首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic cod, Gadus morhua, harvested in US waters are currently managed as a Gulf of Maine stock and as a stock comprising Georges Bank and southern New England populations. Over the past two and a half decades, success of age‐1 recruitment to the Gulf of Maine stock has varied by more than an order of magnitude. To investigate the hypothesis that this variation is related to variation in the transport of larval cod to nursery areas, we carried out model simulations of the movement of planktonic eggs and larvae spawned within the western Gulf of Maine during spring spawning events of 1995–2005. Results indicate that the retention of spring‐spawned cod, and their transport to areas suitable for early stage juvenile development, is strongly dependent on local wind conditions. Larval cod retention is favored during times of downwelling‐favorable winds and is least likely during times of upwelling‐favorable winds, during which buoyant eggs and early stage larvae tend to be advected offshore to the Western Maine Coastal Current and subsequently carried out of the Gulf of Maine. Model results also indicate that diel vertical migration of later stage larvae enhances the likelihood of retention within the western Gulf of Maine. Consistent with model results is a strong correlation between age‐1 recruitment success to the Gulf of Maine cod stock and the mean northward wind velocity measured in Massachusetts Bay during May. Based on these findings, we propose a wind index for strong recruitment success of age‐1 cod to the Gulf of Maine stock.  相似文献   

2.
Offshore‐ and deepwater‐spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore‐spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage‐specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ‘problem’ of planktonic drift and juvenile settlement.  相似文献   

3.
An individual‐based model (IBM) was used to investigate the effects of physical and biological variables on the transport via a jet current of anchovy (Engraulis capensis) eggs from spawning to the nursery grounds in the southern Benguela ecosystem. As transport of eggs and early larvae is considered to be one of the major factors impacting on anchovy recruitment success, this approach may be useful to understand further the recruitment variability in this economically and ecologically important species. By coupling the IBM to a 3D hydrodynamic model of the region called Plume, and by varying parameters such as the spatial and temporal location of spawning, particle buoyancy, and the depth range over which particles were released, we could assess the influences of these parameters on transport success. A sensitivity analysis using a General Linear Model identified the primary determinants of transport success in the various experimental simulations, and model outputs were examined and compared with patterns observed in field studies. Model outputs compared well with observed patterns of vertical and horizontal egg distribution. Particle buoyancy and area of particle release were the major single determinants of transport success, with an egg density of 1.025 g cm?3 maximizing average particle transport success and the western Agulhas Bank being the most successful spawning area. This IBM may be useful as a generic prototype for other upwelling ecosystems.  相似文献   

4.
Mark A. Lazzari   《Fisheries Research》2008,90(1-3):296-304
The Magnuson-Stevens Fishery Conservation and Management Act defines essential fish habitat (EFH) as “the waters and substrate necessary to fish for spawning, breeding, feeding, and growth to maturity” and the protection of nursery areas has become a key element in US Federal fisheries management. Distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, were compared for 28 Maine estuaries to help define essential fish habitat for this life history stage. The Maine coast was divided into three broad geographic zones based upon geological features and sampled over 5 consecutive years; during April–November of 2000 in the Mid-coast, in 2001 and 2002 along the Southwest coast and in 2003 and 2004 along the Eastern Maine coast. One beam trawl (2.0 m width, 3 mm mesh) sample was collected in one to four habitats in estuaries: eelgrass (Zostera marina), kelp (Laminaria longicruris), drift algae (Phyllophora sp.) and unvegetated sand/mud. Fish were sampled every 2 weeks, April–November 2000–2004. Abundance of YOY winter flounder was greatest in Mid-coast estuaries between Casco and Penobscot Bays and was significantly lower in Southwest and Eastern estuaries. Abundance was similar across all four habitats in Mid-coast estuaries in 2000. In the other years, YOY were found in higher abundance in eelgrass relative to other habitats. A logistic regression model based on nearshore habitat characteristics was developed to predict the distribution of this species along the three broad geological zones of the Maine coast with the physical and biological variables most important in discriminating between habitats with and without individual fish identified. This logistic regression model correctly classified winter flounder 72.4% of the time based on the year, zone, the physical habitat variables (temperature, salinity, depth) and the presence–absence of submerged aquatic vegetation (eelgrass, kelp or algae). These results indicate that the type of habitat most important to YOY winter flounder varies among estuaries and EFH for this species and life stage must be defined with care.  相似文献   

5.
The South African chokka squid, Loligo reynaudi, spawns both inshore (≤70 m) and on the mid‐shelf (71–130 m) of the Eastern Agulhas Bank. The fate of these deep‐spawned hatchlings and their potential contribution to recruitment is as yet unknown. Lagrangian ROMS‐IBM (Regional Ocean Modelling System‐Individual‐Based Model) simulations confirm westward transport of inshore and deep‐spawned hatchlings, but also indicate that the potential exists for paralarvae hatched on the Eastern Agulhas Bank deep spawning grounds to be removed from the shelf ecosystem. Using a ROMS‐IBM, this study determined the transport and recruitment success of deep‐spawned hatchlings relative to inshore‐hatched paralarvae. A total of 12 release sites were incorporated into the model, six inshore and six deep‐spawning sites. Paralarval survival was estimated based on timely transport to nursery grounds, adequate retention within the nursery grounds and retention on the Agulhas Bank shelf (<200 m). Paralarval transport and survival were dependent on both spawning location and time of hatching. Results suggest the importance of the south coast as a nursery area for inshore‐hatched paralarvae, and similarly the cold ridge nursery grounds for deep‐hatched paralarvae. Possible relationships between periods of highest recruitment success and spawning peaks were identified for both spawning habitats. Based on the likely autumn increase in deep spawning off the Tsitsikamma coast, and the beneficial currents during this period (as indicated by the model results) it can be concluded that deep spawning may at times contribute significantly to recruitment.  相似文献   

6.
To study the transport of plaice (Pleuronectes platessa L.) eggs and larvae in the eastern Irish Sea, we constructed a 3D‐baroclinic physical model and coupled it to a particle‐tracking scheme that allowed aspects of larval behaviour to be simulated. Starting positions for eggs were based upon data from a series of ichthyoplankton surveys and final positions were compared with results of settled plaice distributions from two beam trawl surveys conducted on beaches around the eastern Irish Sea. If simulated larval behaviour was limited to passive drift or horizontal swimming, the particles diffused away from the spawning areas but failed to reach nursery grounds in significant numbers (85–90% remaining offshore). In contrast, switching on circatidal vertical swimming significantly increased the numbers of larvae reaching the coast (only 23–30% remained offshore). Particles tended to accumulate in bays and estuaries and this pattern compared well with the distribution of settled plaice from the field surveys. Studies in the southern North Sea (where spawning and nursery grounds are widely separated) have also demonstrated the importance of selective tidal stream transport for successful recruitment of settling plaice to nursery grounds. Although our understanding of the ontogeny of this behaviour is still poor, the model results presented suggest that this aspect of behaviour is a key factor influencing plaice settlement success.  相似文献   

7.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

8.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

9.
We used a coupled physical–biological model to examine potential distances between hatching and settlement locations for lobsters in the Gulf of Maine. The physical model is based on a finite-element mesh and climatological averages of the seasonally evolving temperature and density fields. Larval trajectories from coastal and offshore hatching sites (21–224 m deep) were calculated for early, middle and late-season hatching by coupling temperature-dependent development rates and depth (the biological model) to the circulation. Model results showed large spatial differences in larval development times (from 18 to 38 days) and distances transported (19–280 km) for the early hatch. Development time and transport decreased markedly by mid-season at most sites, but strong spatial differences persisted. The eastern Maine coast appears to experience stronger removal and less resupply of larvae than other regions, consistent with observed lower recruitment. Inverse solutions of the model for larvae arriving in mid-coastal Maine indicate that they originate from a broad section of the eastern coast 'upstream', with those nearest the shoreline generally travelling the shortest distances. The postlarval stage is neustonic (living near the surface), and a simple inverse model demonstrates that a diurnal coastal sea breeze can contribute substantially to inshore movement during this final planktonic stage. Thus, offshore reproduction may be linked to inshore recruitment.  相似文献   

10.
Life cycle closure for species inhabiting areas with daily varying currents but directed net water transport requires specific behavior to minimize losses due to advection of passive drifting life stages. Variations in swimming activity of different‐sized Crangon crangon (15–65 mm total length) were therefore monitored under constant laboratory conditions immediately after being caught in the German Wadden Sea. Activity of shrimps of different sizes, caught at different seasons, always peaked at times corresponding with ebb tide in the habitat from where they were taken. This behavior was maintained for several days if no external stimuli were present but shifted to night activity if a light–dark cycle was provided. The observed behavior/activity pattern was included in a coupled hydrodynamic and individual‐based model (IBM) and the shift in the location of a shrimp cohort was monitored over time. Performance of ebb tide activity not only allowed the shrimps to reach the preferred deeper winter and spawning areas but also allowed them to migrate against the dominating current from eastern nurseries to more western located spawning areas. Passively drifting larvae released at these locations and later larval and juvenile stages that perform flood tide transport can reach the nurseries again. This links the nurseries and adult spawning grounds and closes the migration triangle.  相似文献   

11.
Northwesterly cold winds characteristic of the East Asian Winter Monsoon (EAWM) dictate winter climatic conditions over the Japanese Archipelago. Japanese temperate bass Lateolabrax japonicus is a commercially important coastal fish that spawns offshore in winter and uses shallow waters as nursery habitats. To investigate the effects of EAWM on the planktonic period of L. japonicus, eggs, larvae, and juveniles were quantitatively collected in Tango Bay on the Sea of Japan side in winter and spring from 2007 to 2017. Although eggs occurred close to the mouth of the bay, planktonic larvae occurred further inside as they developed. The horizontal distribution of planktonic larvae, combined with water velocity data obtained from mooring observations, indicated that planktonic larvae are transported south‐ to westward through Ekman current and an anticyclonic circulation, which are driven by northwesterly winds. To evaluate survival during the planktonic period in each year class, the abundance of benthic larvae/juveniles was divided by winter total landings of Lateolabrax spp. (proxy of the spawning stock size). This survival index exhibited a positive correlation with the northwesterly component of winter winds, and a negative correlation with winter air temperature (average from December to February, Spearman's correlation, p < .05). There was, however, no significant correlation with winter water temperature or winter freshwater discharge in the bay. We conclude that northwesterly cold winds of EAWM play a critical role in transporting L. japonicus eggs and larvae toward nursery habitats, specifically beaches and estuaries fringing the innermost part of Tango Bay.  相似文献   

12.
Patterns in larval transport of coastal species have important implications for species connectivity, conservation, and fisheries, especially in the vicinity of a strengthening boundary current. An Ocean General Circulation Model for the Earth Simulator particle tracking model was used to assess the potential dispersal of Eastern King Prawn (EKP) larvae Melicertus (Penaeus) plebejus, an important commercial and recreational species in Eastern Australia. Particles were exposed to a constant natural mortality rate, and temperature‐dependent growth (degree‐days) was used to determine the time of settlement. Forward and backward simulations were used to identify the extent of larval dispersal from key source locations, and to determine the putative spawning regions for four settlement sites. The mean dispersal distance for larvae was extensive (~750–1,000 km before settlement), yet the northern spawning locations were unlikely to contribute larvae to the most southern extent of the EKP range. There was generally great offshore dispersal of larvae, with only 2%–5% of larvae on the continental shelf at the time of settlement. Our particle tracking results were combined with existing site‐specific reproductive potentials to identify the relative contributions of larvae from key source locations. Although mid‐latitude sites had only moderate reproductive potential, they delivered the most particles to the southern coast and are probably the most important sources of larval EKP for the two southern estuaries. Our modelling suggests that mesoscale oceanography is a strong determinant of recruitment success of the EKP, and highlights the importance of both larval dispersal and reproductive potential for understanding connectivity across a species’ range.  相似文献   

13.
In Sendai Bay, stone flounder larvae settle and spend their juvenile period in either shallow exposed inshore nursery grounds or estuarine nursery grounds. The purpose of this study is to examine the relative contributions of these two kinds of nursery grounds to the flounder population using otolith strontium:calcium ratios. Stone flounder juveniles were collected from both nursery grounds, and one- and two-year-old flounder were caught deeper in Sendai Bay. Sr and Ca content in the otoliths were measured by electron probe micro analysis. The Sr:Ca ratios in the otolith section corresponding to the early postsettlement period ranged from 3.06 to 3.85 for the exposed inshore areas with stable low temperature and high salinity conditions, and from 3.81 to 5.32 in brackish estuaries with high temperature and low salinity conditions but with large diel and tidal cyclical fluctuations. Values from an estuarine site with stable salinity ranged from 3.58 to 4.15 overlapping with both the above ranges. Rearing experiments supported our inference that the high otolith Sr:Ca ratios of juveniles inhabiting estuarine nursery grounds are attributable to higher temperature and physiological stress caused by the large diel temperature and salinity fluctuations within the estuaries. Estimation of the Sr:Ca ratio of recruited fish using the otolith section formed while in the nursery area showed that at least 20 out of 42 individuals examined originated from estuarine nursery grounds. The present study indicates that estuaries play an important role as nursery grounds for stone flounder, producing about half of the stock in spite of the small and restricted area compared with the wide expanse of the exposed inshore area.  相似文献   

14.
We have numerically modeled the advection and diffusion of sardine eggs and larvae to investigate the larval transport processes of Japanese sardine from the spawning grounds by the Kuroshio.
The results indicated that the offshore drift current induced by the winter monsoon and the location of the spawning ground have significant effects on the survival of the Japanese sardine. The contribution of the drift current, the distance of the spawning ground from the Kuroshio axis, and the eddy diffusivity to the larval retention in the coastal area is approximately expressed by the following equation: where R is the retention rate in the coastal area, a the variance of initial distribution of eggs, T the time after the eggs were spawned, – V0 the velocity of the wind-induced offshore current, y0 the distance of the center of the spawning area from the Kuroshio axis, and K the coefficient of horizontal eddy diffusivity.
The year-to-year variation in larval survival rates stimulated by the two-dimensional model are consistent with those estimated previously by using field data of egg and larval abundance during 1978–1988.  相似文献   

15.
Adult Japanese anchovies (Engraulis japonicus) migrate from the East China Sea to the coastal region of Taiwan to spawn around late winter and early spring and, later, their larvae constitute important fisheries in Taiwan. However, their migration route and its mechanism remain unclear. To investigate their spawning migration, we used a coupled fish behavior–hydrodynamic modeling approach. The physical field is simulated by the Pacific Ocean adaptation of the TaIwan Multi‐scale Community Ocean Model (TIMCOM) and the fish migration by Lagrangian tracer tracking with the aid of approximation of fish swimming behavior. We investigated three fish behavioral scenarios: (i) passive tracking of the current, (ii) swimming along with the current, and (iii) swimming along with the current and then changing to swimming toward the optimal spawning temperature. The comparison with and without Changjiang discharge is used to investigate the impacts of discharge reduction due to the Three Gorges Dam. Our results suggest that spawning migration of Japanese anchovy from the East China Sea to Taiwan may be aided by the China Coastal Current and that adult anchovies cannot reach the spawning site by passive advection alone. Thus, the swimming behavior of anchovies is crucial during the spawning migration, as it provides extra velocity and the orientation to the favorable spawning grounds. In addition, the adult anchovy is unlikely to reach the coastal area of Taiwan without Changjiang discharge. Our findings indicate that a coupled fish behavior–hydrodynamic model can help understand the influences of physical environment on the migration of Japanese anchovies.  相似文献   

16.
In order to investigate the impact of climate change on egg and larval transport of Japanese anchovy (Engraulis japonicus) off Kyushu Island western Japan, we conducted particle‐tracking simulations on transport success/failure to fishing grounds from 1960 to 2007. The modeled transport success since the mid‐1990s increased and decreased in the offshore and coastal zones, respectively, compared with the 1960s and 1970s. The estimated northward shift of the spawning ground and weakened Tsushima Warm Current contributed to increase in modeled transport success to the offshore zone. Conversely, the weakening trend of the modeled onshore current in the Goto‐Nada Sea combined with the northward shift of the spawning ground resulted in unsuccessful larval transport. These results suggest that fluctuations in juvenile and subadult anchovy catches in this area may be attributable to changes in the physical environment. The present study showed that changes in transport success induced by oceanographic fluctuations related to climate change, have the potential to affect anchovy recruitment off the western coast of Japan.  相似文献   

17.
The harvest of bay scallops (Argopecten irradians) from Buzzards Bay, Massachusetts, U.S.A. undergoes large interannual fluctuations, varying by more than an order of magnitude in successive years. To investigate the extent to which these fluctuations may be due to yearly variations in the transport of scallop larvae from spawning areas to suitable juvenile habitat (settlement zones), a high‐resolution hydrodynamic model was used to drive an individual‐based model of scallop larval transport. Model results revealed that scallop spawning in Buzzards Bay occurs during a time when nearshore bay currents were principally directed up‐bay in response to a persistent southwesterly sea breeze. This nearshore flow results in the substantial transport of larvae from lower‐bay spawning areas to settlement zones further up‐bay. Averaged over the entire bay, the spawning‐to‐settlement zone connectivity exhibits little interannual variation. However, connectivities between individual spawning and settlement zones vary by up to an order of magnitude. The model results identified spawning areas that have the greatest probability of transporting larvae to juvenile habitat. Because managers may aim to increase scallop populations either locally or broadly, the high‐connectivity spawning areas were divided into: (i) high larval retention and relatively little larval transport to adjoining settlement areas, (ii) both significant larval retention and transport to more distant settlement areas, and (iii) little larval retention but significant transport to distant settlement areas.  相似文献   

18.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

19.
Atlantic menhaden ( Brevoortia tyrannus ) is an estuarine-dependent fish that spawns in coastal waters of the Middle and South Atlantic Bights. Circulation modelling studies of larval transport suggest that recruitment of larvae into the Albemarle-Pamlico Estuarine System, North Carolina, is linked to dynamics on the shelf from New York to South Carolina. Field-collected menhaden egg data (from MARMAP and SABRE) define a range of temperatures within which menhaden eggs have been found. In this study we refine the transport model-predicted spawning grounds for the 1994–95 season by using satellite-derived sea surface temperature data to highlight regions that are outside the observed spawning temperature range. We also use transport pathways leading from source locations to the estuarine system to characterize the temperature field experienced by particles/larvae during their spawning-ground to inlet transit. The modelled nearshore location of source regions agrees well with MARMAP and SABRE egg data, and points to the importance of understanding biological and physical linkages between the Middle and South Atlantic Bights. The combination of modelled transport and synoptic temperature maps can provide useful guidance to future sampling efforts as well as help refine our understanding of menhaden ecology.  相似文献   

20.
为了解当前东海生态系统中鱼卵、仔稚鱼种类组成和数量分布的现状及其变化与物理环境因素的关系,根据2006年11月—2008年6月5个航次的鱼卵、仔稚鱼和物理环境调查资料,对鱼卵、仔稚鱼种类组成、数量分布与产卵场物理环境进行分析,探讨不同季节、不同年份鱼卵、仔稚鱼种类组成和数量分布的变化及其与物理环境的关系。结果显示,5个航次采集到74 813粒鱼卵、16 826尾仔稚鱼,共有135个种类。其中,鉴定到种的有109种,隶属于15目67科99属,还有17个种类仅能鉴定到属、6个种类仅能鉴定到科和3个种类仅能鉴定到目。2006年—2007年秋季、冬季和春季鱼卵、仔稚鱼的种类和数量随着季节变化逐渐增多;2008年春季的种类和数量较2007年春季明显偏少;2008年初夏种类的数量与2008年春季基本相近,但鱼卵的数量明显增多,仔稚鱼的数量基本相近。42种优势种类、重要种类和主要种类构成当前东海生态系统中鱼卵、仔稚鱼种类组成的主要成分。东海表层水温和盐度分布有显著的季节变化。秋、冬季表层水温锋面强度最强,春季次之,初夏最弱;锋面的位置秋季离岸最近,冬季次之,春季和初夏离岸最远,冬季偏南,初夏季节北移。表层盐度锋面主要分布在近岸区域,与岸线大致平行,其强度冬季最强,春、秋季次之,初夏季节最弱。秋、冬季节陆架深水海域的水温较沿岸海域高,鱼类生殖群体在陆架深水高温区产卵;春季和初夏季节沿岸海域明显升温,鱼类生殖群体由深水区向近岸海域进行生殖洄游,产卵场分布由陆架中部向近岸海域扩展,并在近岸海域形成了中心产卵场。鱼卵和仔稚鱼的分布与温、盐锋面和种类的温、盐属性的关系密切,主要分布在温度锋面暖水一侧,并有各自最适宜的温度和盐度范围。水温、盐度与种类的繁殖生物学特性是导致鱼卵和仔稚鱼种类组成与数量发生变化的主要因素;适宜的温度和盐度范围、锋区的辐聚和卷夹作用以及种类的生物学属性是影响鱼卵和仔稚鱼数量分布以及密集分布区形成的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号