only in the GS biotype (81%). Both biotypes produced greater than 6,000 seeds per plant when grown in competition with 164 plants/m2, suggesting that increased crop density should be integrated with other weed management strategies for efficient control of annual sowthistle.  相似文献   

8.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

9.
A Collavo  M Sattin 《Weed Research》2014,54(4):325-334
In Europe, glyphosate‐resistant weeds have so far only been reported in perennial crops. Following farmers' complaints of poor herbicide efficacy, resistance to glyphosate as well as to ACCase and ALS inhibitors was investigated in 11 populations of Lolium spp. collected from annual arable cropping systems in central Italy. Field histories highlighted that farmers had relied heavily on glyphosate, often at low rates, as well as in a non‐registered crop. The research aimed at elucidating the resistance status, including multiple resistance, of Lolium spp. populations through glasshouse screenings and an outdoor dose–response experiment. Target‐site resistance mechanism was also investigated for the substitutions already reported for EPSPs, ALS and ACCase genes. Three different resistant patterns were identified: glyphosate resistant only, multiple resistant to glyphosate and ACCase inhibitors and multiple resistant to glyphosate and ALS inhibitors. Amino acid substitutions were found at position 106 of the EPSPs gene, at position 1781, 2088 and 2096 of the ACCase gene and at position 197 and 574 of the ALS gene. Not all populations displayed amino acid substitutions, suggesting the presence of non‐target‐site‐mediated resistance mechanisms. After 39 years of commercial availability of glyphosate, this is the first report of multiple resistance involving glyphosate selected in annual arable crops in Europe. Management implications and options are discussed.  相似文献   

10.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

11.
为明确广东省稻菜轮作区中牛筋草对10种常用除草剂的抗性水平及抗性分子机制,采用整株生物测定法测定广东省稻菜轮作区内8个牛筋草种群P1~P8对草甘膦、草铵膦和乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACCase)抑制剂类等10种除草剂的抗性水平,并进一步分析P1和P8种群相关靶标酶基因5-烯醇丙酮酰莽草酸-3-磷酸合酶(5-enolpyruvyl-shikimate-3-phosphate synthase,EPSPS)、谷氨酰胺合成酶(glutamine synthetase,GS)和ACCase的部分功能区序列特征。结果显示,牛筋草P1~P8种群对草甘膦抗性指数为敏感种群的5.9倍~17.7倍,其中P8种群对草甘膦的抗性水平最高;8个种群对草铵膦也产生了不同程度的抗性,抗性指数为敏感种群的2.3倍~14.2倍,其中P1种群抗性最高。牛筋草P1和P8种群均对ACCase抑制剂类除草剂精喹禾灵、氰氟草酯和噁唑酰草胺产生了交互抗性;P1种群ACCase基因在第2 041位氨基酸处发生突变,该突变在牛筋草种群中首次发现;而P8种群ACCase基因则在第2 027位氨基...  相似文献   

12.
BACKGROUND: Glyphosate‐resistant (GR) weed species are now found with increasing frequency and threaten the critically important GR weed management system. RESULTS: The reported 31P NMR experiments on glyphosate‐sensitive (S) and glyphosate‐resistant (R) horseweed, Conyza canadensis (L.) Cronq., show significantly more accumulation of glyphosate within the R biotype vacuole. CONCLUSIONS: Selective sequestration of glyphosate into the vacuole confers the observed horseweed resistance to glyphosate. This observation represents the first clear evidence for the glyphosate resistance mechanism in C. canadensis. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is causing severe losses in cassava production in Kenya, Tanzania and Uganda. Two real‐time RT‐PCR assays based on TaqMan chemistry capable of detecting and distinguishing these two viruses are described. These assays were used to screen 493 cassava samples collected from western and coastal Kenya, the main cassava regions of Uganda and inland Tanzania. Both viruses were found in all three countries and across regions therein. Association of CBSD leaf symptom status with CBSV and UCBSV assay results was weak, confirming the need for a diagnostic assay. For leaf samples that were observed with CBSD‐like leaf symptoms but shown as CBSV and UCBSV negative by the RT‐PCR assay, deep sequencing using a Roche 454 GS‐FLX was used to provide additional evidence for the absence of the viruses. The probability of the CBSD associated diagnostics detecting a single CBSV or UCBSV positive sample amongst other non‐CBSD samples was modelled. The results of this study are discussed in the context of the application of diagnostics of CBSD‐associated viruses under the Great Lakes Cassava Initiative and the need to minimize the risk of further spread of the viruses with cassava multiplication material. It is shown that high throughput testing undertaken at Fera of 300 cassava leaves taken from fields for seed multiplication, when analysed in pools of 10, has given a 95% probability of detecting 1% infected plants in the field.  相似文献   

14.
15.
This review focuses on proactive and reactive management of glyphosate‐resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil‐residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide‐resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad‐spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
This study describes the seedbank persistence of glyphosate‐resistant (GR) Kochia scoparia at two sites in western Canada and examines if GRK. scoparia from western Canada and mid‐western United States (USA) differ from their susceptible counterparts in seed germination and early growth characteristics at low‐temperature regimes. Site or depth of seed burial (surface, 2.5 cm, 10 cm) did not affect seed viability over time and time to 50% and 90% loss of viability averaged 210 and 232 days respectively. Glyphosate‐resistant K. scoparia generally germinated later and had lower cumulative germination than glyphosate‐susceptible (GS) K. scoparia from Saskatchewan, Canada; and Kansas, USA; but not Colorado, USA. Similarly, time to 10% first leaf of GSK. scoparia from Saskatchewan and Kansas tended to be sooner than that of GRK. scoparia, with a greater percentage of GS vs. GR seedlings of populations from all regions having attained first leaf by the end of the experiment. The short seedbank longevity and delayed and reduced germination and time to first leaf of GRK. scoparia may potentially be exploited to maximise management efficacy through delayed preseeding weed control or alternatively by early seeding date to enhance crop competitiveness.  相似文献   

17.
18.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

19.
The evolution of resistance to herbicides in weeds has become a great challenge for global agricultural production. Weeds have evolved resistance to herbicides through many different physiological mechanisms. Some weed species are known to secrete herbicide molecules from roots into the rhizosphere upon being treated. However, root exudation of herbicides as a mechanism of resistance has only recently been identified in two weed species. Root exudation pathways have been investigated in Arabidopsis, and this work suggested that ATP‐binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporters play a role in the secretion of primary and secondary plant products from roots. We hypothesize that the mechanisms involved in root exudation of herbicides that result in resistance are mediated by overactive or overexpressed transporters, probably similar to those found for the exudation of primary and secondary compounds from roots. Elucidating the molecular and physiological basis of root exudation in herbicide‐resistant weeds would improve our understanding of the pathways involved in herbicide root secretion mediated by transporters in plants. © 2020 Society of Chemical Industry  相似文献   

20.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号