首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤渗透特性的圆盘张力入渗法测定研究   总被引:2,自引:0,他引:2  
以川中丘陵区紫色土为研究对象,采用圆盘张力入渗法,测定坡耕地和林地土壤在5个水头下(0、-1、-3、-6、-9cm)的导水率曲线,并对比分析野外圆盘张力入渗法和环刀土样室内降水头法测得的土壤饱和导水率的差异。结果表明,土壤稳定入渗率和非饱和导水率随负压绝对值的增大而降低,且坡耕地的变化幅度大于林地。野外圆盘张力入渗法测得的饱和导水率明显高于环刀土样降水头法的测定值。基于研究结果,推荐使用圆盘张力入渗法测定导水率曲线和饱和导水率。  相似文献   

2.
Simulating near-surface soil water dynamics is challenging since this soil compartment is temporally highly dynamic as response to climate and crop growth. For accurate simulations the soil hydraulic properties have to be properly known. Although there is evidence that these properties are subject to temporal changes, they are set constant over time in most simulations studies. The objective of this study was to improve near-surface soil water simulations by accounting for time-variable hydraulic properties. Repeated tension infiltrometer measurements over two consecutive seasons were used to inversely estimate the hydraulic properties of a silt loam soil under different tillage - conventional (CT), reduced (RT), and no-tillage (NT). Simulated water dynamics with constant and time-variable hydraulic parameters were compared to observed data in terms of the soil water content and water storage in the near-surface soil profile (0-30 cm). The measurements indicate a considerable temporal variability in the saturated hydraulic conductivity, the field-saturated water content and the parameter α of the van Genuchten/Mualem model. Temporal variability was largest for CT and RT, whereas under NT, replicates of measured water contents and hydraulic properties showed a considerable large spatial variability. Simulations with time-constant hydraulic parameters led to underestimations of soil water dynamics in winter and early spring and overestimations during late spring and summer. The use of time-variable hydraulic parameters significantly improved simulation performance for all treatments, resulting in average relative errors below 13%. Since simulation results agreed with observed water dynamics in two seasons, the applicability of inversely estimated hydraulic properties for soil water simulations is demonstrated. Thus, simulations that address applied questions in agricultural water management may be improved by using time-variable hydraulic parameters. The simulated water balance indicated that RT and NT result in better water storage than CT and therefore may increase water efficiency under water-limited climatic conditions.  相似文献   

3.
利用圆盘入渗仪测定土壤水动力参数的入渗特征试验研究   总被引:1,自引:0,他引:1  
通过圆盘入渗试验,分析了4种土壤在5个负水头下(-1、-3、-6、-9和-12 cm)的入渗特征。结果表明,随着负水头的增加,4种土壤的稳定入渗率、吸湿率和非饱和导水率总体表现减小的趋势,同时,在相同负水头条件下,入渗率、吸湿率和非饱和导水率大小规律表现为塿土盐碱土3盐碱土2盐碱土1。根据实测资料确定了不同负水头下非饱和导水率的Gardner指数模型参数,为盐渍化土壤水力参数的确定提供理论参考。  相似文献   

4.
利用盘式负压仪测定土壤导水率的计算方法对比   总被引:1,自引:0,他引:1  
土壤导水率作为重要的水力特征参数之一,准确测量和计算不仅有助于促进土壤非饱和带的水分运动过程理论研究,同时可为合理确定农田灌排技术参数提供科学依据.为了比较分析在盘式入渗仪下不同导水率计算方法的适用性,针对2种土地类型(菜地、茶园)进行了4个负压水头(-9,-6,-3,0 cm)、2个盘径(10,20 cm)的入渗试验,并通过不同计算方法计算导水率.结果表明:盘径对导水率影响不具有统计学意义,且不同计算方法结果趋于一致,因此在野外缺水条件下,可考虑选用小圆盘进行试验;对于不同的土地类型,建议选择不同的方法测量,作为耕作地的菜地,计算导水率时建议使用稳态流方法,而茶园导水率的测定则推荐使用瞬态流方法;在相同负压下,不同土地利用方式对导水率的影响具有统计学意义,且对于不同的计算方法,2种土地类型在4个负压下表现的导水率变化规律一致.  相似文献   

5.
Improved irrigation water use efficiency is an important component of sustainable agricultural production. Efficient water delivery systems such as subsurface drip irrigation (SDI) can contribute immensely towards improving crop water use efficiency and conserving water. However, critical management considerations such as choice of SDI tube, emitter spacing and installation depth are necessary to attain improved irrigation efficiencies and production benefits. In this study, we evaluated the effects of subsurface drip tape emitter spacing (15, 20 and 30 cm) on yield and quality of sweet onions grown at two locations in South Texas—Weslaco and Los Ebanos. Season-long cumulative crop evapotranspiration (ETc) was 513 mm in Weslaco and 407 mm at Los Ebanos. Total crop water input (rain + irrigation) at Weslaco was roughly equal to ETc (92% ETc) whereas at Los Ebanos, water inputs exceeded ETc by about 35%. Onion yields ranged from 58.5 to 70.3 t ha−1 but were not affected by drip tube emitter spacing. Onion pungency (pyruvic acid development) and soluble solids concentration were also not significantly influenced by treatments. Crop water use efficiency was slightly higher at Weslaco (13.7 kg/m3) than at Los Ebanos (11.7 kg/m3) partly because of differences in total water inputs resulting from differences in irrigation management. The absence of any significant effects of drip tape emitter spacing on onion yield may be due to the fact that irrigation was managed to provide roughly similar irrigation amounts and optimum soil moisture conditions in all treatments.  相似文献   

6.
Spate irrigation is a method of flood water harvesting, practiced in Dera Ismael Khan (D.I. Khan), Pakistan for agricultural production for the last several hundred years in which during monsoon period flood water is used for irrigation before wheat sowing. A field study on the effect of different pre-sowing water application depths on the yield of wheat was conducted during 2006-2007. The spate irrigation command areas normally receive the flood water as a result of rainfall on the mountains during the months of July to September, which also carries a significant amount of sediment load. The flood water flows in different torrents and is diverted through earthen bunds to the fields for irrigation with depth of water application ranging from 21 to 73 cm and resulted in sediment deposition of 1.8-3.6 cm per irrigation. In this study, the effect on wheat yield of three different pre-sowing water application depths (D1 < 30 cm, D2 = 30-45 cm and D3 > 45 cm) were studied under field conditions. Fifteen fields with field sizes of about 2-3 ha were randomly selected, in each field five samples were collected for analysis of soil physical properties, yield and yield components. Five major soil texture classes (silty clay, clay loam, silty clay loam, silt loam and loam) were found in the area with water-holding capacity ranging from 23% to 36.3% (on a volume basis) and bulk density varied from 1.35 to 1.42 g cm−3. About 36% more grain yield was obtained from loam soil fields, followed by silt loam (24%) as compared to wheat grown on silty clay soil condition. The maximum wheat grain yield of 3448 kg ha−1 was obtained from fields with water application depths of 30-45 cm and the lowest wheat yield was recorded in fields with water application depths greater than 45 cm. On-farm application efficiencies ranged from 22% to 93% with an overall average of about 49%. Due to large and uneven fields, a lot of water is lost. In general, the application efficiency decreased with increasing water application depth. Based on the results of this research, in arid to semi-arid environments, for optimum wheat yield under spate irrigation, the pre-sowing water application depth may be about 30-45 cm (September to July) and under or over irrigation should be avoided.  相似文献   

7.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

8.
The effects of pre-anthesis water deficit and cycle length were examined in Papaver somniferum L., cultivated for alkaloid production, in two locations in southern Spain. The vegetative period was shortened by extending the photoperiod through supplemental lighting in the field, while water deficit in pre-anthesis was induced by avoiding irrigations and installing rain shelters. The treatments were: IN (irrigated-normal photoperiod), IL (irrigated-hastened flowering), DN (water deficit in pre-anthesis-normal photoperiod) and DL (water deficit in pre-anthesis and hastened flowering). The artificial photoperiod hastened the flowering by 15 and 21 days, for irrigated and deficit treatments respectively. Seasonal evapotranspiration (ET) ranged from 398 (DN) to 505 mm (IN). There was evidence of root water uptake deeper than 1.5 m. Stomatal conductance was reduced (16%) during water stress, and did not recover in post-anthesis after resuming irrigation. Head yields (capsule + seeds + 7 cm stem) ranged between 3.8 and 4.3 t ha−1; water deficit and short vegetative period both reduced the biomass accumulated, although the effect on yields in these treatments was counterbalanced by a higher harvest index. Early flowering had a detrimental effect on alkaloid concentration in the capsule. Alkaloids yield ranged between 27 and 37 kg ha−1. Water use efficiency (WUE) ranged between 0.78 and 0.96 kg m−3 ET for yield and between 63.4 and 73.7 g m−3 ET for alkaloids. Water stress increased slightly the Water Use Efficiency. A shorter vegetative phase had no effect on WUE for biomass or yield, but decreased the WUE for alkaloids production.  相似文献   

9.
With the availability of irrigation water, supplemental irrigation in winter-grown crops, such as lentil, wheat, and barley, has been intensely practiced to prevent crop yield losses due to the incidence of intermittent drought stress. In the crop growing seasons of 2006-2007 and 2008-2009, a study was conducted to determine the effect of supplemental irrigations on Canola (Brassica napus L. cv. Elvis F1) under the semiarid climatic conditions of the Harran plain, Sanliurfa, Turkey. A sprinkler irrigation system was used to irrigate the study plots. The irrigation treatments included 0.0, 0.25, 0.50, 0.75, and 1.0 (full irrigation) of Class-A pan evaporation amounts. The full irrigation treatment during both years consisted of 250 and 225 mm, respectively. In turn, crop water use values during the same years and treatments were 462 and 449 mm. In general, plant height and 1000 seed weight ranged from 140 to 165 cm and from 2.5 to 3.3 g, respectively, and these variables significantly differed among irrigation treatments (p < 0.05). Crop yield and above ground biomass measurements were affected by irrigation treatments and varied from 1094 to 3943 kg ha−1 and from 6746 to 18,311 kg ha−1, respectively (p < 0.05). Similarly, harvest index values were affected (p < 0.05) and ranged from 0.16 to 0.23 on average. The water use efficiency obtained in the different treatments indicated a strong positive relationship between crop yield and irrigation. Overall, our results indicate that supplemental irrigation substantially increased canola yield; however, for an optimum yield, full irrigation is suggested.  相似文献   

10.
Conservation tillage systems generally improve soil organic C (SOC), plant available water capacity (PAWC), aggregation and soil water transmission. A field experiment was conducted for 4 years (2001-2002 to 2004-2005) to study tillage (conventional tillage (CT) and zero tillage (ZT)) systems. The selected irrigation treatments were at four levels (I1: pre-sowing (PS), I2: PS + active tillering (AT)/crown root initiation (CRI), I3: PS + AT/CRI + panicle initiation (PI)/flowering (FL), and I4: PS + AT/CRI + PI/FL + grain filling (GF)), applied at the critical growth stages on rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Their effects on direct seeded rice productivity and soil properties (SOC and selected physical properties) after rice and wheat harvest were investigated. Soil organic C contents after rice and wheat harvest in the 0-15 cm soil depth were higher under ZT than under CT. Soil organic C increased significantly with I2 over I1 for both crops and with I4 over I2 for the wheat crop. The PAWC was significantly higher with ZT than CT. Zero tilled and frequently irrigated plots showed enhanced infiltration characteristics (infiltration rate, cumulative infiltration and sorptivity) and saturated hydraulic conductivity. Both direct seeded rice and wheat yields were not significantly different in the plots under ZT and CT. There was a significant increase in both rice and wheat yields in the plots under I2 over I1. However, water use efficiency between irrigation treatments was not significantly different. Hence, under direct seeded rice-wheat system in a sandy clay loam soil of the sub-temperate Indian Himalayas, farmers may adopt ZT with two irrigations in each crop for optimum resource conservation.  相似文献   

11.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

12.
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, São Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of: (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmolc kg−1), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L−1) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol L−1)0.5) were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters.  相似文献   

13.
Gravel and sand mulch is an effective practice in conserving soil and moisture. However, the proportion of different particle size in this kind of mulch layer is an important factor to be considered in order to obtain optimal results from this practice. From 2005 to 2007, a series of experiments including one with watermelon were conducted in the semi-arid Loess Plateau of northwest China to determine the influence of particle size and its proportion in mulch layer on soil temperature, evapotranspiration, water use efficiency (WUE) and watermelon (Citrullus lanatus L.) yield. The treatments in no-watermelon experiments included particle sizes classified as <0.3, 0.3-1, 1-2, 2-4, 4-6, 6-8 and 8-10 cm mesh size or various rates of 2-6 cm pebble accounting for 0, 10, 20, 30, 40, 50, 60 and 70% with 30% 1-2 cm gravel-sand in mulch layer (as well as correspondingly decreasing sand proportions). The watermelon experiment included three particle sizes, 0.3-1, 1-2 and 2-6 cm. Soil temperature at 8:00 h was highest for the 1-2 cm treatment, and the daily average temperature at 14:00 h was highest for the 0.3-1 cm treatment. Soil temperature decreased with particle size increasing due to porosity enlarging. The relationship between soil temperature and particle size followed a quadratic or cubic curve. Soil temperature was increased by gravel-sand mulch plus plastic film. The increment of soil temperature was larger especially for 1-4 cm particle size. In the gravel-sand mulch layer having different size particles, the greater percentage being of 2-6 cm pebbles, increases porosity, and lowers soil temperature, and causes more evaporation. The results of the watermelon experiment showed that soil moisture before seeding would not affect the yield during the years of using gravel mulch. Watermelon yield and WUE were higher for 1-2 and 0.3-1 cm treatments than 2-6 cm treatments in later experiments during 2006 and 2007. In conclusion, 2-6 cm large size particles would not account for much in gravel-sand mulching layer. It would be better if the percentage of 2-6 cm particles was less than 30%.  相似文献   

14.
The impact of agricultural practices on soil-groundwater quality in the sub-humid Bekaa plain of Lebanon-East Mediterranean was monitored in four fields (F) between July 2007 and July 2009. These were occupied by continuous mint (F1), summer potato/wheat/potato (F2), lettuce/lettuce/potato/wheat/summer potato (F3) and table grapes (F4). N input calculated on a two-year basis, was in the following ascending order F4, F2, F3 and F1. Soil samples, analyzed down to 200 cm depth, showed high nitrate and chloride concentrations at the end of the 2007 and 2008 seasons. Soil chloride and nitrate peaks recorded in October 2007 and 2008 disappeared below 200 cm overwinter. The calculated N biannual discharge ranged from 130 (F4), to 516 (F2), to 778 (F1), to 879 kg ha−1 (F3). Groundwater quality was studied in 21 wells distributed along a sequence stretching from the Litani River to the eastern water dividing line. Based on the nitrate concentrations, the well located at the top of the water dividing line was the only one suitable for drinking purposes. Eight wells were mildly contaminated, therefore suitable for irrigation purposes except for sensitive crops. Twelve wells, positioned in the plain, showed a nitrate level exceeding 200 mg L−1. Protecting the soil and groundwater quality is a top priority to maintain the ecological and agricultural functions of water.  相似文献   

15.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

16.
The dissolved oxygen concentration (DOC) is an important irrigation water quality parameter that can become a limiting factor in some intensive agriculture systems. A low DOC in the irrigation water may have critical consequences because it causes root oxygen deficiency, which in turn can result in agronomic problems. The aim of this study was to improve the understanding of the dynamics of the DOC in hypoxic irrigation water when passing throughout a surface drip irrigation system (DIS) and seeping into the soil. To this end, an experimental DIS consisting of three types of commercial emitters and a venturi air injector, installed in-line, was set up for evaluation. Furthermore, subsurface water samplers were buried to catch the water in the soil. The trials were conducted with water from two different sources. The control treatment was performed with fresh channel water, which had a high DOC (7.54 mg L−1; 92.2% saturation), and the low DOC treatments were supplied from a covered agricultural reservoir and had DOC values less than 1.08 mg L−1 (10.8% saturation). After the low DOC treatments, the final DOC in the soil 24 h after irrigation ranged from 3.77 mg L−1 to 5.31 mg L−1 (47.2% to 65.2% saturation). There was an increase in the DOC in all stages of the experimental DIS, which was more important in the water passing through the emitters. The main factor determining the final DOC was the type of emitter, where DOC differences were correlated to their flow performance. The control treatment reached a similar DOC in the soil 24 h after irrigation, indicating that using hypoxic water under DIS does not affect the final soil DOC. Finally, the application of a venturi air injector increased the DOC in the low DOC source up to values typically found in open channels and reservoirs.  相似文献   

17.
The effect of gypsum, ground to varying degrees of fineness, on the properties of two soils having exchangeable sodium percentages of 35 and 80, respectively, was studied in the laboratory. Two types of gypsum were used, one having both upper and lower size limits of the grades defined (2.0-1.0, 1.0-0.6, 0.6-0.25, 0.25-0.125 and < 0.125 mm) and the other having only the upper size limit defined (2.0, 1.0, 0.6, 0.25 and 0.125 mm). After mixing with gypsum, the soils were leached with distilled water under a constant water head.Treatments with the finest gypsum had the highest initial hydraulic conductivity which decreased sharply with time. Treatments with coarser particles had a lower initial hydraulic conductivity that was maintained or increased with time. The reason for this was higher solubility of finer particles followed by a sharp decrease in electrolyte concentration due to precipitation of dissolved calcium in the first case, and dissolution of coarser particles and little precipitation in the latter case. Inactivation of gypsum particles due to formation of CaCO3 coatings over their surfaces has also been indicated in the case of the finer grades. These studies suggest that gypsum passed through a 2-mm sieve, having a wide particle size distribution, is likely to be more efficient for the reclamation of sodic soils with appreciable quantities of Na2CO3 in the soil solution.  相似文献   

18.
The purpose of this work is to contribute to the development of a combined approach to evaluate irrigated areas based on: (1) irrigation performance analysis intended to assess the productive impacts of irrigation practices and infrastructures, and (2) water accounting focused on the hydrological impacts of water use. Ador-Simulation, a combined model that simulates irrigation, water delivery, and crop growth and production was applied in a surface irrigated area (1213 ha) located in the Bear River Irrigation Project, Utah, U.S.A.. A soil survey, a campaign of on-farm irrigation evaluations and an analysis of the database from the Bear River Canal Company and other resources were performed in order to obtain the data required to simulate the water flows of the study area in 2008. Net land productivity (581 US$ ha−1) was 20% lower than the potential value, whereas on-farm irrigation efficiency (IE) averaged only 60%. According to the water accounting, water use amounted to 14.24 Mm3, 86% of which was consumed through evapotranspiration or otherwise non-recoverable. Gross water productivity over depleted water reached 0.132 US$ m−3. In addition, two strategies for increasing farm productivity were analyzed. These strategies intended to improve water management and infrastructures raised on-farm IE to 90% reducing the gap between current and potential productivities by about 50%. Water diverted to the project was reduced by 2.64 Mm3. An analysis based on IE could lead to think that this volume would be saved. However, the water accounting showed that actually only 0.91 Mm3 would be available for alternative uses. These results provide insights to support the decision-making processes of farmers, water user associations, river basin authorities and policy makers. Water accounting overcomes the limitations and hydrological misunderstandings of traditional analysis based on irrigation efficiency to assess irrigated areas in the context of water scarcity and competitive agricultural markets.  相似文献   

19.
Drip lines were located at distances ranging from 0 to 60 cm from one or both sides of a row of pepper plantlets, and we monitored the effects on their shoot development during 76 days from transplanting to full-size first fruits, on the final root system, and on the areal water and salt distributions in the upper 15-cm soil layer. The experiment was conducted in a greenhouse with a sandy soil, and excess fresh water (1.9 L d−1 per plant) was applied via short daily irrigations. In addition, the effects of watering distance and symmetry on the potential water uptake rate were analyzed with a coupled-source-sink steady flow and uptake model. Initial faster shoot growth with the one-side system and short distances progressively changed to faster growth with the two-side system and longer watering distances, with the optimum at 30-40 cm. These temporal changes are attributed to temporal changes in the root uptake of irrigation water: small plants with small root systems benefit from the larger water supply to a smaller soil volume provided by the one-side system, whereas larger plants with greater water needs could extract more irrigation water when they developed larger, split root systems in the two-side irrigation. Balanced root systems and maximal shoot growth can be obtained by starting the irrigation with a line on each side, near the plants, and moving the lines after a short time.  相似文献   

20.
Raising surface water levels in peat areas is a measure to reduce soil subsidence, to prevent decay of wooden foundations and to stimulate wet nature restoration and reduce greenhouse gas emissions. However, in these areas dairy farms are present and farming at wetter soils is difficult due to lower bearing capacity of the soil for cattle and machines. Water boards are responsible for the water management of peat areas and thus have to evaluate the effects of water management strategies for the different land use functions. Therefore the hydrological, agronomical and economic effects of different surface water levels are calculated for dairy farms. The ‘Waterpas’ model is used to simulate hydrological effects, dairy farm management and economic results for different meteorological years. The raised surface water level causes a decrease in gross grass yield and a reduction in grass quality. This leads to higher costs and less farmers’ income relative to a reference situation with a freeboard of 60 cm. Raising the surface water increases the average costs for farmers with €89 ha−1 year−1 for a freeboard of 50 cm, €170 ha−1 year−1 for a freeboard of 40 cm and €239 ha−1 year−1 for a freeboard of 30 cm.However, water boards are not only interested in the effects for individual farms, but also for an entire region. A new spatial method was developed for upscaling from farm to polder level. For grassland fields in a typical Dutch peat area classes can be distinguished using GIS data on soil type, soil surface elevation, surface water levels, locations of farms and farm characteristics. The classification is based on 4 classes of freeboards of the grassland fields and 7 typical distributions of grassland fields within a dairy farm. The farm economics were simulated for these typical classes. An increase in costs was simulated for the whole polder Zegveld (1400 ha grassland) of €119,000 year−1 at 10 cm surface water level rise; €133,000 year−1 at 20 cm surface water level rise and €185,000 year−1 at 30 cm surface water level rise.For an integral environmental evaluation of changing hydrological conditions it is advised to incorporate effects on nutrient emission to groundwater and surface water and emission of ammonia and greenhouse gases to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号