首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to determine the effects of high vs low body condition scores (BCS) produced by restricted feeding on reproductive characteristics, hormonal secretion, and leptin concentrations in mares during the autumnal transition and winter anovulatory period. Mares with BCS of 6.5 to 8.0 were maintained on pasture and/or grass hay, and starting in September, were full fed or restricted to produce BCS of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) by December. All but one mare with high BCS continued to ovulate or have follicular activity during the winter, whereas mares with low BCS went reproductively quiescent. Plasma leptin concentrations varied widely before the onset of restriction, even though all mares were in good body condition. During the experiment, leptin concentrations gradually decreased (P < 0.0001) over time in both groups, but were higher (P < 0.009) in mares with high vs low BCS after 6 wk of restriction, regardless of initial concentration. No differences (P > 0.1) between groups were detected for plasma concentrations of LH, FSH, TSH, GH, glucose, or insulin in samples collected weekly; in contrast, plasma prolactin concentrations were higher (P < 0.02) in mares with high BCS, but also decreased over time (P < 0.008). Plasma IGF-I concentrations tended (P = 0.1) to be greater in mares with high vs low BCS. The prolactin response to sulpiride injection on January 7 did not differ (P > 0.1) between groups. During 12 h of frequent blood sampling on January 12, LH concentrations were higher (P < 0.0001), whereas GH concentrations (P < 0.0001) and response to secretagogue (EP51389; P < 0.03) were lower in mares with high BCS. On January 19, the LH response to GnRH was higher (P < 0.02) in mares with high BCS; the prolactin response to TRH also was higher (P < 0.01) in mares with high BCS. In conclusion, nutrient restriction resulting in low BCS in mares resulted in a profound seasonal anovulatory period that was accompanied by lower leptin, IGF-I, and prolactin concentrations. All but one mare with high BCS continued to cycle throughout the winter or had significant follicular activity on the ovaries. Although leptin concentrations on average are very low in mares with low BCS and higher in well-fed mares, there is a wide variation in concentrations among well-fed mares, indicating that some other factor(s) may determine leptin concentrations under conditions of high BCS.  相似文献   

2.
Mares that had previously been fed to attain body condition scores (BCS) of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) were used to determine the interaction of BCS with the responses to 1) administration of equine somatotropin (eST) daily for 14 d beginning January 20 followed by administration of GnRH analog (GnRHa) daily for 21 d and 2) 4-d treatment with dexamethasone later in the spring when mares in low BCS had begun to ovulate. The majority of mares with high BCS continued to cycle throughout the winter, as evidenced by larger ovaries (P < 0.002), more corpora lutea (P < 0.05), greater progesterone concentrations during eST treatment (P < 0.04), and more (P < 0.05) large- and medium-sized follicles. Treatment with eST alone or in combination with GnRHa had no effect (P > 0.05) on ovarian activity or ovulation. Plasma leptin concentrations were greater (P < 0.002) in mares with high BCS; however, there was no effect (P > 0.10) of eST treatment. Plasma IGF-I concentrations were greater (P < 0.0001) in mares treated with eST compared with mares given vehicle, and mares with high BCS had greater IGF-I (P < 0.02) and LH concentrations (P < 0.02) than mares with low BCS. Plasma leptin concentrations in mares with high BCS were increased (P < 0.001) within 12 h of dexamethasone treatment; the leptin response (P < 0.001) in mares with low BCS was greatly reduced (P < 0.001) and transient. Glucose and insulin concentrations also increased (P < 0.0001) after dexamethasone treatment in both groups, and the magnitude of the response was greater (P < 0.0001) in mares with high BCS than in mares with low BCS. In summary,low BCS in mares was associated with a consistent seasonal anovulatory state that was affected little by eST and GnRHa administration. In contrast, all but one mare with high BCS continued to experience estrous cycles and(or) have abundant follicular activity on their ovaries. The IGF-I response to eST treatment was also reduced in mares with low BCS, as was the basal leptin concentration and leptin response to dexamethasone. Although low BCS and leptin concentrations were associated with inactive ovaries during winter and early spring, mares with low BCS eventually ovulated in April and May while leptin concentrations remained low.  相似文献   

3.
Leptin is an adipocyte-derived hormone that suppresses feed intake and increases energy expenditure. Leptin is also involved in regulating body temperature. Thus, the presence of leptin in milk, which can be absorbed through the gut of neonates immediately after birth, may aid in the survival of neonates born in cold weather. Our objectives were to determine the temporal relationship between concentrations of leptin in postpartum ewe blood serum and ewe milk serum, and to determine whether ewe blood and milk serum leptin concentrations were correlated with concentrations of leptin in lamb blood serum in their off-spring. Approximately 1 wk before the expected date of lambing, blood samples, weights, and body condition scores (BCS; 0 to 5 scale) were collected from 27 mixed-parity ewes. Following parturition, ewe blood and milk samples were collected within 2 h of parturition (d 0), 12 h (d 0.5) and 24 h (d 1) after parturition, again on d 5, and weekly thereafter until d 47. Lambs were blood-sampled and weighed within 2 h of parturition (d 0), bled daily until d 5, and bled and weighed weekly thereafter to d 47. Prior to lambing, ewe blood serum leptin was positively correlated with congruent BCS (r2 = 0, 10, P = 0.06), but not weight (P = 0.14). Following parturition, ewe blood serum leptin was positively correlated with BCS, weight, and milk serum leptin (r2 = 0.14, P < 0.0001, r2 = 0.12, P < 0.0001, and r2 = 0.028, P = 0.04). Leptin in milk serum was correlated with ewe weight (r2=0.05, P = 0.007) but not ewe BCS (P = 0.7); however, concentrations of leptin in both ewe blood and milk serum varied with day of lactation (P = 0.0001), being maximal within 24 h of parturition and declining to nadir concentrations by d 5. Leptin in lamb serum was correlated with milk serum leptin, (r2 = -0.05; P = 0.001), but not ewe blood serum leptin (P = 0.5). Concentrations of leptin in lamb serum increased from birth to d 5 and declined thereafter to nadir concentrations by d 19. Elevated concentrations of leptin in milk during the early stages of lactation may provide a mechanism for thermoregulation, satiation, and homeostatic endocrine control in the neonate.  相似文献   

4.
Previous observations from this laboratory indicated that horses with high BCS could have resting plasma leptin concentrations ranging from low (1 to 5 ng/mL) to very high (10 to 50 ng/mL). To study the possible interactions of leptin secretion with other endocrine systems, BCS and plasma leptin concentrations were measured on 36 mares and 18 geldings. From mares and geldings that had a mean BCS of at least 7.5, five with the lowest (low leptin) and five with the highest (high leptin) leptin concentrations were selected. Jugular blood samples were collected twice daily for 3 d from the 20 selected horses to determine average resting hormone concentrations. Over the next 12 d, glucose infusion, injection of thyrotropin-releasing hormone (TRH), exercise, and dexamethasone treatment were used to perturb various hormonal systems. By design, horses selected for high leptin had greater (P < 0.0001) leptin concentrations than horses selected for low leptin (14.1 vs. 2.8 +/- 0.92 ng/mL, respectively). In addition, mares had greater (P = 0.008) leptin concentrations than geldings. Horses selected for high leptin had lower (P = 0.027) concentrations of GH but higher (P = 0.0005) concentrations of insulin and thriiodothyronine (T3) than those selected for low leptin. Mares had greater (P = 0.0006) concentrations of cortisol than geldings. There was no difference (P > 0.10) in concentrations of IGF-1, prolactin, or thyroid-stimulating hormone (TSH). Horses selected for high leptin had a greater (P = 0.0365) insulin response to i.v. glucose infusion than horses selected for low leptin. Mares had a greater (P = 0.0006) TSH response and tended (P = 0.088) to have a greater prolactin response to TRH than geldings; the T3 response was greater (P = 0.047) in horses selected for high leptin. The leptin (P = 0.0057), insulin (P < 0.0001), and glucose (P = 0.0063) responses to dexamethasone were greater in horses selected for high leptin than in those selected for low leptin. In addition, mares had a greater (P < 0.0001) glucose response to dexamethasone than geldings. Cortisol concentrations were decreased (P = 0.029) by dexamethasone equally in all groups. In conclusion, differences in insulin, T3, and GH associated with high vs. low leptin concentrations indicate a likely interaction of these systems with leptin secretion in horses and serve as a starting point for future study of the cause-and-effect nature of the interactions.  相似文献   

5.
To determine the effects of BCS at parturition and postpartum lipid supplementation on blood metabolite and hormone concentrations, 3-yr-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr). Beginning at 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or lipid supplements with either cracked high-linoleate or high-oleate safflower seeds until d 61 of lactation. The diets were formulated to be isonitrogenous and isocaloric, and the safflower seed supplements were formulated to achieve 5% DMI as fat. On d 31 and 61 of lactation, blood samples were collected preprandially and then hourly postprandially (at 0, 1, 2, 3, and 4 h). Serum insulin (P = 0.27) and glucose (P = 0.64) were not affected by BCS at parturition. The mean concentrations of plasma NEFA (P = 0.08) and beta-hydroxybutyrate (P = 0.08) tended to be greater, and serum IGF-I was greater (P < 0.001) in BCS 6 than BCS 4 cows. Conversely, serum GH was greater (P = 0.003) for BCS 4 cows, indicating that regulation of IGF by GH may have been uncoupled in BCS 4 cows. The postpartum diet did not affect NEFA (P = 0.94), glucose (P = 0.15), IGF-I (P = 0.33), or GH (P = 0.62) concentrations. Oleate-supplemented cows had greater (P = 0.03) serum insulin concentrations, whereas control cows had greater (P = 0.01) plasma beta-hydroxybutyrate concentrations. Concentrations of NEFA (P = 0.05) and glucose (P < 0.001) were greater, and beta-hydroxybutyrate tended (P = 0.07), to be greater at d 3, whereas serum IGF-I was greater (P = 0.003) at d 6 of lactation. Similar concentrations of NEFA, glucose, GH, and IGF-I indicate that the nutritional status of beef cows during early lactation was not influenced by lipid supplementation. However, perturbations of the somatotropic axis in BCS 4 cows indicate that the influence of energy balance and BCS of the cow at parturition on postpartum performance should be considered when making managerial decisions.  相似文献   

6.
The primary objective of this research was to determine the effect of supplemental dietary silicon (Si) on plasma and milk Si concentrations of lactating mares and the subsequent effect on plasma Si concentrations in nursing foals. Additionally, the role of Si on altering biochemical markers of bone turnover was investigated, because supplemental Si may be advantageous in enhancing bone health. Twelve Arabian mare/foal units were pair-matched by foaling date and randomly assigned to two groups, Si-supplemented (Supplemented) or control (Control). Blood and milk samples were taken on d 0, 15, 30, and 45, d 0 being the 1st d after parturition. Plasma and milk (or colostrum) Si concentrations were determined and serum was analyzed for osteocalcin, carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen, and pyridinoline and deoxypyridinoline crosslinks. All Supplemented mares had higher (P < 0.01) plasma Si concentrations than Control by d 30, and Supplemented mares' milk had higher (P < 0.01) Si concentrations on d 45 than Control mares' milk. By d 45, foals of Supplemented mares had higher (P < 0.01) plasma Si concentrations than foals of Control mares. Supplemental Si did not influence (P > 0.36) bone metabolism in foals; however, trends (P < 0.10) for altered bone metabolism were observed in postpartum mares. Results indicate that supplemental Si increases plasma and milk Si concentrations. Further research is required to determine whether Si has a role in altering serum biochemical markers of bone and collagen activity.  相似文献   

7.
Boer and Boer crossbred meat-type does were used in two experiments to determine whether goat milk serum contains leptin and to investigate possible correlations of milk and serum leptin in does and subsequent growth of their offspring. Blood and milk samples were collected within 2 h of kidding (d 0) from 20 (Exp. 1; spring) or 22 does (Exp. 2; the following fall). Blood milk samples were then collected again on d 0.5, 1, 3, 5, 7, 14, 21, 28, 35, 42, 49, and 56 (Exp. 1) or d 0.5, 1, 2, 3, 4, 5, 6, 7, 14, and 21 (Exp. 2). Body weights of kids were recorded on d 0, and BW of kids and does were recorded weekly beginning on d 7 (kids) or 21 (does), with BCS also recorded for does beginning on d 28 for Exp. 1 and on d 0.5, 1, 2, 3, 4, 5, 6, 7, 14, and 21 for Exp. 2. Leptin was detected in colostral milk and was influenced by days postpartum, decreasing (P < 0.001) over time with an average of 4.4 +/- 0.3 ng/mL (Exp. 1) and 18.1 +/- 1.0 ng/mL (Exp. 2) on d 0 compared with 1.0 +/- 0.3 ng/mL on d 56 (Exp. 1) and 2.9 +/- 0.2 ng/mL on d 21 (Exp. 2). Day postpartum and milk serum leptin were negatively correlated (P < 0.001) for Exp. 1 (r = -0.27) and Exp. 2 (r = -0.46). For Exp. 1 only, blood serum leptin tended (P = 0.09) to be influenced by day, with a weak positive correlation (r = 0.15; P < 0.02). Weak positive correlations (P < 0.01) were found between blood serum leptin and doe BCS (r = 0.42 in Exp. 1, and r = 0.13 in Exp. 2) and doe BW (r = 0.44 in Exp. 1, and r = 0.26 in Exp. 2), with the absence of a stronger relationship likely due in part to the short time period measured and the lack of significant changes in BCS and BW during that time. In conclusion, leptin was present in milk and blood serum of does, and blood serum leptin was weakly correlated with doe BW and BCS, but it was not related to kid BW. Therefore, further studies are needed to clarify the relationships involving milk and serum leptin in goats.  相似文献   

8.
Objectives were to determine effects of lasalocid on reproductive performance and serum concentrations of leptin and IGF-I, and to correlate concentrations of leptin and IGF-I with reproductive performance of beef cows. Forty-one purebred, multiparous Brahman cows were blocked to control (C; n = 20) or lasalocid (L; n = 21) treatments by BW, BCS, and predicted calving date. Treatment began 21 d before expected calving. Cows were each fed 1.4 kg daily of an 11:1 corn:soybean meal supplement, with the L group receiving 200 mg of lasalocid/cow daily. Cows and calves were weighed, and cow BCS was assessed at calving and at 28-d intervals thereafter. Blood samples were collected weekly precalving, at parturition, and twice weekly thereafter. Sterile marker bulls were maintained with cows for estrous detection. Six days after estrus, ovaries were evaluated for corpus luteum formation, and blood samples from d 6, 7, and 8 after estrus were collected. Serum samples were assayed for progesterone (P4), IGF-I, and leptin concentration. Progesterone concentrations > 1 ng/mL were considered indicative of a functional corpus luteum. Treatment ended after completion of a normal estrous cycle, and cows removed from treatment were placed with a fertile bull equipped with a chinball marker. There were no treatment differences in calving date, calf sex, cow BW, BCS, calf BW, calf ADG, or in serum concentrations of P4, IGF-I, or leptin. Prepartum cow ADG was increased (P < 0.01) in L cows and tended (P < 0.011) to be increased from calving to d 56 after calving in L cows. Postpartum interval (PPI) was not affected by treatment; however, a greater percentage (P < 0.05) of L cows conceived by 90 d after calving (43% L vs. 15% C). First-service conception rate tended (P < 0.08) to be greater in L vs. C cows (68 vs. 40%), but pregnancy rate was not different (P < 0.12; 86% for L vs. 65% for C). There were no treatment differences (P > 0.18) for serum IGF-I concentrations. At calving, leptin was positively correlated with IGF-I (P < 0.04; r = 0.32), BCS (P < 0.06; r = 0.29), and cow BW (P < 0.02; r = 0.36), and was negatively correlated with PPI (P < 0.06; r = -0.29). These results provide evidence that feeding an ionophore before calving and during the postpartum period may increase the number of cows that rebreed to maintain a yearly calving interval. Cows with higher concentrations of leptin postpartum may exhibit shorter PPI.  相似文献   

9.
Previous research from our laboratory showed that approximately one third of obese, nonfoaling mares displayed a condition of hyperleptinemia coupled with hyperinsulinemia that resembled type 2 diabetes in humans. The current study was performed to evaluate the prevalence of the hyperleptinemic syndrome in lactating mares and its possible impact on their rebreeding success. Additionally, we investigated possible relationships between leptin levels in lactating versus nonlactating mares. In experiment 1, jugular blood samples were collected from 198 lactating mares on two occasions approximately 2 weeks apart. The mares resided on eight farms in Louisiana; breeds included Thoroughbred (n = 86), Quarter Horse (n = 71), Warmblood (n = 24), and draft-type (n = 17). Body condition scores (BCS) were measured at the time of blood sampling; plasma samples were assessed for leptin and progesterone concentrations. Reproductive and medical histories, as well as feeding regimens, were compiled on each mare. Based on our previous reports and examination of the current data, a mare was considered hyperleptinemic if her plasma samples contained greater than10 ng/mL leptin; normal was considered 6.0 ng/mL or less; mares with levels above 6.0 and 10 ng/mL or greater were classified as intermediate. Overall mean leptin concentration was 4.7 ng/mL, and average BCS was 5.5. After analysis, 24 mares were classified as hyperleptinemic (12%), 138 were classified as normal (70%), and 36 were classified as intermediate (18%). Leptin concentrations were affected by BCS (P = .08), with higher concentrations in mares with higher body condition; however, there were hyperleptinemic mares with BCS of 4 to 5.5. Feeding regimen affected leptin concentrations (P < .01), with mares on pasture full-time having the highest concentrations. There was no effect of breed, mare age, number of years the mare had been bred, number of live foals, progesterone concentrations, or last foaling date on leptin concentrations. Rebreeding success averaged 81% overall and was not affected by leptin classification. In experiment 2, nonfoaling mares kept on pasture had mean leptin concentrations of 7.0 ng/mL; 8 of 31 mares (26%) displayed hyperleptinemia. Mean leptin concentration was correlated with BCS (R2 = 0.65; P < .02) but was not affected by age of the mare. It was concluded that the hyperleptinemic condition occurs in lactating broodmares, even at BCS as low as 4. The overall incidence appears to be lower in broodmares than in nonfoaling mares, likely because of their lower BCS in general and the energy demands of lactation. Hyperleptinemia did not affect rebreeding success at the end of the breeding season.  相似文献   

10.
The effects of dam parity, age at weaning, and preweaning diet were examined in the ontogeny of serum insulin-like growth factor-I (IGF-I) concentrations in foals. Foals born to 13 primiparous and 19 multiparous draft-cross mares were weighed and bled near birth. About one-half of the foals in each group were weaned early (about 13 wk old); the remaining foals were weaned late (about 16 wk of age). Pooled values for serum IGF-I concentrations between birth and 17 wk of age were higher (P < 0.065) for foals born to multiparous (386 ng/ml) than to primiparous mares (237.5 ng/ml). Colts (378 ng/ml) had higher (P < 0.05) serum IGF-I concentrations than fillies (254.5 ng/ml), regardless of dam parity. Colts (173.5 kg) also tended (P = 0.12) to be heavier than fillies (159.2 kg). Weaning, whether at 13 or 16 wk of age, reduced (P < 0.05) growth rates and serum IGF-I concentrations. Serum IGF-I values recovered to preweaning values within 1–3 wk postweaning concurrent to an improved weight gain. Fifteen 1-d-old foals in a second study were fed milk replacer for 7 wk and were compared with five foals that nursed their mares for 8 wk. During the first 2 wk, replacer-fed foals (0.46 kg/d) did not gain as rapidly (P < 0.03) as mare-nursed foals (1.73 kg/d). The associated serum IGF-I values for replacer foals (139.4 ng/ml) were lower (P < 0.0001) than values for mare-nursed foals (317.4 ng/ml). Despite similarity in gains for both groups thereafter, serum IGF-I concentrations of replacer-fed foals were only 36 and 60% of values obtained for mare-nursed foals at 8 (weaning) and 18 wk of age, respectively. The intrinsic differences between mare-nursed and milk-replacer foals in serum IGF-I concentrations persisted to 1 yr of age despite similarities in dietary management and body weight of the foals. At 1 yr of age, the serum IGF-I concentration of mare-nursed foals (1,203 ng/ml) was 48% higher than that of replacer-fed foals (815 ng/ml). These data indicate that dam parity, sex of foal, and preweaning nutrition affect the ontogeny of serum IGF-I concentration in the foal. The chronic, persistent difference in serum IGF-I values created by the early nutritional management of growing animals has implications in the interpretation of longitudinal serum IGF-I studies in all species.  相似文献   

11.
The objectives of this study were to evaluate the effects of pre- and postpartum undegraded intake protein (UIP) supplementation on body condition score (BCS), BW, calf weight, milk production, serum IGF-I concentrations, and postpartum interval in primiparous beef heifers (n = 44). Heifers were maintained on endophyte-free stockpiled tall fescue (11.7% CP, 38% ADF) and individually fed supplement daily beginning 60 d prepartum. Pre- and postpartum supplements provided 19.3% CP, 83.4% TDN (UIP); 14.1% CP, 84.1% TDN (Control); 21.5% CP, 81.5% TDN (UIP); and 14.6% CP, 81.4% TDN (Control); respectively. Blood meal (146 g/d) was the source of UIP. Six heifers were removed from the study due to calf loss unrelated to treatment; therefore, postpartum measurements are based on 19 animals per treatment. Statistical analyses using ANOVA and a split-plot design revealed no effects of treatment (P > 0.2) on BCS, BW, calf weight, milk production, or postpartum interval. There tended to be a treatment x time interaction on BCS (P < 0.09) with UIP heifers having higher BCS than Control at wk 5, 7, and 9 postpartum. There was a treatment x time interaction on serum IGF-I (P < 0.06) during the first 35 d postpartum. In UIP heifers, serum IGF-I was greater at calving compared with Control heifers (117.5 vs 92.4 ng/mL, respectively); however, these differences were not related to changes in BCS or BW. Although serum IGF-I concentrations were increased at calving in heifers receiving UIP, there were no treatment effects on postpartum interval (P > 0.7). During the first 30 d postpartum, IGF-I differed (P < 0.01) among heifers with postpartum intervals defined as short, < 50 d (128.9 ng/mL); medium, 51 to 65 d (115.2 ng/mL); and long, 66 to 130 d (52.9 ng/mL). When analyzed as a regression, a 1 ng/mL increase in IGF-I (UIP and Control heifers) at calving (P < 0.05) and throughout the postpartum period (P < 0.01) corresponded to a decrease in postpartum interval of 0.13 d. Based on the results of this study, the inclusion of UIP in diets for primiparous heifers and its effects on postpartum interval warrant further evaluation.  相似文献   

12.
The influences of body condition score (BCS) at calving and postpartum nutrition on endocrine and ovarian functions, and reproductive performance, were determined by randomly allocating thin (mean BCS = 4.4 +/- 0.1) or moderate condition (mean BCS = 5.1 +/- 0.1) Angus x Hereford primiparous cows to receive one of two nutritional treatments after calving. Cows were fed to gain either 0.45 kg/d (M, n = 17) or 0.90 kg/d (H, n = 17) for the first 71 +/- 3 d postpartum. All cows were then fed the M diet until 21 d after the first estrus. A replication (yr 2; M, n = 25; H, n = 23) was also used to evaluate reproductive characteristics. Concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were quantified in plasma samples collected weekly during treatment and during 7 wk before the first estrus. Estrous behavior was detected by radiotelemetry, and luteal activity was determined based on concentrations of progesterone in plasma. All cows were bred by AI between 14 and 20 h after onset of estrus, and pregnancy was assessed at 35 to 55 d after AI by ultrasonography. Cows that calved with a BCS of 4 or 5 had similar endocrine function and reproductive performance at the first estrus. During treatment, H cows gained BW and increased BCS (P < 0.01), and had greater (P < 0.05) concentrations of IGF-I, leptin, insulin, glucose, and thyroxine in plasma than M cows. However, during the 7 wk before the first estrus, plasma concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were not affected by time. Cows previously on the H treatment had a shorter (P < 0.01) interval to first postpartum estrus and ovulation, and a larger dominant follicle (P < 0.01) at first estrus, than M cows, but duration of estrus and the number of mounts received were not influenced by nutrient intake. Pregnancy rate at the first estrus was greater (P < 0.03) for H (76%, n = 38) than for M (58%, n = 33) cows. Increased nutrient intake after calving stimulated secretion of anabolic hormones, promoted fat deposition, shortened the postpartum interval to estrus, and increased pregnancy rate at the first estrus. Concentrations of IGF-I and leptin in plasma were constant during 7 wk before the first estrus, indicating that acute changes in these hormones are not associated with the resumption of ovarian function in primiparous beef cows.  相似文献   

13.
Eighteen pregnant mares were randomly allotted to one of two treatment groups. The control group was fed a conventional concentrate and the fat group was fed a concentrate containing 5% feed-grade rendered fat. Both concentrates had the same nutrient:calorie ratio and were fed in amounts required to maintain zero change in percent body fat of the mares. During the study, which began 60 d prior to expected foaling date and ended 60 d postpartum, mares were monitored for feed intake, body weight, rump fat thickness, ration digestibility, plasma glucose and lipid concentrations, milk composition and reproductive efficiency. Birth weight, growth rate, and plasma glucose and lipid concentrations were also measured in foals. Mares fed fat consumed less concentrate (P<.09 during the last 60 d of gestation but consumed similar amounts of concentrate over 60 d of lactation. Protein and ether extract digestion was higher (P<.05 and P<.09, respectively) in the mares fed fat during the postpartum period. Dietary treatment had no influence on plasma glucose or lipid concentrations of the mares or plasma glucose concentrations of their foals, but foals whose dams were fed fat had higher plasma lipid concentrations at birth (P<.01), d 10 and d 30 (P<.05). Percent fat was higher in milk samples from mares fed fat at d 10 (P<.09, 1.23 vs .99%) and d 60 (P<.01, .72 vs .43%) of lactation. Reproductive performance was not significantly different between treatment groups, however there was a trend for a shorter postpartum interval and fewer cycles per pregnancy in the mares fed added fat. Foals from both groups were of similar size and weight at birth and had similar weight gains over 60 d, however, foals nursing mares fed fat tended to gain more weight in the first week of life (1.85 vs 1.56 kg/d) and have more rump fat at d 60 (.53 vs .44 cm) than foals nursing control mares.  相似文献   

14.
The objective of this study was to determine the effect of genotype and week postpartum on serum concentrations of IGF-I, body condition score (BCS), BW, and ovarian function in beef cows. Cows from the following genotypes were utilized in two consecutive years: Angus (A x A; n = 9), Brahman (B x B; n = 10), Charolais (C x C; n = 12), Angus x Brahman (A x B; n = 22), Brahman x Charolais (B x C; n = 19) and Angus x Charolais (A x C; n = 24). Serum concentrations of IGF-I, BCS, and BW were determined between wk 2 and 9 postpartum. Rectal ultrasound was used to determine days postpartum to first medium (6 to 9 mm) and first large (> or = 10 mm) follicle. Averaged across genotype, BCS decreased (P < 0.05) from 5.0 +/- 0.1 on wk 3 to 4.8 +/- 0.1 on wk 6 postpartum, and BW decreased (P < 0.05) between wk 2 and 3 and again between wk 4 and 9 postpartum. Averaged over year and week postpartum, serum IGF-I concentrations were greatest (P < 0.05) in B x B cows (46 +/- 5 ng/mL) compared with all other genotypes; lowest in A x A (12 +/- 4 ng/mL), C x C (13 +/- 4 ng/mL), and A x C cows (18 +/- 3 ng/mL); and intermediate (P < 0.05) in A x B (28 +/- 3 ng/mL) and B x C (26 +/- 3 ng/mL) cows compared with all other genotypes. Serum IGF-I concentrations did not change (P > 0.10) with week postpartum in C x C, A x A, and A x C cows, but increased (P < 0.05) between wk 2 and 7 postpartum in B x C, A x B, and B x B cows. Average interval to first medium (16 +/- 2 d) and first large (35 +/- 2 d) follicle did not differ (P > 0.10) among genotypes. Serum IGF-I concentrations correlated with BCS (r = 0.53 to 0.72, P < 0.001) but not with days to first large follicle (r = -0.19 to -0.22, P > 0.10). Averaged across genotypes, cows that lost BCS postpartum had lower (P < 0.01) serum IGF-I concentrations. Cows that calved with adequate BCS (i.e., > or = 5) had greater (P < 0.01) serum IGF-I concentrations postpartum than cows that calved with inadequate BCS (i.e., < 5) but days to first large and medium follicle did not differ (P > 0.10). In conclusion, concentrations of IGF-I in serum differed among genotypes and were associated with BCS but not days to first large or medium follicle in postpartum beef cows.  相似文献   

15.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of prepartum energy balance and postpartum lipid supplementation on cow and calf performance. Beginning 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or supplements with either high-linoleate cracked safflower seeds or high-oleate cracked safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Ultrasonic 12th rib fat and LM area were lower (P < 0.001) for cows in BCS 4 compared with BCS 6 cows throughout the study. Cows in BCS 4 at parturition maintained (P = 0.02) condition over the course of the study, whereas cows in BCS 6 lost condition. No differences (P = 0.44 to 0.71) were detected for milk yield, milk energy, milk fat percentage, or milk lactose percentage because of BCS; however, milk protein percentage was less (P = 0.03) for BCS 4 cows. First-service conception rates did not differ (P = 0.22) because of BCS at parturition, but overall pregnancy rate was greater (P = 0.02) in BCS 6 cows. No differences (P = 0.48 to 0.83) were detected in calf birth weight or ADG because of BCS at parturition. Dietary lipid supplementation did not influence (P = 0.23 to 0.96) cow BW change, BCS change, 12th rib fat, LM area, milk yield, milk energy, milk fat percentage, milk lactose percentage, first service conception, overall pregnancy rates, or calf performance. Although cows in BCS of 4 at parturition seemed capable of maintaining BCS during lactation, the overall decrease in pregnancy rate indicates cows should be managed to achieve a BCS >4 before parturition to improve reproductive success.  相似文献   

16.
Matua bromegrass hay (Bromus willdenowii Kunth) is a high quality forage, but its value for mares during gestation and lactation is not well known. Intake, rate of passage, performance, and reproduction by gestating and lactating Quarter Horse mares fed the hay was investigated. In this experiment, 12, 2- to 12-yr-old gravid mares (mean BW = 553 kg, SD = 36) were fed Matua hay (CP = 11.5%) or alfalfa hay (Medicago sativa L.) (CP = 15.4%) for variable days prepartum (mean 59.9 d; SD = 23.5) and for 70 d postpartum. Matua and alfalfa hay were fed as the roughage portion of the diet with a grain supplement. Mares, blocked by age, expected date of foaling, and BW, were assigned randomly within blocks to treatments (six mares per treatment). Forage type did not affect intake, gestation length, birth weight, number of foals, foal weight gain, day of first postpartum ovulation, cycles per conception, or pregnancy rate at 70 d. On d 1, milk from mares fed alfalfa hay contained less (P < 0.03) CP than milk from mares fed Matua hay. Milk CP decreased (P < 0.01) in all mares over time. In a separate experiment, voluntary intake and rate of passage of Matua (CP = 15.5%), alfalfa (CP = 24.9%), and Timothy (Phleum pratense L.) (CP = 4.1%) hays were determined in nine 2-yr-old pregnant mares (mean BW = 447 kg; SD = 21). Diets were 100% forage. Timothy hay did not meet CP requirements for mares. Voluntary intake of alfalfa hay was higher (P < 0.01) than Matua hay. Intake of Timothy hay was lower (P < 0.01) than the mean of alfalfa and Matua hay. Rate of passage offorage was measured by passage of Cr-mordanted fiber. Passage rate and retention time did not differ between Matua and alfalfa hay; however, the retention times of Matua and alfalfa hays were shorter (P < 0.01) than for Timothy hay. Our results indicate that Matua hay is a forage that can be used safely for mares during gestation and early lactation and for their young foals.  相似文献   

17.
The objective of this study was to determine the relationships among plasma concentrations of leptin, insulin, and IGF-I with dynamic changes in body condition scores (BCS) in heifers. Nineteen Zebu-Brown Swiss crossbred heifers, 24 to 30 mo old, weighing 322 +/- 9 kg, and with an initial BCS of 2.6 +/- 0.11 (range = 1 to 9) were used. Heifers were fed 60% of their maintenance requirements until they reached a BCS of < or = 2. Heifers were then maintained at that level for 25 d, after which they were fed to gain 1 kg of body weight daily until a BCS of 6 was reached. Heifers were weighed weekly and BCS was measured every 2 wk. Plasma samples were collected twice weekly, and leptin and insulin were determined by RIA. An immunoradiometric assay was used to measure IGF-I from one sample every 2 wk. Plasma concentrations of leptin were positively correlated during nutritional restriction (NR) and weight gain (WG) periods with BCS (r = 0.47 for NR, and r = 0.83 for WG; P < 0.01) and body weight (r = 0.40 for NR, and r = 0.78 for WG; P < 0.01). Plasma concentrations of leptin decreased during nutritional restriction (P < 0.01) as BCS decreased. During weight gain, leptin concentration increased at BCS 3 and thereafter for each integer change in the BCS. Regression analysis showed that changes in body weight affect leptin concentrations within a given BCS. There was a decrease in IGF-I as BCS declined (P < 0.01). During weight gain, by contrast, IGF-I increased significantly (P < 0.01) with every unit change in body condition up to BCS of 4 and plateaued thereafter. Insulin concentrations did not change during nutritional restriction when BCS decreased from 3 to 1. However, once the diet was improved, there was a large increase in insulin concentrations in heifers with BCS 1 (P < 0.01). Among heifers of BCS 2 and 3, insulin did not differ and was lower than in heifers of BCS 1 (P < 0.01). Insulin increased (P < 0.01) among heifers at BCS 4 to 6. Leptin was positively correlated (P < 0.01) with both IGF-I (r = 0.34 for NR, and r = 0.36 for WG) and insulin (r = 0.18 for WG). Insulin was correlated with IGF-I (r = 0.60; P < 0.01). During nutritional restriction, insulin did not correlate with leptin (r = -0.05), BCS (r = -0.03), or IGF-I (r = 0.07). It was concluded that leptin serves as a dynamic indicator of body condition in heifers, as well as an indicator of nutritional status.  相似文献   

18.
Serial blood samples were obtained from 16 Standardbred foals from time of birth to postpartum day 28. Sera were obtained and analyzed for gamma-glutamyltransferase (GGT), aspartate transaminase, and immunoglobulin (Ig) G. Presuckle colostrum from the respective mares of these foals was analyzed for GGT activity. Mean serum aspartate transaminase activities were significantly increased above presuckle values by postpartum hour 48 (P less than 0.01) and increased gradually over the first 14 days. Mean serum IgG concentrations were significantly greater than presuckle values by 5 hours after foals first suckled (P less than 0.01) and remained significantly increased during the 28-day sampling period. Serum GGT activity did not differ significantly over the period sampled. The SD were large, since there was a large degree of interindividual variation. Serum GGT activity in the foals was significantly increased over that in the mares throughout the period of the study. The profile of serum GGT activity over time in each foal did not show a pattern of change. There was no postsuckle increase in serum GGT activity nor a correlation between serum GGT activities and IgG concentrations at 24 hours after foals first suckled. Evidence was not obtained to support a colostric source of GGT involved in the increase of serum GGT activity in foals. Serum GGT activity seems to be increased in foals due to endogenous sources.  相似文献   

19.
The effect of cracked corn grain supplementation (3.5 kg/day) during 3 weeks before the expected calving date on milk production and composition, body condition score (BCS), metabolic and hormonal profiles and length of postpartum anoestrus was evaluated in multiparous Holstein dairy cows under grazing conditions (Energy supplemented group, n = 10; Control group, n = 10). Body condition score was weekly recorded during the peripartum period, from days −21 to +35 (parturition = day 0). Non-esterified fatty acids, β-hydroxybutyrate, cholesterol, urea, insulin, insulin-like growth factor I (IGF-I), leptin, thyroxine (T4) and 3,3'5-triiodothyroinine (T3) were weekly determined in plasma from days −21 to +35. The reinitiation of ovarian cyclicity was twice weekly determined by ovarian ultrasonography and confirmed by plasma progesterone concentrations. Cows fed energy concentrate prepartum had higher BCS during the prepartum and postpartum and produced more milk. Non-esterified fatty acids plasma concentrations were significantly higher in the energy group, while cholesterol was higher in the control group. Treated cows had higher levels of plasma insulin, IGF-I and leptin pre-calving. IGF-I, leptin and T4 were diminished during the early postpartum period in both groups. Insulin levels were also diminished in the control group, but levels remained high in the energy-supplemented group. Treated cows ovulated sooner after parturition than controls. We conclude that Energetic supplementation prepartum in cows under grazing conditions increased milk production and reduced the reinitiation of ovarian activity, consistent with a better EB (BCS), higher prepartum levels of IGF-I, leptin and insulin, and higher insulin levels during early postpartum.  相似文献   

20.
Pregnant Angus x Hereford cows (n = 73) were used to determine the effects of amount of nutrient intake and BCS on concentrations of IGF-I, insulin, leptin, and thyroxine in plasma. At 2 to 4 mo of gestation, cows were blocked by BCS and assigned to one of four nutritional treatments: high (H = a 50% concentrate diet fed ad libitum in a drylot) or adequate native grass pastures and one of three amounts of a 40% CP supplement each day (M = moderate, 1.6 kg; L = low, 1.1 kg; or VL = very low, 0.5 kg; as-fed basis). After 110 d of treatment, all cows grazed dormant native grass pasture and received 1.6 kg/d of a 40% CP supplement. At 68, 109, and 123 d of treatment, cows were gathered, and plasma samples were collected by tail venipuncture (fed sample). After 18 h without feed and water, a second plasma sample was collected (fasted sample). At 109 d of treatment, BCS was greatest (P < 0.05) for H cows, similar for M and L cows, and least for VL cows. Concentrations of insulin and leptin were greater (P < 0.05) for H cows than for M and VL cows at 68 and 109 d, but similar for all groups at 123 d. Thyroxine in plasma was greatest (P < 0.05) for H cows at 68 d and similar for cows on all treatments at 123 d. Concentrations of IGF-I, insulin, and leptin in fed and fasted cows were positively correlated with BCS at 109 d. Body condition was predictive of concentrations of IGF-I, insulin, and leptin when cows had different nutrient intakes, but BCS accounted for less than 12% of the variation in plasma concentrations of IGF-I, insulin, and leptin when nutrient intake was the same for all cows. We conclude that amount of nutrient intake has a greater influence than body energy reserves on IGF-I, insulin, and leptin concentrations in the plasma of gestating beef cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号