首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 289 毫秒
1.
利用由98个家系组成的Nipponbare/Kasalath//Nipponbare回交重组自交系(backcross inbred lines,BIL)作图群体(BC1F12),用复合区间作图方法(CIM),对水稻4个异交相关性状进行了QTL分析.结果表明,开颖角度检测到2个QTL,分别位于第 12 染色体的C1069-R1709和R270-G2140区间,共解释性状变异的18.51%,2个位点的增效等位基因均来自Kasalath.柱头外露率检测到1个QTL,位于第 3 染色体的C63-C563区间,解释性状变异的15.99%,增效等位基因来自Kasalath.单花开花历时检测到1个QTL,位于第9染色体的G385-R2272区间,解释性状变异的10.75%,增效等位基因来自Kasalath.包颈长检测到3个QTL,分别位于第3染色体的C136-R250、第5染色体的R521-C1230和第10染色体的R2194-R1629区间,共解释性状变异的39.40%,qPEL-5位点的增效等位基因来自Nipponbare,qPEL-3和qPEL-10位点的增效等位基因均来自Kasalath.  相似文献   

2.
水稻4个异交相关性状的QTL定位研究   总被引:3,自引:0,他引:3  
利用由98个家系组成的Nipponbare/Kasalath//Nipponbare回交重组自交系(backcross inbred lines,BIL)作图群体(BC1F12),用复合区间作图方法(CIM),对水稻4个异交相关性状进行了QTL分析.结果表明,开颖角度检测到2个QTL,分别位于第 12 染色体的C1069-R1709和R270-G2140区间,共解释性状变异的18.51%,2个位点的增效等位基因均来自Kasalath.柱头外露率检测到1个QTL,位于第 3 染色体的C63-C563区间,解释性状变异的15.99%,增效等位基因来自Kasalath.单花开花历时检测到1个QTL,位于第9染色体的G385-R2272区间,解释性状变异的10.75%,增效等位基因来自Kasalath.包颈长检测到3个QTL,分别位于第3染色体的C136-R250、第5染色体的R521-C1230和第10染色体的R2194-R1629区间,共解释性状变异的39.40%,qPEL-5位点的增效等位基因来自Nipponbare,qPEL-3和qPEL-10位点的增效等位基因均来自Kasalath.  相似文献   

3.
生态环境条件对土壤磷酸酶的影响   总被引:7,自引:0,他引:7  
对不同生态环境条件下 3类磷酸酶活性的研究结果显示 ,北方 土娄 土和南方红壤的主导磷酸酶类分别是碱性磷酸酶和酸性磷酸酶 ,占到总体酶活性的 1/ 2~ 2 / 3,杀虫双的加入及肥力条件的改变对此比例影响较小 ,揭示出土壤生态条件对土壤磷酸酶特征具有决定性的影响 ;在同一生态区 ,土壤磷酸酶活性随肥力水平的升高而增大 ;酸性磷酸酶对杀虫双的反应最敏感 ,中性磷酸酶则最迟钝。  相似文献   

4.
本研究以QR-001/QS-001组合衍生的281个F2∶3家系为定位群体,在青岛和枣庄两个环境下进行非接种条件下玉米粗缩病抗性鉴定。应用完备区间作图法(ICIM)进行QTL分析,结果表明:在青岛环境下共检测到8个QTLs,分布在第1、2、3、4、6(2个)和8(2个)染色体上,单个QTL可以解释的表型变异在0.08%~32.25%之间;在枣庄环境下共检测到13个QTLs,分布在第1(3个)、2、3、4、5、6(2个)、7(2个)和8(2个)染色体上,单个QTL可以解释的表型变异在0.06%~35.61%之间。两环境下检测到2个通用主效QTLs,分别位于第1染色体umc2236-umc1278标记区间和第6染色体phi299852-umc1490标记区间,其在青岛环境下解释的表型变异分别为27.11%和32.25%,在枣庄环境下解释的表型变异分别为35.61%和27.77%。这两个区间可作为抗粗缩病候选基因的重要遗传位点开展精细定位。  相似文献   

5.
研究以RA×M5P构建而成的包含205个家系的RIL群体为作图群体,结合2个环境下的表型鉴定,运用复合区间作图法(CIM)对玉米雄穗长(TL)、雄穗分枝数(TBN)和雄穗重(TW)等雄穗性状进行QTL定位分析。结果表明,2个环境条件下,共检测到3个与TL性状连锁的QTL位点,分别位于第3、5、8号染色体上,可解释表型变异的5.19%~5.97%;共检测到5个与TBN性状连锁的QTL位点,分别位于第1、2、3、9号染色体上,可解释表型变异的3.66%~8.41%,在染色体bin值1.04、9.03位置,2个环境中均稳定检测到与TBN连锁的QTL位点;共检测到3个与TW性状连锁的QTL位点,分别位于第4、8号染色体上,可解释表型变异的4.39%~13.65%,在染色体bin值4.04~4.06、4.08位置,2个环境中均稳定检测到与TW连锁的QTL位点。这些不同环境条件下稳定检测到的雄穗性状QTL位点可以为进一步的遗传研究提供理论基础。  相似文献   

6.
以玉米为材料,利用3室隔网培养方法,探讨了取自肥料长期定位试验中多年施用与不施用有机肥的田间小区土壤,接种菌根菌(G.mosseae)对玉米根际土壤酸性和碱性磷酸酶活性及土壤不同形态磷的影响,并对磷酸酶产生位点进行显微细胞化学定位.结果表明,接种AM菌根菌对根际土壤酸性和碱性磷酸酶活性均有增强作用,但作用程度在有机肥小区土壤上要大于无机肥小区土壤.菌丝分泌磷酸酶对土壤磷的吸收有益.根际土壤酸性磷酸酶细胞化学定位结果表明,活性菌丝上有明显的酸性磷酸酶的反应产物,生长健壮的菌丝有较强的酶活性,衰老的菌丝未见酶反应产物,说明只有成熟的根外菌根菌丝才能分泌磷酸酶.  相似文献   

7.
玉米弯孢菌叶斑病抗性的QTL分析   总被引:14,自引:0,他引:14  
 通过利用AFLP和SSR标记 ,对丹 340×沈 135的F2∶3 群体 (113个家系 )进行玉米弯孢菌叶斑病抗性基因的遗传作图和QTL分析 ,得到如下结论 :(1)玉米弯孢菌叶斑病抗性是由多基因控制的 ;(2 )应用复合区间作图法 ,对 1999年的玉米全株抗病性 ,检测到 4个QTL ,分别位于第 6、6、8和 10染色体上 ,可解释表型变异的 4 9.9% ;对 2 0 0 0年的玉米全株抗病性 ,检测到 6个QTL ,2个位于第 6染色体上 ,3个位于第 7染色体上 ,1个位于第 10染色体上 ,可解释表型变异的 77.6 % ;第 10染色体上的QTL是 2年间共同的QTL ,来自抗病亲本沈 135 ;(3)对每个QTL(定量特征点位分析 ) ,均检测到加性和显性效应 ,但相对大小有不同 ,各QTL以部分显性、显性和超显性为主要遗传方式 ;(4)控制玉米弯孢菌叶斑病抗性的QTL之间存在上位性互作。  相似文献   

8.
利用以玉米自交系T319与9406为亲本构建的242个重组自交系(F8),对玉米株高和穗位高进行QTL(数量性状基因座位)分析,在第1、2、3、5、7、10染色体定位到6个株高QTL,位于umc2228与bnlg2295、bnlg1609与bnlg1350、bnlg210与umc1045,可解释表型变异率12.13%、13.00%、11.58%,为株高主效QTL;在第1、10染色体上检测到2个穗位高主效QTL,位于umc2228-bnlg2295、bnlg210与umc1045,可解释表型变异率10.73%、16.92%。位于umc2228-bnlg2295、bnlg210-umc1045的区域为株高和穗位高的一致主效QTL区间,这些位点的标记可进行株高和穗位高的株型改良分子标记辅助选择。  相似文献   

9.
为探究玉米出籽率、单穗质量和单穗粒质量性状的QTL,以优良自交系KA105与KB020构建的201个重组自交系(RILs)群体为材料,通过榆林和汉中两地2个重复的田间试验,利用完备区间作图法对玉米出籽率、单穗质量和单穗粒质量性状进行QTL分析。结果表明,3个性状共检测到10个QTL位点,其中出籽率定位到5个QTL,单穗质量定位到2个QTL,单穗粒质量定位到3个QTL,分别位于1、2、5、6、9和10号染色体上,单个QTL可解释5.92%~13.50%的表型变异。位于1号和6号染色体上的QTL在3个性状中均能检测到,可能是一因多效基因,其中位于6号染色体的QTL在3个性状中均能解释大于10.00%的表型变异,因此下一步研究可重点关注该区域。  相似文献   

10.
【目的】分析不同pH下砷(As(Ⅴ))对碱性磷酸酶活性的影响,为砷污染监测提供理论依据。【方法】采用室内模拟方法,研究不同pH条件下不同状态(游离态、固定态、土壤)碱性磷酸酶活性与砷污染之间的关系。【结果】同一As(Ⅴ)质量浓度下,pH为7.0~10.0时,碱性磷酸酶活性逐渐增大。As(Ⅴ)明显抑制碱性磷酸酶活性,其对游离态碱性磷酸酶的抑制幅度最大,对土壤碱性磷酸酶抑制幅度最小。砷对碱性磷酸酶的毒性随pH升高而增强。砷质量浓度(C)与碱性磷酸酶活性(E)之间的关系可以用模型E=A/(1+B×C)(A,B为系数)较好表征,揭示出在供试pH范围内碱性磷酸酶在一定程度上均可作为砷污染程度评价指标,且砷对碱性磷酸酶的作用机理为完全抑制作用。与游离态碱性磷酸酶相比,固定态及土壤碱性磷酸酶对砷敏感度降低,pH 10.0条件下游离态、固定态及土壤碱性磷酸酶临界生态剂量值分别为2.60,13.48和20.40mg/kg,远低于国家《土壤环境质量标准》(1995年)中砷的三级污染临界值。【结论】碱性磷酸酶可作为砷污染的监测指标,其对砷污染程度的反应更加灵敏;砷污染条件下,酶载体土壤起到了缓冲作用和保护作用,最终改变了砷的生物毒性。  相似文献   

11.
盐胁迫后刺参的行为表现及免疫酶活性会发生相应变化,以达到适应盐度变化的目的。设定5个盐度梯度(18、23、33、36和40),分析盐度胁迫后刺参行为变化及不同响应时间下体腔液中碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LSZ)、超氧化物歧化酶(SOD)的活力变化。实验结果发现盐度增加和降低都使刺参的活动受到影响,低盐度胁迫比高盐度胁迫对刺参的影响大。碱性磷酸酶和酸性磷酸酶活性总体呈现先降低后升高,随着时间的延长逐渐恢复适应的趋势。盐度23溶菌酶活力显著高于盐度32的对照组;盐度为36时,溶菌酶活力在第1天最高,随后降低,维持2 d后,酶活力又开始升高,并高于盐度32的对照组水平;盐度为18、40时,酶活力显著低于对照组,并一直维持在较低水平。低盐18、23胁迫时,超氧化物歧化酶SOD酶活力明显低于对照组,且最低点均出现在第8 d。高盐36、40胁迫时,酶活力明显高于对照组,最高点分别出现在第5 d和第8 d。研究结果为刺参机体在盐度胁迫下的调节适应机制研究工作奠定一定的基础。  相似文献   

12.
为探究土壤不同水分条件下生物炭对红壤磷素形态转化及磷酸酶活性的影响,以期为土壤磷素管理和生物炭合理利用提供参考。通过设置土壤不同含水量(33%、66%、100%)与生物炭添加量(0、0.5%、2%)进行培养试验,测定土壤的有效磷、各磷素形态(Al-P、Ca-P、Fe-P、O-P)及土壤酸性磷酸酶与碱性磷酸酶活性。结果表明:生物炭的施入显著提高了土壤有效磷含量;在培养前期,生物炭主要增加土壤中难溶态的Al-P含量,这主要是由生物炭带来的可溶性磷进入土壤中转化所导致;在培养后期,水分与生物炭都能够在一定程度上活化土壤中的Ca-P、Fe-P与O-P,释放更多磷素。生物炭本身呈碱性,添加到土壤中,有效中和了土壤酸度,使得土壤pH值上升2.82~3.13个单位,土壤酸性磷酸酶活性下降。此外,淹水条件能够降低土壤的酸性磷酸酶与碱性磷酸酶活性。研究表明,生物炭的添加能够有效提高土壤pH值、有效磷含量,同时降低土壤酸性磷酸酶的活性。  相似文献   

13.
旱农区梯田土壤碱性磷酸酶活性及其相关因素分析   总被引:2,自引:0,他引:2  
对旱农区同一坡度不同层位梯田的土壤碱性磷酸酶活性变化及其相关因素进行了分析 ,结果表明 ,从梯田顶部到基部 ,其土壤中有机质、水解氮、有效磷、碱性磷酸酶活性和呼吸强度都存在着一定的空间差异 ,从上到下依次为 :呼吸强度 >有机质 >水解氮 >碱性磷酸酶活性 >有效磷 ,且有机质、水解氮、碱性磷酸酶活性及呼吸强度由坡顶到坡底均逐渐增加 ,有效磷增加不明显 ;碱性磷酸酶活性与水解氮、有效磷间的相关性达到极显著水平  相似文献   

14.
采用相关分析法,揭示京北西段天然次生林土壤磷酸酶活性与土壤养分的关系,以期为林地土壤肥力管理提供理论依据。结果表明:试验区土壤有机质处于极高水平,全氮处于高水平,有效氮、速效磷属于低水平。0-25 cm土层的土壤养分和磷酸酶活性比低层养分增加幅度约54.4%,且垂直递减规律明显;不同林型土壤磷酸酶均以酸性磷酸酶为主;经相关分析,土壤磷酸酶活性与土壤有机质、全氮、有效氮、有效磷和速效钾呈显著正相关。  相似文献   

15.
不同肥料对土壤脲酶和碱性磷酸酶活性的影响   总被引:4,自引:0,他引:4  
本实验对不同施肥条件下土壤脲酶活性、碱性磷酸酶活性进行了系统研究。结果表明,和对照相比,尿素、鸡粪、秸秆在Ⅰ施肥水平上,使土壤脲酶活性分别增加15.38%、55.94%、27.97%,土壤碱性磷酸酶活性分别增加2.31%、16.20%、10.42%;在Ⅱ施肥水平上使土壤脲酶活性分别增加24.48%,67.83%,46.15%,使土壤碱性磷酸酶活性分别增加9.72%、28.01%和37.04%。在Ⅲ施肥水平上使土壤脲酶分别增加37.76%、86.71%、62.24%,土壤碱性磷酸酶活性分别增加28.47%、65.74%和58.10%。3种不同施肥水平对土壤脲酶活性影响顺序依次是鸡粪、秸秆、尿素。在Ⅱ施肥水平上,对土壤碱性磷酸酶活性的影响大小依次是鸡粪、秸秆、尿素。在Ⅰ、Ⅲ施肥水平上是秸秆、鸡粪、尿素。  相似文献   

16.
大豆开花盛期快速叶绿素荧光参数的QTL分析   总被引:1,自引:0,他引:1  
 【目的】定位大豆R2时期(开花盛期)快速叶绿素荧光参数(JIP参数)QTL,分析不同参数间的遗传关系,比较参数在R2和R6时期(鼓粒盛期)遗传基础的异同。【方法】以大豆品种科丰1号和南农1138-2及其杂交衍生的184份重组自交系为材料,在盆栽条件下测定R2时期JIP参数,检测其QTL。【结果】检测到16个JIP参数QTL,分布在连锁群A1、C2、D2、I、M、N和O上,单个QTL的LOD值为2.40—5.65,贡献率为4.40%—20.06%;检测到3个同时控制多个参数的染色体区间,分别是连锁群C2上标记区间Satt286—Satt316、连锁群I上标记区间Sat_418—Satt650和连锁群O上标记区间Sat_231—Sat_196。【结论】不同JIP参数间既有共同的控制基因(QTL),也有各自独特的控制基因;JIP参数多数QTL不能在R2和R6时期重复检测到,控制其表达的遗传机制较为复杂;连锁群O上标记区间Sat_231—Sat_196在大豆R2和R6时期均检测到,该区间可能存在稳定表达的控制光合器官内禀结构和功能的基因,具有一定的育种价值。  相似文献   

17.
[目的]探讨奶牛和绵羊血清骨型碱性磷酸酶活性在不同怀孕期的变化。[方法]采用磷酸苯二钠法,对33头荷斯坦奶牛和29只藏系绵羊不同怀孕期血清碱性磷酸酶活性及其酶保存率进行了测定。[结果]所有奶牛和绵羊血清碱性磷酸酶活性均在正常范围内,但奶牛怀孕中期的碱性磷酸酶活性比未怀孕、怀孕前期、怀孕后期明显降低(P<0.05);碱性磷酸酶保存率均低于26%,表明奶牛和绵羊血清碱性磷酸酶均来自骨骼。[结论]奶牛和绵羊血清骨型碱性磷酸酶活性在怀孕中期呈下降趋势。  相似文献   

18.
温室黄瓜产量相关农艺性状QTLs的定位   总被引:7,自引:3,他引:4  
【目的】秋冬茬和冬春茬是目前中国日光温室黄瓜栽培的两种重要茬口,对两茬黄瓜产量相关性状的QTLs进行定位,为温室黄瓜产量分子标记辅助选择的研究提供理论依据。【方法】选用欧洲8号×秋棚自交系的113份黄瓜重组自交系(RILs)群体作为试验材料,并利用该群体已经构建的包含182个标记的分子连锁图谱对与产量相关的9个性状进行QTL分析。【结果】共检测到58个QTLs,其中与单株平均产量相关的QTL1个,定位于LG4连锁群上;控制黄瓜日增重量的QTL位点6个,分别位于LG2、LG3、LG6连锁群上;控制平均单瓜重的QTL位点5个,分别位于LG1和LG5连锁群上;控制坐瓜数的QTLs2个,位于LG2和LG4连锁群上;控制化瓜率的QTL1个,位于LG7连锁群上;控制第一雌花节位的QTLs28个,在1-8个连锁群上都有分布;控制总叶片数的QTLs8个,分别位于LG2、LG7和LG4连锁群上;控制叶面积的QTLs2个,分别位于LG1和LG3连锁群上。以上产量相关性状的QTLs仅在一个茬口中被检测到。控制雌花总数的QTLs5个,全部位于LG2连锁群上,其中ffa2a、ffa2b是两个茬口共有的QTLs,并且其遗传效应方向一致。研究还发现若干QTL富集区域和成束分布的QTLs。【结论】本项研究共检测到温室黄瓜与产量相关的9个性状的58个QTLs,其中ffa2a、ffa2b在两个栽培环境中表达稳定。  相似文献   

19.
软化病感染家蚕的碱性磷酸酶活力测定及病理学研究   总被引:2,自引:0,他引:2  
为了研究感染软化病的家蚕碱性磷酸(ALKP)的活力并研究酶组织病理学,通过ALKP活力测定证实感染黑胸败血病的软化病家蚕ALKP,活力变化的规律与正常家蚕相似而单位更低.石蜡切片显示感病家蚕丝腺组织内充满丝胶类物质,家蚕吐丝结茧受阻.用冰冻切片法以ALKP反应底物对病蚕的丝腺组织进行活性测定,显示出感病家蚕的丝腺内外膜均呈现较强的酶反应,暗示了膜上活跃的磷酸转运系统.而脂肪体内的某些部位也呈现出点状深着色,证明脂肪体内含有ALKP,合成组织.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号