首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 384 毫秒
1.
基于浑善达克沙地2005-2006两个不同水文年对羊草、拂子茅、冰草构成的羊草群落生育期中气象因子及生理因子野外观测试验数据,用联合国粮农组织FAO-56分册中介绍的方法计算了羊草群落生育期基本作物系数和土壤蒸发系数,并对基本作物系数进行了地区气象因素和牧草单叶气孔阻力校正。用校正后的作物系数模拟计算的蒸腾、蒸发量与实际观测值间进行了拟合相关图、拟合优度参数法的有效性检验。结果表明:计算的蒸发、蒸腾量与实测结果基本接近。考虑水分胁迫时,有条件的地区应该对作物系数进行地区气象因素和单叶气孔阻力校正。  相似文献   

2.
基于2005~2006年羊草生育期气象因子及生理因子野外观测试验数据,用联合国粮农组织FAO-56分册中最新双作物系数法以日为时段计算了羊草2个不同水文年的蒸散量。模拟计算的蒸腾、蒸发量与实际观测值间进行了拟合相关图、拟合优度参数法的有效性检验。用羊草生育期生理特性、冠层结构变化、气象要素和根系层土壤含水率变化对计算结果进行了分析,得出生育期各生长阶段蒸散量和日平均蒸散强度及它们的变化规律。  相似文献   

3.
芦苇群落日蒸发蒸腾量变化规律及   总被引:4,自引:0,他引:4  
了解芦苇湿地蒸发蒸腾量变化规律和影响因子并准确估算蒸发蒸腾量,对湿地水资源评估有十分重要的意义。根据2005年盘锦芦苇湿地监测站的小气候梯度系统和涡动相关系统的监测数据,结合芦苇生理生态特性的观测,分析芦苇群落的蒸发蒸腾量日变化规律及其主导影响因子,采用波文比—能量平衡法、梯度法对芦苇群落的日蒸发蒸腾过程进行模拟,并与涡动相关系统的实测数据进行比较。结果表明,芦苇群落蒸发蒸腾量日变化过程表现为早晚低、中午高的单峰曲线;从相关分析结果看,气象因素和芦苇生理生态特性对芦苇蒸发蒸腾的影响显著,其中辐射强度、相对湿度、温度、叶片光合速率和叶片气孔导度是芦苇群落蒸发蒸腾的主导影响因子;从计算蒸发蒸腾量的两种方法与涡动数据的比较结果看,梯度法更适合芦苇群落蒸发蒸腾量的模拟,可为芦苇湿地蒸发蒸腾的计算提供依据。  相似文献   

4.
参考作物蒸发蒸腾量的气象因子响应模型   总被引:6,自引:1,他引:6  
基于江苏省南通市2000~2004年的旬气象资料,用FAO推荐的Penman-Monteith公式计算了参考作物蒸发蒸腾量,研究了参考作物蒸发蒸腾量与最高气温、最低气温、平均气温、相对湿度、日照时数、风速和气压等气象因素间的关系,建立了参考作物蒸发蒸腾量的响应模型.结果表明,参考作物蒸发蒸腾量与"温度因子"的关系最强,其次为"湿度和日照因子","风速因子"也有一定的影响,"气压因子"影响作用则稍弱;建立的气象因子响应模型模拟精度较高,可以简化参考作物蒸发蒸腾量计算.  相似文献   

5.
作物系数是在没有实测需水量资料情况下,用参考作物蒸发蒸腾量来估算实际作物蒸发蒸腾量方法中重要的参数之一。根据实测气象数据计算出的参考作物蒸发蒸腾量和时域反射仪测得的番茄需水量,利用单作物系数法得到番茄作物系数Kc。通过对作物需水量和作物系数Kc的变化及影响因素进行分析,结果表明:温室膜下滴灌番茄作物需水量与温度、辐射呈正相关,而作物系数Kc与温度、辐射的线性关系不明显。对已求作物系数的可靠性进行验证,结果表明模型预测值和实测值的相对误差为8.2%,模型有效性指数达到89.3%,模型合理有效。研究成果对日光温室膜下滴灌作物需水量的计算及其灌溉制度的制定具有一定的参考价值。  相似文献   

6.
基于灌溉需求指数的滇中地区烤烟需水量时空变化分析   总被引:2,自引:0,他引:2  
基于云南省滇中地区4个国家气象站点逐日气象资料和烤烟不同生育期作物系数,根据FAO 56推荐的Penman-Monteith公式和单作物系数法,计算了滇中地区近58 a(1956—2013年)参考作物蒸发蒸腾量、烤烟净灌溉需水量及净灌溉需求指数,分析了滇中地区烤烟生育期净灌溉需水变异特征;利用GIS普通克里金法,对滇中地区烤烟需水量、净灌溉需水量和净灌溉需求指数进行空间分布分析;采用通径分析法研究灌溉需求指数变化成因。研究结果表明,滇中地区烤烟净灌溉需求指数随生育期变化逐渐减少,即伸根期、旺长期、成熟期;其中,净灌溉需求指数大于零的年数占54%,表明烤烟区在平水年条件下需人工灌溉补给;影响净灌溉需水量最主要的气象因子为降水量。  相似文献   

7.
ET0计算公式的设定条件和重要影   总被引:4,自引:0,他引:4  
对ET0计算公式设定条件和重要影响因子的实验率定研究:揭示了Penman-Motheith(PM)等公式定义中叶面冠层阻力、反射率及Angstrom公式中的a、b值不是定值,而是一个随作物生长变值,并建议将变化的叶面冠层阻力、反射率及季节a、b值代入计算公式,可得到更加切合实际的ET0值;鉴于参考作物有两种:牧草和紫花苜蓿,不同的参考作物蒸发蒸腾量计算公式对应着不同的参考作物,求得两种参考作物蒸发蒸腾量的转换系数Kr可进行不同参考作物间的转换计算;揭露了参考作物(苜蓿)冠层光合有效辐射(PAR)及冠层顶部光合有效辐射(PARCAN)在一定程度上影响ET0值,气孔导度和物质积累等生理、生化作用也与ET0的变化过程十分相关;并对ET0标准ASCE-PM、PM、MP公式中主要气象输入因子对ET0、ETa、ETr值的潜在支配作用进行了研究。有助于ET0学科中重要问题的引领研究及精确估计。  相似文献   

8.
河西绿洲灌区主要作物需水量及作物系数试验研究   总被引:2,自引:0,他引:2  
利用Penman-Monteith公式计算了甘肃张掖绿洲主要作物各生育期参考作物蒸散量,利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,并计算比较了充分灌溉和非充分灌溉条件下不同生育期作物需水特征,确定了非充分灌溉条件下主要作物的作物系数。结果表明,非充分灌溉条件下,主要作物各生育期需水规律和充分灌溉具有一致变化趋势。非充分灌溉条件下,小麦、玉米、马铃薯全生育期作物系数平均值分别为0.81、0.7和0.73。在全生育期当中,随生育期的延续,主要作物叶面蒸腾比例逐渐增大,棵间蒸发逐渐减少。  相似文献   

9.
辽河平原种植条件下潜水蒸发试验研究   总被引:5,自引:0,他引:5  
根据辽宁台安水文试验站历年潜水蒸发试验资料,探讨了埋深,大气蒸发能力、土质、作物生育期等影响潜水蒸发的因素,并对计算潜水蒸发系数的经验公式进行了拟合。  相似文献   

10.
黄土高原区滴灌枣树作物系数和需水规律试验   总被引:1,自引:0,他引:1  
胡永翔  李援农  张莹 《农业机械学报》2012,43(11):87-91,79
根据2009年陕西省米脂县孟岔试验站观测的气象资料,使用FAO Penman-Monteith公式计算了作物生育期内参考作物蒸发蒸腾量,通过实测取得了充分供水条件下枣树各生育阶段作物需水量.其中,萌芽展叶期、开花坐果期、果实膨大期、果实成熟期的作物需水量分别为68.1、117.4、224.4、66.2 mm;计算了黄土高原地区枣树各生育阶段的作物系数,分别为萌芽展叶期0.496、开花坐果期0.681、果实膨大期1.262、果实成熟期0.944.建立了作物系数与叶面积指数的函数关系,结果表明,两者之间存在二次曲线关系.  相似文献   

11.
The relative yield decline that is expected under specific levels of water stress at different moments in the growing period is estimated by integrating the FAO Ky approach [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper No. 33. Rome, Italy] in the soil water balance model BUDGET. The water stored in the root zone is determined in the soil water balance model on a daily basis by keeping track of incoming and outgoing water fluxes at its boundary. Given the simulated soil water content in the root zone, the corresponding crop water stress is determined. Subsequently, the yield decline is estimated with the Ky approach. In the Ky approach the relation between water stress in a particular growth stage and the corresponding expected yield is described by a linear function. To account for the effect of water stresses in the various growth stages, the multiplicative, seasonal and minimal approach are integrated in the model. To evaluate the model, the simulated yields for two crops under various levels of water stress in two different environments were compared with observed yields: winter wheat under three different water application levels in the North of Tunisia, and maize in three different farmers’ fields in different years in the South West of Burkina Faso. Simulated crop yields agreed well with observed yields for both locations using the multiplicative approach. The correlation value (R2) between observed and simulated yields ranged from 0.87 to 0.94 with very high modeling efficiencies. The root mean square error values are relatively small and ranged between 7 and 9%. The minimal and seasonal approaches performed significantly less accurately in both of the study areas. Estimation of yields on basis of relative transpiration performed significantly better than estimations on basis of relative evapotranspiration in Burkina Faso. A sensitivity analysis showed that the model is robust and that good estimates can be obtained in both regions even by using indicative values for the required crop and soil parameters. The minimal input requirement, the robustness of the model and its ability to describe the effect on seasonal yield of water stress occurring at particular moments in the growing period, make the model very useful for the design of deficit irrigation strategies. BUDGET is public domain software and hence freely available. An installation disk and manual can be downloaded from the web.  相似文献   

12.
Improving water use efficiency is a key element of water management in irrigated viticulture, especially in arid or semi-arid areas. In this study, the micrometeorological technique “Eddy Covariance” was used to directly quantify the crop evapotranspiration (ET) and to analyze the complex relationships between evapotranspiration, energy fluxes, and meteorological conditions. Both observed Direct measurements (DIR) of latent heat flux (LE) and observed from the residual of the energy balance (REB) equation were used for crop evapotranspiration calculations. Observed crop coefficients (K cms) were then determined using the standardized reference evapotranspiration (ETo) equation for short canopies. In addition, linear approximations from observations were used to model the seasonal trend lines for crop coefficients and K cs values were parameterized by first identifying the beginning and end of each growth stage. The modeled K cs values were used to predict daily ET from ETo measurements and compared with values from literature. The daily observed DIR ET values (ETdo) were lower than REB ET (ETro) during periods with precipitation, but they were similar during dry periods, which implies that energy balance closure is better when the surface is drier. Comparisons between modeled ET and crop ET estimated using K c values from best agreement was observed between the modeled REB and FAO 56 and the local K c values provided by the Regional Agency ARPAS showed good agreement with observed ET (from DIR and REB data) than the FAO 56 ones. The study confirmed that the availability of locally driven K c could be relevant to quantify the crop water requirement and represents the starting point for a sustainable management of water resources.  相似文献   

13.
The evapotranspiration from a 3 to 4 years old drip irrigated peach orchard, located in central Portugal, was measured using the eddy covariance technique during two irrigation seasons, allowing the determination of crop coefficients. These crop coefficient values differed from those tabled in FAO Irrigation and Drainage Paper 56. In order to improve evapotranspiration estimates obtained from FAO tabled crop coefficients, a dual crop coefficient methodology was adopted, following the same guidelines. This approach includes a separation between the plant and soil components of the crop coefficient as well as an adjustment for the sparse nature of the vegetation. Soil evaporation was measured with microlysimeters and compared with soil evaporation estimates obtained by the FAO 56 approach. The FAO 56 method, using the dual crop coefficient methodology, was also found to overestimate crop evapotranspiration. During 2 consecutive years, measured and estimated crop coefficients were around 0.5 and 0.7, respectively. The estimated and measured soil evaporation components of the crop coefficient were similar. Therefore, the overestimation in evapotranspiration seems to result from an incorrect estimate of the plant transpiration component of the crop coefficient. A modified parameter to estimate plant transpiration for young, yet attaining full production, drip irrigated orchards is proposed based on field measurements. The method decreases the value of basal crop coefficient for fully developed vegetation. As a result, estimates of evapotranspiration were greatly improved. Therefore, the new approach seems adequate to estimate basal crop coefficients for orchards attaining maturity established on sandy soils and possibly for other sparse crops under drip irrigation conditions.  相似文献   

14.
风沙区参考作物需水量的计算   总被引:4,自引:0,他引:4  
根据国内外相关的研究成果 ,分析选择并确定了适宜于风沙区参考作物需水量 (ET0 )的计算模式。利用典型风沙区的气象资料 ,对多年逐旬参考作物需水量及 2 0 0 1年春小麦与春玉米生育时段内逐日参考作物需水量进行了分析计算。结果表明 ,FAO最新修正的 Penman-Moteith公式可较好地用于风沙区参考作物需水量的估算 ,一般 ET0 值在年内与年际间变化较大 ,最高值发生在 6月上旬左右 ,多年平均为 5 .82 mm/ d,最低值发生在 1月上旬 ,多年平均 0 .43 mm/ d左右 ,年内各日 ET0 值受气象因素的影响变幅很大 ,因此 ,精确灌溉应设法提高短期天气预报和灌溉预报的精度  相似文献   

15.
基于遥感的农业用水效率评价方法研究进展   总被引:3,自引:0,他引:3  
遥感技术的发展为区域尺度蒸散发计算、作物分布识别及估产提供了一条有效途径,为基于遥感信息的灌区灌溉水利用效率及作物水分利用效率定量评价奠定了基础。回顾总结了遥感蒸散发模型、瞬时蒸散发升尺度方法、日蒸散发插值方法、作物分布识别方法及作物估产模型的研究进展,评述了遥感蒸散发及作物估产结果在灌区灌溉水利用效率及作物水分利用效率评价中的应用情况。提出了相关领域需要进一步研究的问题,包括适合非均匀下垫面特点且具有较强物理基础的灌区遥感蒸散发模型、日蒸散发插值中灌溉或降雨引起土壤含水量突变情况的处理、农田蒸散发中灌溉水有效消耗量的准确估算、能适应复杂种植结构并且适用于多年的作物分布遥感识别模型以及精度较高且可操作性强的遥感估产模型等。  相似文献   

16.
The main goal of this research was to evaluate the potential of the dual approach of FAO-56 for estimating actual crop evapotranspiration (AET) and its components (crop transpiration and soil evaporation) of an olive (Olea europaea L.) orchard in the semi-arid region of Tensift-basin (central of Morocco). Two years (2003 and 2004) of continuous measurements of AET with the eddy-covariance technique were used to test the performance of the model. The results showed that, by using the local values of basal crop coefficients, the approach simulates reasonably well AET over two growing seasons. The Root Mean Square Error (RMSE) between measured and simulated AET values during 2003 and 2004 were respectively about 0.54 and 0.71 mm per day. The basal crop coefficient (Kcb) value obtained for the olive orchard was similar in both seasons with an average of 0.54. This value was lower than that suggested by the FAO-56 (0.62). Similarly, the single approach of FAO-56 has been tested in the previous work (Er-Raki et al., 2008) over the same study site and it has been shown that this approach also simulates correctly AET when using the local crop coefficient and under no stress conditions.Since the dual approach predicts separately soil evaporation and plant transpiration, an attempt was made to compare the simulated components of AET with measurements obtained through a combination of eddy covariance and scaled-up sap flow measurements. The results showed that the model gives an acceptable estimate of plant transpiration and soil evaporation. The associated RMSE of plant transpiration and soil evaporation were 0.59 and 0.73 mm per day, respectively.Additionally, the irrigation efficiency was investigated by comparing the irrigation scheduling design used by the farmer to those recommended by the FAO model. It was found that although the amount of irrigation applied by the farmer (800 mm) during the growing season of olives was twice that recommended one by the FAO model (411 mm), the vegetation suffered from water stress during the summer. Such behaviour can be explained by inadequate distribution of irrigation. Consequently, the FAO model can be considered as a potentially useful tool for planning irrigation schedules on an operational basis.  相似文献   

17.
In the assessment of plant response to the climate changes, the effects of CO2 increase in the atmosphere and the subsequent rise of temperatures must be taken into account for their effects on crop physiology. In Mediterranean areas, a decrease of water availability and a more frequent occurrence of drought periods are expected. The objective of this study was to assess the impact of elevated CO2 concentration and high temperature on reference evapotranspiration (ETo) and crop evapotranspiration (ETc) in the Mediterranean areas. The Penman-Monteith equation was used to simulate the future changes of reference evapotranspiration (ETo) by the recalibration of the canopy resistance parameter. Besides, crop coefficients (Kc) were adjusted according to the future climate trend. Then the modified empirical model (ETc = ETo × Kc) was applied providing an effective quantification of the climate change impact on water use of irrigated crops grown in Mediterranean areas. In the studied area, water use assessment was carried out for the period from 1961 to 2006 (measured data) and for a period from 2071 until 2100 (simulated data), showing a future climatic scenario. Water and irrigation use of crops will change as a function of climate changes, thermal needs of single crops and time of the year when they grow. Climate simulation model foresees the tendency for a significant increase of temperatures and a decrease of total year rainfall with a change of their distribution. The temperature increase and the concomitant expected rainfall decrease lead to a rise of year potential water deficit. About the autumn-spring crops, as wheat, a further increase of water deficit, is not expected. On the contrary, for spring-summer crops as tomato, a significant increase of water deficit and thus of irrigation need, is foreseen. Actually, for crops growing in that period of the year, the substantial rise of evapotranspiration demand cannot be compensated by crop cycle reduction and partial stomatal closure.  相似文献   

18.
a_s和b_s取值对参考作物蒸发蒸腾量计算结果的影响   总被引:3,自引:0,他引:3  
Penm an-Monte ith公式中as和bs是计算净辐射不可缺少的参数,采用江苏射阳2002年日气象资料,分别采用FAO56推荐值和邻近地区南京市的校正值进行计算,得到了日参考作物蒸发蒸腾量和相应的太阳辐射与净辐射资料。分全年、夏半年和冬半年等不同情况分析了2种取值方案计算结果的差异。结果表明:采用邻近站点推荐值计算得到的参考作物蒸发蒸腾量ET0和净辐射Rn计算结果与FAO推荐值计算结果相比偏大,并且在计算值较小的冬半年误差也相对较大。与此相反,采用邻近站点推荐值计算得到太阳辐射Rs的计算结果偏小,并且在计算值较大的夏半年误差更大。因此,参数as和bs的选择对于参考作物蒸发蒸腾量计算结果的影响是不可以忽略的,尤其在辐射较低、蒸腾较弱的冬半年,根据实测的辐射资料进行校正是很有意义的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号