首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铅锌矿渣污染土壤的重金属含量及真菌群落特征分析   总被引:1,自引:0,他引:1  
研究了湖南郴州某铅锌选矿厂铅锌矿渣污染下土壤重金属的不同化学形态含量、土壤化学性质和真菌群落的多样性。结果表明:与湖南省重金属修复地方标准相比,采样区4种重金属Zn、Pb、Cd、Cu的污染程度依次降低;同种重金属不同化学形态之间比较,铅铁锰氧化态、锌醋酸提取态、镉醋酸提取态、铜残渣态含量较高;重金属污染显著改变真菌群落的组成和结构;敏感性真菌(球囊菌门(Glomeromycota))的相对丰度随重金属污染程度的增加而降低,而耐受性真菌(子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢囊门(Mortierellomycota)、被孢菌属(Mortierella)、青霉菌属(Penicillium)和镰刀菌属(Fusarium))的相对丰度增加,但在重污染情况下有所减少;冗余分析(RDA)和方差分解分析(VPA)表明,重金属是影响真菌群落变化的主要因素。  相似文献   

2.
为揭示有机肥施用量对不同树龄果园土壤真菌群落的影响,在北京市昌平区选择不同有机肥施用量和种植年限的苹果园,采集0~20cm的土壤样品,利用Illumina Miseq高通量测序平台测定及分析土壤真菌丰富度、群落组成和群落结构,并与土壤理化性质和果实品质进行关联分析。结果表明:1)该苹果园长期施用有机肥,土壤有机质和速效养分(特别是碱解氮)含量增加;2)有机肥施用量相同时,随着树龄增加果园土壤真菌丰富度增加;而有机肥施用量对幼龄果园土壤真菌的丰富度和成龄果园土壤真菌群落的多样性有更多的影响;3)该苹果园土壤真菌包括7个门,其中子囊菌门和担子菌门为优势菌群,并且有机肥施用量使优势菌的占比发生改变,随有机肥施用量的增加,子囊菌门相对丰度增加,而担子菌门相对丰度降低;4)通过RDA分析表明,假霉样真菌属、毛壳菌属和镰刀菌属与果园土壤有机质和速效养分之间存在正相关关系,同时在果实可滴定酸和可溶性糖含量上也有正向作用。综上所述,适量增加有机肥施用量可增加有益真菌组成,从而提高树体长势和果实品质。  相似文献   

3.
为了解不同连作年限下辣椒根际土壤真菌群落的结构特征,选取不同连作年限(1、3、5、10 a)下的辣椒根际土壤,采用Illumina Miseq高通量测序技术分析土壤真菌群落的结构和多样性,并探究其与土壤理化因子的相关性.结果表明:相较于连作1 a处理,延长连作年限导致真菌香农指数和辛普森指数显著下降(P<0.05);同时,连作年限变化对真菌群落结构有显著影响.在物种组成中,属于真菌优势菌门的有子囊菌门、担子菌门、被孢霉门和梳霉门,其中,子囊菌门是4个连作处理土壤的绝对优势菌群.在不同连作年限处理的土壤中,镰刀菌属、毛壳菌属和Ovatospora是共有的优势真菌属,其中,镰刀菌属的相对丰度在连作5 a时达到最高,10 a后显著下降(P<0.05);同时,枝顶孢霉属、青霉菌属和曲霉菌属等生防菌的相对丰度在长期连作后显著增大,而毛壳菌属、木霉菌属和被孢霉属等有益微生物的相对丰度随着连作年限的延长逐渐下降.冗余分析显示,土壤pH及有效磷、速效钾、有机质含量是影响真菌群落结构变化的主要驱动因子.本研究中,土壤真菌群落多样性下降、有益微生物减少和病原菌积累可能是造成辣椒连作障碍的原因.  相似文献   

4.
【目的】探究烟蒜轮作对烟田土壤真菌群落结构的影响,以期寻找改善土壤健康的农艺管理模式。【方法】利用高通量测序技术检测烟蒜轮作的易感病烟田和健康烟田中的土壤真菌,对比分析烟蒜轮作对烟田土壤真菌群落结构的影响。【结果】德昌县试验烟田土壤优势真菌门依次为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和norank_k__Fungi,相对丰度占总菌的90.80%~94.59%。烟草移栽前,种植大蒜的易感病烟田子囊菌门和担子菌门相对丰度显著高于健康烟田;与健康烟田相比,散囊菌纲(Eurotiomycetes)相对丰度显著降低,子囊菌纲(Sordariomycetes)显著增加;粪壳菌目未知菌属(norank_o__Sordariales)、镰刀菌属(Fusarium)相对丰度显著高于健康烟田,但健康烟田的镰刀菌属相对丰度显著低于易感病烟田种植烟草的土壤,unclassified_f__Trichocomaceae在健康烟田显著高于易感病烟田。移栽前和成熟期易感病烟田的担子菌门显著较高,与有机质和碱解氮呈极显著正相关。健康烟田在旺长期真菌多样性比移栽前显著降低,但稍高于易...  相似文献   

5.
为明确梨园土壤真菌群落垂直分布差异、阐明真菌与土壤关系,为改善土壤真菌群落结构、提高土壤质量提供依据,本试验以12年梨园土壤为研究对象,对5~15、15~25、25~35 cm土层进行土壤理化性质测定及高通量测序,解析土壤营养变化趋势、真菌垂直分布情况及功能预测分析。结果表明,随土壤深度增加,有机质、碱解氮、速效磷、速效钾含量逐渐降低且变化速率逐渐减缓;OTUs逐渐减少,香农指数、辛普森指数、Chao 1指数、ACE指数逐渐降低。由PCoA分析及Tukey检验可知:随着土壤深度增加,物种差异逐渐加大,5~15 cm与25~35 cm土层间群落多样性差异显著。土壤真菌门类以子囊菌门(Ascomycota)、被孢霉门(Mortierellomycota)、担子菌门(Basidiomycota)为主,属类以镰刀菌属(Fusarium)、被孢菌属(Mortierella)、产油菌属(Solicoccozyma)为主,子囊菌门、镰刀菌属在25~35 cm相对丰度最大,被孢霉门、担子菌门、被孢菌属在15~25 cm相对丰度最大,产油菌属在5~15 cm相对丰度最大。通过t-test分析可知:5~1...  相似文献   

6.
利用Illumina MiSeq测序技术,对健康与患根腐病草莓根际土壤、非根际土壤及根内真菌ITS区的rRNA进行扩增和高通量测序,分析不同部位样品真菌群落结构与多样性。结果表明,健康组共鉴定出14个门、40个纲、99个目、211个科、377个属、561个种;患根腐病组共鉴定出14个门、39个纲、98个目、238个科、385个属、570个种。患根腐病草莓根际土壤真菌群落丰富度、多样性和均匀度高于健康草莓,非根际土壤及根内真菌群落丰富度、多样性和均匀度均低于健康草莓。健康与患根腐病草莓根际与非根际土壤样品的优势菌门均为子囊菌门(Ascomycota)、被孢霉门(Mortierellomycota)和担子菌门(Basidiomycota),根内样品的优势菌门均为子囊菌门和担子菌门;患根腐病草莓根际土壤、非根际土壤及根内样品的子囊菌门和担子菌门相对丰度均高于健康草莓,被孢霉菌门相对丰度均低于健康草莓。患根腐病草莓根际和非根际土壤的优势属均为帽状菌属(Pilidium)和被孢霉属(Mortierella),健康草莓根际和非根际土壤的优势属均为玛利亚霉菌属(Mariannaea)和被孢霉属。患根腐病草莓根际土壤被孢霉属相对丰度比健康草莓增加2.26%,而非根际土壤被孢霉属比健康草莓减少1.63%。健康和患根腐病草莓根内样品优势属均为帽状菌属和玛利亚霉菌属,患根腐病草莓根内玛利亚霉菌属比健株减少7.53%。健康与患根腐病草莓根际土壤、非根际土壤及根内真菌群落组成差异明显,说明草莓根腐病的发生与田间土壤及根内真菌群落结构改变密切相关。  相似文献   

7.
以湖南省壶瓶山国家级自然保护区生长的9株(3组)不同树龄银杏为研究对象,应用IlluminaHiSeq高通量测序技术,分析银杏叶片组织内生真菌的多样性及群落结构。结果表明:银杏叶片内生真菌群落的多样性、群落结构与组成均存在显著性差异,且随着树龄的增加,叶片内生真菌群落结构差异增大;子囊菌门(Ascomycota)为绝对优势菌门;曲霉属(Aspergillus)、假丝酵母属(Candida)、球腔菌属(Mycosphaerella)等真菌为银杏叶内生真菌群落优势菌属;通过对银杏叶黄酮含量进行检测,发现不同树龄银杏叶的黄酮含量存在显著差异,且随着树龄的增加,3种黄酮醇苷(槲皮素、山奈酚和异鼠李素)含量均呈递减趋势;进一步分析表明,黄酮类化合物作为重要环境因子,可能通过影响优势菌门子囊菌中优势菌属的定殖与生长对内生真菌群落的形成与变化产生显著影响。  相似文献   

8.
为探讨不同轮作模式对稻田土壤微生物的影响,设置水稻-小麦、水稻-油菜、水稻-绿肥、水稻-冬闲4个处理,于水稻收获后采集土壤样品,提取基因组DNA,构建文库,利用Illumina Mi Seq高通量测序技术研究土壤细菌和真菌的丰富度、多样性指数以及门和属水平上的群落结构变化。从12个土壤样品中共获得24 537个细菌OUT和5 882个真菌OTU,其中,变形菌门、绿弯菌门、酸杆菌门、放线菌门、芽单胞菌门为土壤优势细菌门,子囊菌门和担子菌门为优势真菌门。从门的分类水平看,不同轮作模式土壤中细菌和真菌群落各门类组成的比例发生改变。属水平的分析结果也表明,不同轮作模式土壤中细菌前20个优势属的丰度和真菌前10优势属的丰度同样发生明显改变。不同轮作作物改变了土壤中有益微生物的比例,水稻-绿肥和水稻-冬闲处理有益微生物比例高于其他处理。随着轮作作物的改变,土壤生态系统中细菌和真菌群落的组成比例发生了变化。  相似文献   

9.
为明确拉萨青稞种植农田土壤中真菌群落区系组成,采用Illumina高通量测序技术对拉萨9处不同青稞种植农田土壤进行了真菌群落结构解析。结果表明,随着青稞的生长发育,其土壤样品中真菌丰富度和多样性逐渐增高,土壤真菌群落在门的水平上主要为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)、球囊菌门(Glomeromycota)和接合菌门(Zygomycota),在属的水平上主要为被孢霉属(Mortierella)、足孢子菌属(Podospora)、赤霉菌属(Gibberella)、分子孢子菌属(Cladosporium)和毛壳菌属(Chaetomium)等。青稞灌浆期较播种前期、收获后期真菌群落组成差异较小,其土壤真菌群落具有趋同特征。  相似文献   

10.
阿特拉津胁迫对谷子种植区土壤真菌群落的影响   总被引:1,自引:0,他引:1  
本试验以山西阳曲县谷子种植区土壤为研究对象,运用Illumina MiSeq高通量测序技术,分析真菌多样性及群落组成变化情况。由α多样性指数可知,阿特拉津喷洒浓度越高,土壤真菌丰度和多样性越低;在黄土高原谷子种植区,土壤真菌主要门类为子囊菌门(Ascomycota)、接合菌门(Zygomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)和球囊菌门(Glomeromycota);在优势菌群中,子囊菌门相对丰度可高达61.9%;从门、纲、属不同水平上进行分析,除未分类真菌外,高浓度和低浓度阿特拉津污染土壤样品中的优势真菌种类基本相同。综上,在一定范围内,阿特拉津可导致土壤中真菌的丰富度和群落多样性降低,但不会改变土壤中优势真菌种类。  相似文献   

11.
不同连作年限植烟土壤细菌和真菌群落结构差异   总被引:2,自引:0,他引:2  
为明确不同连作年限对植烟土壤微生物群落结构的影响,选择具有代表性的植烟区域,分别采集不同连作年限的土壤样品,利用高通量测序技术分析不同连作年限植烟土壤细菌和真菌群落结构的差异。结果表明,连作1年土壤样品细菌OTUs数目最多,连作4年土壤样品真菌OTUs数目最多。不同连作年限植烟土壤细菌均以变形菌门(Proteobacteria)比例最高,随着连作年限的增加土壤放线菌门(Actinobacteria)和泉古菌门(Crenarchaeota)丰富度呈现一定的增加趋势,同时土壤细菌的群落差异变大;不同连作年限植烟土壤真菌均以子囊菌门(Ascomycota)比例最高,随着连作年限的增加,植烟土壤真菌中的接合菌门(Zygomycota)呈现上升趋势,连作2年和4年的植烟土壤真菌菌群组成具有一定的相似性。综合分析,连续种植烤烟降低了土壤细菌多样性,提高了土壤真菌多样性,连作4年植烟土壤的细菌和真菌群落结构组成均发生较大变化。  相似文献   

12.
【目的】探究镉胁迫对稻田土壤真菌群落结构及其多样性的影响,为阐释镉胁迫对稻田土壤微生物多样性的影响机制提供科学依据。【方法】以湖南某镉矿周边3个镉污染程度(高、中和低)的稻田土壤为研究对象,采集土壤样品,测定土壤养分含量,利用Illumina MiSeq高通量测序技术探究土壤真菌群落结构,对比分析不同镉污染组土壤真菌群落多样性和群落结构差异。【结果】稻田土壤的真菌α多样性随着镉污染水平升高逐渐降低,高镉组(总镉含量>3.0 mg/kg) α多样性显著低于中镉组(总镉含量0.3~3.0 mg/kg)和低镉组(总镉含量<3.0 mg/kg)(P<0.05,下同),但中镉组和低镉组之间的差异较小。高镉组与中、低镉组土壤样品间真菌群落具有显著差异。在门水平上,子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota)在所有样品组中均属优势菌门,相对丰度在51.09%~81.93%。韧伞属(Hypholoma)、篮状菌属(Talaromyces)、Meliniomyces属在高镉组的相对丰度显著高于中镉组和低镉组,可能是潜在的耐镉菌。有机质、pH、碱性氮、有效磷、有效钾、总磷、总镉及有效镉均与土壤真菌群落结构呈极显著正相关(P<0.01)。【结论】高浓度镉污染可降低稻田土壤真菌群落α多样性并改变土壤真菌群落结构。pH、碱性氮、有效磷、有效钾、总磷、有机质、总镉及有效镉均与土壤真菌群落结构显著相关,是影响土壤真菌群落结构的主要驱动因子。  相似文献   

13.
高通量测序技术可用于精确分析土壤微生物群落,从微生物群落结构和多样性的角度阐释微生物肥料对有机农田根区土壤微生物群落的影响。在红壤有机农田轮作种植条件下,施用微生物肥料后利用Illumina MiSeq高通量测序技术结合相关生物信息学分析土壤细菌和真菌的多样性指数及群落结构。结果表明,从6个有机农田根区土壤样本中获得7 729个细菌分类操作单元(operational taxonomic units,简称OTU)和3 271个真菌OTU,细菌和真菌文库测序覆盖率均在99%以上。微生物肥料会显著降低土壤细菌和真菌种群多样性,且可在一定程度上降低细菌群落丰富度,显著降低真菌群落丰富度;并减少根区土壤特有细菌和真菌物种数量。放线菌门、变形菌门和酸杆菌门是优势细菌,子囊菌门是优势真菌;微生物肥料会提高放线菌门、变形菌门、厚壁菌门和担子菌门的相对丰度,分别比对照组提高29. 46%、9. 17%、129. 33%、165. 73%;但会降低酸杆菌门、绿弯菌门、子囊菌门、接合菌门的相对丰度,分别比对照组降低30. 14%、33. 50%、17. 27%、86. 33%。因此,施用微生物肥料可改变红壤有机农田根区土壤细菌和真菌的丰富度和多样性,有助于控制作物病害发生。  相似文献   

14.
以废菌棒炭基肥为材料,设置不施肥(CK)、低量炭基肥(BF1)、中量炭基肥(BF2)和高量炭基肥(BF3)4个处理,在种植7 a以上的酸化茶园开展大田试验,研究不同用量炭基肥对酸化茶园土壤细菌和真菌数量、多样性及群落结构的影响.结果显示,施用炭基肥显著提高了土壤脲酶、酸性磷酸酶和蔗糖转化酶的活性,BF2和BF3处理的脲酶活性显著高于BF1处理.施用炭基肥显著提高了土壤细菌和真菌数量及多样性,细菌数量、多样性指数及真菌数量均随着炭基肥施用量的增加而增大,且BF3处理显著高于BF1处理;不同用量炭基肥对真菌多样性指数的影响不大;BF3处理对土壤细菌和真菌群落结构的影响最为显著.与BF1处理相比,BF3处理显著提高了细菌拟杆菌门及真菌子囊菌门、被孢霉菌门的相对丰度,但显著降低了细菌酸杆菌门的相对丰度;显著提高了细菌产黄杆菌属、水恒杆菌属及真菌被孢霉属、树粉孢属的相对丰度,但显著降低了细菌酸杆菌属、伯克氏菌属及真菌粗糙孔菌属、伞形霉属、镰刀菌属的相对丰度.冗余分析表明,土壤速效钾、有效磷含量及pH是影响土壤细菌群落的主要驱动因子,土壤硝态氮、总氮、铵态氮含量及pH是影响土壤真菌群落的主要驱动因...  相似文献   

15.
评估传统轮作方式对西洋参参田土壤中真菌群落的影响,为研究老参田土壤改良制定合理轮作提供依据。采用基因间隔序列(ITS)测序分析新茬地西洋参采收后大田土(A组)、轮作1年大田土(B组)、轮作2年大田土(C组)、未种植过西洋参的大田土(D组)土壤真菌群落结构组成差异,采用FUNGuild解析大田土壤真菌群落功能。结果表明,随着传统轮作年限的增加,大田土壤真菌群落整体多样性及丰富度渐次增加。测序结果表明,子囊菌门(Ascomycota)是西洋参大田土壤真菌群落中的优势菌门,在各组土壤中所占比例约为50%。毛壳菌属(Chaetomium)、镰刀菌属(Fusarium)、被孢霉属(Mortierella)、Saitozyma、unclassified_f_Chaetomiaceae为老参田土壤优势属,随着轮作年限的增加,优势菌门和优势属门丰度出现一定的差异。西洋参老参田土壤真菌以腐生型为主,其次是病原菌型,菌群功能呈现渐次性变化。新茬大田土与传统轮作参田土壤中微生物组成和结构均具有明显差异,对于探究参田土壤改良种植具有理论指导意义,也为建立西洋参与农作物的合理轮作制度提供了试验数据。  相似文献   

16.
为了解巴音布鲁克高寒湿地土壤真菌群落对退化的响应,探索湿地退化机制,本研究以巴音布鲁克高寒湿地未退化(ND)、轻度退化(SD)及重度退化(HD)区域的土壤为研究对象,采用高通量测序技术分析不同程度退化高寒湿地土壤真菌群落的多样性及结构差异,并结合理化指标进一步分析影响真菌群落的环境因子。结果表明:真菌群落Simpson和Shannon多样性指数在ND和HD区土壤中无显著差异(P>0.05);SD区土壤中的真菌群落Simpson指数显著高于ND和HD区,而Shannon指数显著低于ND和HD区(P<0.05)。在不同程度退化区土壤中,真菌群落ACE和Chao1丰富度指数均随退化的加剧呈降低趋势。在3个区域土壤中,门水平上,子囊菌门(Ascomycota)的相对丰度最高;纲水平上,粪壳菌纲(Sordariomycetes)为主导类群;肉座菌目(Hypocreales)、Pleosporales菌目、被孢霉目(Mortierellales)的相对丰度均随退化程度的增加而增加;属水平上,珊瑚菌属(Clavaria)、稻瘟病菌属(Magnaporthe)为优势菌属。LEfSe分析发现了11种可作为判断退化的潜在生物标志物。RDA分析及蒙特卡罗检验结果显示,在门水平上真菌群落结构变化不受环境因子的显著影响;在属水平上,真菌群落结构变化仅与土壤总有机碳存在显著相关性(P<0.05)。研究表明,高寒湿地退化显著改变了土壤pH、土壤含水量、总有机碳、容重等理化指标,进而影响真菌群落多样性和结构。  相似文献   

17.
汞(Hg)是一种广泛存在于土壤环境中的全球污染物之一,土壤微生物对汞胁迫的敏感性强于动植物,可从微生物角度为蔬菜土壤汞污染生态风险评估提供科学依据。采用盆栽试验,应用荧光定量PCR和高通量测序(Illumina HiSeq)技术,分析对照(CK)、低浓度汞(T1)、中浓度汞(T2)和高浓度汞(T3)胁迫处理下蔬菜土壤hgcA基因数量、细菌数量、真菌数量和群落结构变化特征。结果表明,T1处理增加细菌和hgcA基因数量,分别比CK、T2和T3提高了37.48%和12.01%、57.31%和19.37%、88.85%和14.82%。汞胁迫降低了真菌数量,其中T2处理降低最显著。T3处理降低了土壤细菌群落α多样性指数(丰富度和多样性),T1处理降低了土壤真菌群落α多样性指数(丰富度和多样性)。土壤细菌门水平上,共获得18个类群,其中放线菌门、变形菌门和绿弯菌门为优势类群,且在不同处理间差异极显著。T2和T3处理分别显著增加了变形菌门和放线菌门相对丰度。绿弯菌门相对丰度均表现随汞浓度增加逐渐递减的趋势。土壤真菌门水平上,共获得9个类群,其中子囊菌门、被孢菌门和担子菌门为优势类群,其相对丰度共占真...  相似文献   

18.
土壤真菌是生态系统物质循环和能量流动的重要推动者。为探明西南喀斯特峰丛洼地不同森林类型土壤真菌群落结构及影响因素,选择了三个典型森林(灌木林、次生林、原生林)的土壤样品进行真菌ITS高通量测序。结果表明,灌木林和原生林土壤理化性质最为接近,养分含量较高。33个土壤样品中共获得2 013 410条有效序列,9677个OTUs,分属于18个门、59个纲及946个属。三类森林土壤真菌均由子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、未分类真菌(unclassified Fungi)、被孢霉门(Mortierellomycota)和罗兹菌门(Rozellomycota)组成,其中,子囊菌门和担子菌门是三类森林土壤真菌的优势菌门,所占比例近80%。原生林和灌木林α多样性最高,具有最为接近的真菌群落组成和结构。LEfSe分析表明,各森林关键优势真菌类群各不相同,灌木林中的差异种有粪壳菌纲(Sordariomycetes),散囊菌(Eurotiomycetes、Eurotiales),丛赤壳科(Nectriaceae);次生林的差异种主要是伞菌纲(Agaricomycetes)和古根菌纲(Archaeorhizomycetes);而未分类的伞菌目(unclassified Agaricales)和丝盖伞菌(Inocybaceae、Inocybe)则在原生林起关键作用。相关分析发现土壤真菌与土壤理化因子显著相关且关系十分密切,冗余分析进一步表明土壤的交换性钙离子、镁离子、全钾、温度对真菌群落的分布作用较大,是影响喀斯特森林土壤真菌群落结构和分布的主导因子。  相似文献   

19.
以不同地区及连作土壤为研究对象,利用Illumina MiSeq平台进行高通量测序,分析不同土壤细菌和真菌物种多样性及群落组成,并结合土壤营养指标,探讨羊肚菌菌丝与土壤细菌和真菌群落结构关系。结果表明,栽培地中土壤细菌多样性高于真菌,正常生长羊肚菌可提高土壤碱解氮含量和降低土壤真菌多样性。门水平下,细菌优势菌为放线菌门、变形菌门、绿弯菌门,真菌为子囊菌门、担子菌门、被孢霉门;属水平下,细菌优势属为节杆菌属、鞘脂单胞菌属,连作土壤中真菌优势属为被孢霉属、头束霉属、青霉属;正常生长土壤为被孢霉属、羊肚菌属、头束霉属。土壤全磷与节杆菌属、被孢霉属、头束霉属呈负相关,与镰刀菌属呈正相关,全钾与头束霉属呈正相关,各理化因子与羊肚菌属无明显相关性。  相似文献   

20.
【目的】研究白芍根腐病病株和健株土壤根际微生物群落结构变化以及土壤环境因子、微生物群落与白芍根腐病之间的关系,为白芍根腐病的防治提供理论依据。【方法】采用野外调查研究方法,利用Illumina MiSeq高通量测序技术对白芍健株和病株的根际土壤微生物多样性进行测序,并对土壤养分及酶活性进行分析。【结果】与白芍健株相比,病株根际土壤有机质含量显著增加,速效钾含量显著降低,土壤碱性磷酸酶、过氧化物酶显著增加。病株根际土壤细菌丰富度和多样性减少,真菌丰富度和多样性增加。病株根际土壤细菌群落中变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、Sumerlaeota的相对丰度显著高于健株,绿弯菌门(Chloroflexi)、放线菌门(Actinobacteriota)、Ethylomirabilota、厚壁菌门(Firmicutes)相对丰度显著下降。鞘氨醇单胞菌属(Sphingomonas)、Chthoniobacter、Subgroup7、Saccharimonadales在病株根际土壤中的相对丰度高于健康植株。病株根际土壤真菌群落中子囊菌门(Ascomycot...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号