首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

2.
An 8‐week feeding trial was conducted to estimate the optimum dietary protein to energy (P/E) ratio in juvenile olive flounder Paralichthys olivaceus. Eight experimental diets were formulated with two energy levels and four protein levels at each energy level. Two energy levels of 12.5 and 16.7 kJ g?1 diets were included at crude protein (CP) levels of 25%, 30%, 35% and 45% with 12.5 kJ g?1, and CP levels of 35%, 45%, 50% and 60% with 16.7 kJ g?1. After 1 week of the conditioning period, fish initially averaging 8.1±0.08 g (mean±SD) were randomly distributed into the aquarium as groups of 15 fish. Each diet was fed on a dry‐matter basis to fish in three randomly selected aquariums at a rate of 3–5% of total wet body weight per day for 8 weeks. After 8 weeks of the feeding trial, weight gain (WG), feed efficiency ratio and specific growth rate of fish fed 45% CP with 16.7 kJ g?1 energy diet were significantly higher than those from the other dietary treatments (P<0.05). WG of fish fed 12.5 kJ g?1 energy diets increased with the increase of dietary protein levels. However, WG of fish fed 16.7 kJ g?1 energy diets increased with the increase of dietary protein levels up to 45% CP and then decreased when fish fed 50% and 60% CP diets. Both dietary protein and energy affected protein retention efficiency and energy retention efficiency. Haemoglobin (Hb) of fish fed 35% and 45% CP diets with 12.5 kJ g?1 energy were significantly high and not different from Hb of fish fed 45% and 50% CP diets with 16.7 kJ g?1 energy. Haematocrit of fish fed 45% CP diet with 16.7 kJ g?1 energy was significantly higher than those from fish fed 25% and 30% CP diets with 12.5 kJ g?1 energy (P< 0.05). Based on the results of this experiment, we concluded that the optimum dietary P/E ratio was 27.5 mg protein kJ?1 with diet containing 45% CP and 16.7 kJ g?1 energy in juvenile olive flounder.  相似文献   

3.
A growth trial was conducted to estimate the optimum concentration of dietary available phosphorus (P) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.59 ± 0.02 g) were fed diets containing graded levels (2.36, 4.27, 6.31, 8.36, 10.4 and 14.8 g kg?1) of available P for 8 weeks. Grass carp fed with the P‐supplemented diets had significantly higher specific growth rate, weight gain, protein efficiency ratio and feed efficiency than fish fed with the basal diet. In whole‐body composition, protein content increased, while lipid content decreased with the increase in P level in diet (P < 0.05). Fish fed with the P‐supplemented diets had significantly higher whole body, vertebrae and scales mineralization (P < 0.05), but Ca/P ratios were not influenced. The blood chemistry analysis showed that dietary available P had distinct effects on P, Ca and Mg contents, as well as on the contents of triacylglycerol and total cholesterol. Broken‐line analysis indicated that 8.49 g kg?1 dietary available P was required for maximal tissue storage and mineralization as well as optimal growth.  相似文献   

4.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

5.
An 8‐wk feeding trial was conducted to estimate the optimum dietary protein level and protein‐to‐energy (P/E) ratio in juvenile parrot fish, Oplegnathus fasciatus. Eight experimental diets were formulated with two energy levels and four protein levels for each energy level. Diets containing crude protein (CP) at 35, 40, 45, and 50% had either 12.5 or 14.6 kJ/g of energy. Fish averaging 7.1 ± 0.06 g (mean ± SD) were fed one of the experimental diets for 8 wk. At the end of the feeding trial, weight gain (WG) of fish fed 45 and 50% CP in the 12.5 kJ/g diet was significantly higher than fish fed the 35% CP diet (P < 0.05). WG of the fish fed 45 and 50% CP in the 14.6 kJ/g diet was significantly higher than fish fed the 35 and 40% CP diets (P < 0.05). Fish fed the 14.6 kJ/g diet had a higher WG compared with fish fed the 12.5 kJ/g diet at all CP levels. Feed efficiency (FE) and specific growth rate (SGR) showed a similar trend to the WG. WG, FE, and SGR improved with increasing dietary protein levels up to 45% and remained constant at 50% CP for both energy levels. However, protein efficiency ratio was negatively related to dietary protein levels. The results suggested that the optimum level of protein and the optimum P/E ratio for juvenile parrot fish should be 45% and 31.1 mg protein/kJ, respectively, in a diet containing 14.6 kJ/g energy.  相似文献   

6.
Six practical extruded diets were formulated to investigate the effect of graded levels of starch (17, 22, and 26%) associated with either 30 or 34% protein level on growth, feed utilization, body composition, and hepatic transaminases of juvenile grass carp, Ctenopharyngodon idella. Over an 8‐wk growth trial, survival rates (99–100%) were not significantly affected (P > 0.05) by dietary treatments. Independent of dietary starch level, weight gain (WG, %), specific growth rate (SGR, %/d), and feed efficiency ratio (FER) showed significant better response (P < 0.05) of fish fed 34% protein diet than those of fish fed 30% protein diet. Protein productive value (PPV) was only affected by dietary protein level, with higher values in the 34% protein level than their 30% counterparts. Irrespective of dietary protein level, lipid productive value (LPV), energy productive value (EPV), viscerosomatic index (VSI, %), intraperitoneal fat ratio (IPF, %), and whole body, liver, and muscle lipid level increased with increasing starch supply. At the same protein level, plasma triacylglycerol (TG), cholesterol (CHO), and low density lipoprotein‐cholesterol (LDL‐C) increased when dietary starch level increased from 17 to 26%. Neither dietary protein level nor starch level affected activities of hepatic alanine aminotransferase (ALAT) and aspartate transferase (ASAT). The overall results in this study suggested that the higher 34% protein was superior for juvenile grass carp and an increase in dietary starch level did not improve growth or protein utilization but enhanced whole‐body lipid deposition and liver, viscera and muscle lipid level. The diet containing 34% protein and 17% starch was optimal for practical production of juvenile grass carp.  相似文献   

7.
The influence of soybean meal (SBM) on the growth and feed utilization of juvenile sutchi catfish (Pangasianodon hypophthalmus, Sauvage, 1878) was investigated. Eight isonitrogenous (300 g kg?1 CP) and isoenergetic (18 MJ kg?1) diets were formulated incorporating Argentine SBM to replace fish meal at 0, 150, 300, 450, 600, 750, 900 and 1000 g kg?1 dietary protein. Each diet was fed to three replicate groups of fish with an initial weight 6.0–6.2 g for twelve weeks. Growth performance decreased, and feed utilization was worsened with the increase in SBM inclusion in the diets. Final weight and relative growth rate (RGR) of fish fed control diet (0 SBM) were significantly higher than those fed test diets (P < 0.05). However, there were no significant differences in the final weight and RGR between the fish fed on 15 SBM, 30 SBM, 45 SBM and 60 SBM diets. Specific growth rate of fish fed 0 SBM, 15 SBM, 30 SBM and 45 SBM diets was significantly higher than those fed other diets. Feed conversion ratio of fish fed 0 SBM, 15 SBM, 30 SBM, 45 SBM and 60 SBM diets was significantly lower than those fed other diets (P < 0.05). The dry matter and protein digestibility were lesser in all the diets in comparison with the control diet. Hepatosomatic index and viscerosomatic index increased with increasing SBM in diet. This present trial indicated that fish meal can be replaced by SBM in the diet of juvenile sutchi catfish only up to 45% of fish meal protein without any adverse effect on growth, feed utilization and body composition.  相似文献   

8.
An 8-wk feeding trial was conducted to estimate the optimum dietary protein level and protein-to-energy (P/E) ratio in juvenile Korean rockfish Sebastes schlegeli. Twenty experimental diets were formulated with four energy levels and five protein levels at each energy level. Four gross energy levels of 14.2, 16.5, 18.6, and 20.9 kJ/g diet were included at various crude protein (CP) levels. Diets containing CP at 30, 40, 45, 50, and 55% had either 14.2 or 16.5 kJ/g energy; those with CP levels of 35, 40, 45, 50, and 60% had either 18.6 or 20.9 kJ/ g energy. After 2 wk of conditioning, fish initially averaging 7.3 ± 0.04 g (means ± SD) were randomly distributed into net cages as groups of 20 fish. Each diet was fed to fish in three randomly selected net cages for 8 wk. After 8 wk of the feeding trial, weight gain (WG) of fish fed 50% and 55% CP with 14.2 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P 0.05). WG of fish fed 45, 50, and 55% CP with 16.5 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P < 0.05). WG of fish fed 60% CP with 18.6 kJ/g diet was significantly higher than those of fish fed 35, 40, and 45% CP diets. WG of fish fed 45% CP with 20.9 kJ/g diet was significantly higher than those of fish fed 35, 40, and 60% CP diets. Generally, feed efficiency (FE) and specific growth rate (SGR) showed a similar trend as WG. However, protein efficiency ratio (PER) was negatively related to dietary protein levels. WG of fish did not always increase with increasing dietary protein and energy levels. Comprehensive comparison among diets containing 40, 45, and 50% CP with different energy levels indicated that the increase in protein from 40 to 45% significantly increased WG (P < 0.05), but such effect was not significant when protein increased from 45 to 50% at all energy levels. Increasing dietary energy significantly increased WG of fish fed 40% and 45% CP at each energy level; however, there was no difference in WG of fish fed 50% CP with energy levels of 18.6 and 2.9 kJ/g diet. There was no significant difference in WG of fish fed 50% CP with 18.6 kJ/g or 45 and 50% CP with 20.9 kJ/g diet. Broken-line analysis of weight gain indicated that the optimum dietary protein level was 50.9 ± 1.1% and PIE ratio was 35.4 ± 0.8 mg/kJ with 14.2 kJ/g diet; the optimum dietary protein level was 49.3 ± 5.0% and P/E ratio was 30.2 ± 1.0 mg/kJ with 16.5 kJ/g diet; the optimum dietary protein level was 46.2 ± 9.2% and P/E ratio was 24.7 ± 4.9 mg/kJ with 18.6 kJ/g diet; and the optimum dietary protein level was 45.1 ± 1.8% and P/E ratio was 21.5 ±0.7 with 20.9 kJ/g diet. Therefore, these data indicated that the concept of P/E ratio must be restricted to diets containing adequate protein and energy levels. Based on WG, the optimum P/E ratio was between 21.5 and 35.4 mg protein/kJ gross energy in juvenile Korean rockfish when gross energy ranged from 14.2 to 20.9 kJ/g diet.  相似文献   

9.
Dietary thiamin requirement of juvenile grass carp, Ctenopharyngodon idella, was to investigate in this experiment. Eight purified diets were formulated with graded levels of thiamin (0.1, 0.6, 1.1, 2.1, 5.5, 9.8, 21.2, and 41.8 mg/kg, respectively). Each diet was fed to triplicate groups of 40 fish (initial average weight 10.7 ± 0.2 g) for 12 wk in 400‐L aquaria (R = 1 m, h = 0.6 m). Results showed that weight gain rate, specific growth rate, feed efficiency, protein efficiency ratio, and hepatosomatic indice of fish increased before dietary thiamin increased to the optimum level, then remained similar thereafter (P > 0.05). Thiamin concentration in fish liver was positively correlated with dietary thiamin and it stayed in stable when dietary thiamin level exceed 5.0 mg/kg. The serum biochemical indices analysis showed that dietary thiamin had significant effects on serum triglycerides, total cholesterol, glucose, pyruvate contents, and lactate dehydrogenase activity. Body composition was unaffected by dietary thiamin. Broken‐line regression analysis showed that, a dietary thiamin level of 1.3 mg/kg diet was adequate for optimum growth, and 5.0 mg/kg for maximum liver thiamin accumulation.  相似文献   

10.
This study was conducted to evaluate the potential of graded levels of GroBiotic®‐A to improve performance of Nile tilapia, Oreochromis niloticus, fed a 29% crude protein (CP) diet. A 29% CP diet was formulated and supplemented with 0, 0.4, 0.8, and 1.2% GroBiotic®‐A and compared to performance of fish fed a 33% CP diet. Enhanced weight gain and feed efficiency were generally observed in fish fed the diets supplemented with GroBiotic®‐A compared to the 29% CP diet. No significant differences in these responses were observed between fish fed diets supplemented with GroBiotic®‐A compared to those fed the 33% CP diet. Supplementation of 0.8 and 1.2% GroBiotic®‐A induced significantly lower condition factor and hepatosomatic index compared to fish fed the 29% CP diet, but those values were similar to that of fish fed the 33% CP diet. GroBiotic®‐A supplementation and protein reduction had no effect on the viscerosomatic index of fish or moisture, lipid, and protein content of muscle samples. However, muscle ash increased significantly with protein reduction (29% CP diet), but GroBiotic®‐A supplementation (0.8 and 1.2%) reduced muscle ash content. Activities of catalase and superoxide dismutase were markedly reduced in fish fed GroBiotic®‐A (0.8 and 1.2%) compared to those fed the control diet. GroBiotic®‐A supplementation also induced significantly higher neutrophil oxidative radical production compared to fish fed the 29% CP diet, but no significant difference was observed in comparison with the 33% CP diet. After 8 wk of feeding, exposure to Aeromonas hydrophila for 3 wk resulted in 40% (0.4, 0.8% GroBiotic®‐A) and 27% (1.2% GroBiotic®‐A) mortality and reduced signs of disease, while 47% mortality was observed in fish fed the 29% CP diet. Based on the result of this study, it is concluded that 0.8 and 1.2% GroBiotic®‐A positively influenced growth performance and feed efficiency of tilapia fed diets containing 29% crude protein to levels comparable to fish fed the 33% CP diet. GroBiotic®‐A supplementation also significantly increased neutrophil oxidative radical production as well as resistance to Ae. hydrophila infection.  相似文献   

11.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

12.
The effect of various dietary starch to proteins ratios (STA/P) on growth performance, oxidative status and liver enzyme activities involved in intermediary metabolism in juvenile Nile tilapia was evaluated. Four isocaloric‐practical diets (12.73 MJ kg?1 digestible energy) with increasing STA/CP ratios were formulated. These were designated D0 (344 g crude protein (CP) and 163.5 g starch (STA) kg?1), D1 (310 g CP and 243 g STA kg?1), D2 (258 g CP and 322 g STA kg?1) and D3 (214 g CP and 401 g STA kg?1). Each diet was fed to triplicate groups of 60 fish (2.7 g) for 45 days. Compared with the control diet (D0), significantly (P < 0.05) depressed growth and feed efficiency were observed only in the groups fed on diet D3. The activities of hepatic enzymes involved in glycolysis and lipogenesis pathways were significantly enhanced in groups fed on diet D3 compared with other diets. A significant (P < 0.05) increase in catalase activity was detected only in groups fed on diet D3. Similarly, a significant (P < 0.05) enhancement in superoxyde dismutase, glutathione S‐transferases and glutathione peroxidise was observed in groups fed on diets D2 and D3 compared with other diets. Results demonstrate the ability of juvenile Nile tilapia to spare protein by dietary carbohydrate.  相似文献   

13.
Pikeperch Sander lucioperca fingerlings were fed nine practical diets containing three levels of protein (P=34%, 43% and 50%), lipid (L=10%, 16% and 22%) and carbohydrate (C=10%, 15% and 20%) for 10 weeks in a recirculating water system at 23°C. Dietary treatments were distributed by orthogonal design with dietary energy content ranging from 15.5 to 23.1 MJ kg?1 diet. Significant differences (P<0.05) in weight gain (%) and feed efficiency (FE) were observed after feeding trial. Relatively low growth and FE were found in fish fed diets containing 34% dietary protein level compared with that of fish fed diets with 43–50% protein levels, suggesting that 34% dietary protein probably is below the protein requirements of pikeperch fingerlings. Fish fed diets containing P43L10C15, P43L22C20 and P50L16C20 had significantly (P<0.05) higher weight gain and FE than fish fed the diets containing other dietary P/L/C ratios. There was no significant difference in weight gain and FE between fish fed diets of P43L10C15, P43L22C20 and P50L16C20. These results may indicate that pikeperch require at least 43% of dietary protein for adequate growth and FE, and considering the fish growth and feed ingredient cost P43L10C15 diet is more cost‐effective formulation for pikeperch fingerling. However, protein efficiency was not significantly affected by dietary P/L/C ratio.  相似文献   

14.
The effects of six formulated diets containing different protein and lipid levels on growth performance and body composition of juvenile southern flounder were evaluated. Test diets were prepared with a combination of three crude protein (CP) levels (45, 50 and 55%) and two crude lipid (CL) levels (10 and 15%). Diets (CP/CL) were as follows: 45/10, 45/15, 50/10, 50/15, 55/10, 55/15 and a commercial diet (50/15). Southern flounder (1.10 g) were fed the respective diets for 42 d in triplicate recirculating tanks (20 fish/tank). Percent body weight gain (BWG) for fish fed diet 45/10 (413%) and the commercial diet (426%) were significantly (P < 0.05) lower than fish fed other diets (823–837%). Increasing protein level from 45 to 50% produced a significant increase in BWG for the 10% lipid diet (823%) but further increasing protein did not produce a significant effect on BWG irrespective of dietary lipid levels. Specific growth rate (SGR), feed intake, feed conversion efficiency (FCE), protein efficiency ratio (PER), and total lipid content in the whole body were significantly affected by different dietary protein and lipid levels. Results indicated that a combination of 50% protein and 10% lipid was optimal for the growth performance of southern flounder juveniles.  相似文献   

15.
A 360‐day feeding trial was conducted to observe the influence of varying levels of dietary protein on growth, reproductive performance, body and egg composition of rohu, Labeo rohita. Twenty fish (40.4 ± 0.24 cm; 852 ± 4.9 g), stocked in outdoor concrete tanks (200 m2), in duplicate, were fed diets with varying levels (200, 250, 300, 350 and 400 g kg?1) of crude protein exchanged with carbohydrate to apparent satiation, twice daily, at 09:00 and 17:00 h. Higher (P < 0.05) weight increment was discernible in fish fed dietary protein ≥300 g kg?1. Gonadosomatic index was comparable (P > 0.05) among fish of different dietary groups except those fed 200 g kg?1 protein diet which produced least values. Egg diameter remained unaffected (P > 0.05) by variations in levels of dietary protein. Relative fecundity was maximum (P < 0.05) in fish fed 250 and 300 g kg?1 protein diets. With the exception of fish fed 200 g kg?1 protein diet, fertilizability (%) remained unaffected (P > 0.05) by variations in dietary protein level. Hatchability (%) followed the trend of variations almost similar to that of fertilizability. Proximate composition of muscle and eggs varied significantly (P < 0.05) with dietary protein levels. For broodstock L. rohita, a dietary protein level of 250 g kg?1 was found optimum with regard to its reproductive performance, egg quality and composition.  相似文献   

16.
Yeasts used as a probiotic in fish diets could stimulate fish resistance against bacterial infection and could enhance the activities of digestive enzymes in fish guts. In addition to yeast importance, dietary protein is another important part in fish diets that should be carefully optimized to meet fish requirement. It is proposed that the yeast supplementation may enhance the dietary protein turnover and reduce the protein requirement for fish. Therefore, the interactive effects of dietary protein and yeast levels on the growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection was evaluated. In the present study, ten experimental diets were formulated to contain either 35% or 45% crude protein (CP). For each protein level treatment, bakery yeast (Saccharomyces cerevisiae) was supplemented at 0.0, 0.50, 1.0, 2.0, or 5.0 g/kg diet. Fish (0.25–0.48 g) were distributed at a rate of 25 fish per 140-L aquarium. For each diet, triplicate aquaria were fed twice a day, 5 days a week for 12 weeks. Fish growth and feed utilization were significantly affected by either dietary protein or yeast levels alone, while no significant effect of their interaction was observed. The highest fish growth was obtained at 1.0–5.0 g yeast/kg diet at both protein levels; however, the fish performance at 45% CP was better than that fed on 35% CP diets. The optimum feed conversion ratio (FCR) was obtained when fish fed on 1.0–5.0 and 2.0–5.0 g yeast/kg diet at 35 and 45% CP, respectively. The cumulative fish mortality, after interperitoneal injection with A. hydrophila for 10 days, and bactericidal activity was significantly higher in fish fed 35% CP diets than those fed 45% CP diets. Both variables decreased significantly with the increase in yeast levels. The lowest bacterial count and bactericidal activity were obtained in fish fed 5.0 g yeast/kg diet irrespective to dietary protein levels. It could be concluded that the inclusion of live bakery yeast in practical diets could improve the growth performances, feed utilization, and physiological status of Nile tilapia fry and their challenge against A. hydrophila infection. Moreover, fish performance when fed 45% CP diet was better than those fed 35% CP diet. Based on these results, the most suitable yeast level for maximum Nile tilapia growth was determined to be 2.0 g yeast/kg diet with 45% CP diet; however, this level was recommended to stimulate their productive performance and enhances their resistance against A. hydrophila infection.  相似文献   

17.
A feeding trial was conducted to investigate the effects of dietary graded protein levels on the growth, survival, amylase and trypsin activities of large yellow croaker (Pseudosciaena crocea R.) larvae from 12 to 42 days after hatching (DAH). Five approximately isoenergetic microbound diets (16.65 MJ/kg diet) were formulated to contain different protein (47.1%, 52.0%, 57.1%, 62.2% and 67.5%) levels. Frozen copepods, containing 54.5% crude protein (CP), 6.0% crude lipid, 27.2% ash and 6.7% glycogen, were used as a control. Each diet was randomly fed to triplicate groups of larvae with an initial mean body weight of 1.76 ± 0.09 mg (mean ± SD) in 180 L white plastic tanks, and each tank was stocked initially with 3500 larvae. Both the survival and the specific growth rate (SGR) of large yellow croaker larvae significantly increased with increasing dietary protein level up to 57.1%, and decreased thereafter. Frozen copepods resulted in intermediate survival and low SGR compared with the other diets. Whole‐body moisture and protein of larvae were not significantly affected by the dietary protein level. In contrast, whole‐body lipid of larvae fed diet with 47.1% CP was significantly higher (P<0.05) than those from fish fed the diets containing more than 57.1% CP. Additionally, fish fed the frozen copepods had the lowest whole‐body protein and lipid. The amylase‐specific activity increased with increasing dietary carbohydrate level during the period of this experiment. However, trypsin activity was not significantly affected by the dietary protein content before 42 DAH, indicating a later onset of trypsin than amylase in the regulation of enzymatic synthesis induced by a dietary substrate.  相似文献   

18.
The objective of the present work was to determine the optimum dietary protein level for juvenile mullets. Five isocaloric diets were formulated to contain increasing levels (300, 350, 400, 450 and 500 g kg?1) of crude protein (CP) corresponding to 18.7 MJ metabolizable energy kg?1. All diets were tested in triplicate. Each experimental unit was composed of a 50 L tank with 50 juveniles (mean ± SE initial weight and length equal to 1.17 ± 0.02 g and 4.34 ± 0.03 cm respectively). Diets were offered five times a day until apparent satiation for 35 days. No significant difference (P>0.05) was observed in survival rate, feed efficiency and body composition between treatments. However, weight gain, feed consumption and specific growth rate were higher in fish fed the 350 g kg?1 CP level than those fed the highest protein content diet (500 g kg?1 CP). The amount of postprandial ammonia excreted by mullet was linearly related to protein intake. Intestinal tryptic activity was inversely proportional to the percentage of dietary CP. It is likely that diets containing <350 g kg?1 CP will be needed for on‐growing mullet, especially when reared in ponds with abundant natural food.  相似文献   

19.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

20.
A 83‐d feeding experiment was undertaken to evaluate the effects of dietary protein and lipid levels on growth and body composition of spotted halibut, Verasper variegatus (initial average weight of 93.0 ± 1.0 g). Nine diets were formulated to contain three protein levels (40, 45, and 50%), each with three lipid levels (8, 12% and 16%). Each diet was randomly fed to triplicate groups of 20 fish per tank in the indoor culture system. Results showed that the survival rate of fish was not significantly affected by protein and lipid levels (P > 0.05). Weight gain, specific growth rate (SGR), and feed intake (FI) significantly decreased with the increasing dietary lipid levels (P < 0.05). Feed efficiency significantly increased while the feed conversion ration significantly decreased with increasing dietary protein levels (P < 0.05). Weight gain, SGR, FI, and feed efficiency of fish fed 50% protein and 8% lipid were significantly higher than that of the other groups. For each level of dietary lipid, the increase in dietary protein resulted in significant increases in whole‐body crude protein (CP) contents (P < 0.05); the increase in dietary lipid caused significant increases in whole‐body crude lipid content and gross energy at each protein level (P < 0.05). The muscle CP, lipid, and gross energy had the same tendency. The results of this study indicated that increasing dietary lipid levels did not result in a protein‐sparing effect. It could be recommended that the proper dietary protein and lipid levels of spotted halibut were 50 and 8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号