首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Stump extraction for forest health has been carried out operationally in British Columbia (BC) for many years. Emerging bioenergy opportunities plus the anticipated need for more fibre because of reductions in timber supply may increase interest in stump harvesting, but there are numerous environmental, economic and policy barriers that must be overcome first before industrial-scale stump harvesting can be seriously considered in BC. The potential for a future change in practice provides an opportunity to learn from the existing literature and identify knowledge gaps. In this article we review the available literature on stump harvesting from the European Union within the context of BC's forests, economy, biodiversity, environment and policies. We provide recommendations on how the government of BC could move forward if they decide to enable stump harvesting for fibre and bioenergy, including assessment of net economic and carbon benefits and environmental effects, improvements in inventory and the scientific knowledge base needed to support policy and guidance, and investigation of operational enhancements.  相似文献   

2.
Effects of clear-cut harvesting on ground vegetation plant species diversity and their cover are investigated at two Norway spruce sites in southern Norway, differing in climate and topography. Experimental plots at these two sites were either harvested conventionally (stem-only harvesting) or whole trees including crowns, twigs and branches were removed (whole-tree harvesting), leaving residue piles on the ground for some months. We compare the number of plant species in different groups and their cover sums before and after harvesting, and between the different treatments, using non-parametric statistical tests. An overall loss of ground vegetation biodiversity is induced by harvesting and there is a shift in cover of dominant species, with negative effects for bryophytes and dwarf shrubs and an increase of graminoid cover. Differences between the two harvesting methods at both sites were mainly due to the residue piles assembled during whole-tree harvesting and the physical damage made during the harvesting of residues in these piles. The presence of the residue piles had a clear negative impact on both species numbers and cover. Pile residue harvesting on unfrozen and snow-free soil caused more damage to the forest floor in the steep terrain at the western site compared to the eastern site.  相似文献   

3.
In the past the use of woody biomass for bioenergy was considered carbon neutral. However, this changed when analyses were made of cases of land use change or old growth forest logging for bioenergy purposes. These analyses showed a significant carbon debt that could take hundreds of years to be compensated by the substitution factor of the bioenergy.Currently, carbon debt analyses are often carried out: 1) at one hectare scale, or 2) against the hypothetical case of allowing the managed forest to grow to an old-growth state, or 3) in a comparison against short term policy goals. All three are not realistic for European forests. Here we analysed carbon debt and parity of realistically increased harvesting over large forest areas in Europe. We found that under such realistic cases, a carbon debt does not occur. i.e. the large scale average stocks in the forest are not reduced. What does occur is a parity compared to the baseline harvesting levels. The parity effect was eventually also compensated for. However it took long, especially if final fellings were increased for bioenergy; which is a rather hypothetical case. In case of increased thinnings, the parity equality was often reached within 80 years compared to burning coal. Removal of harvesting residues was often compensated within 1 decade. However, parity is a theoretical comparison against a higher baseline C stock in the forest. It is not certain that this higher stocking under the baseline will be sustained, because there is an increasing chance of natural disturbances. Thus the parity may be much shorter than analysed here.  相似文献   

4.
Knowledge about the nutrient and carbon budgets in forest soils is essential to maintain sustainable production, but also in several environmental issues, such as acidification, eutrophication and climate change. The budgets are strongly influenced by atmospheric deposition as well as forestry. This study demonstrates how budget calculations for nitrogen (N), carbon (C) and base cations (BC) can be used as a basis for policy decisions on a regional level in Sweden.The study was based on existing nutrient and C budget calculations on a regional scale in Sweden. The nutrient budgets have been calculated for each square in a national 5 km × 5 km net by means of mass balances including deposition, harvest losses, leaching, weathering (BC) and fixation (N). Scenarios with different deposition and forestry intensity have been run and illustrated on maps. A simplified C budget has been estimated by multiplying the N accumulation with the C/N ratio in the organic layer, based on the assumption that the C/N ratio in the accumulating organic matter is equal to the ratio in the soil organic matter pool. The budget approaches differ from earlier budget studies since they involve regional high resolution data, combine deposition and forestry scenarios and integrate different environmental aspects.The results indicate that whole-tree harvesting will cause net losses of N and base cations in large parts of Sweden, which means that forestry will not be sustainable unless nutrients are added through compensatory fertilization. To prevent net losses following whole-tree harvesting, compensatory fertilization of base cations would be required in almost the whole country, whereas N fertilization would be needed mainly in the northern half of Sweden. The results further suggest that today's recommendations for N fertilization should be revised in southern Sweden by applying the southwest–northeast gradient of the N budget calculations. The C and N accumulation calculations show that C sequestration in Swedish forest soils is not an effective or sustainable way to decrease the net carbon dioxide emissions. A better way is to apply whole-tree harvesting and use the branches, tops and needles as biofuel replacing fossil fuels. This could reduce the present carbon dioxide emissions from fossil fuels substantially.The study shows that high resolution budget calculations that illuminate different aspects of sustainability in forest ecosystems are important tools for identifying problem areas, investigating different alternatives through scenario analyses and developing new policies. Cooperation with stakeholders increases the probability that the research will be useful.  相似文献   

5.
Increasing demand for production of bioenergy has led to an interest in forest management which uses logging residue from both clear-cuttings and thinning stands. The aim of this study was to investigate the effects of removal of logging residue in a thinning Norway spruce stand on (1) litter decomposition and (2) soil microbial processes in C and N cycling and the quality of soil organic matter. The study site was a 40-year-old Norway spruce stand growing on a relatively fertile site. During thinning, logging residue was either removed (whole-tree harvest) or left on the site (stem-only harvest). Different types of material in the logging residue, from main branches to needles, were weighed separately into mesh bags. The bags were placed above the moss layer in the whole-tree harvest treatment and in the logging residue layer in the stem-only harvest treatment, and decomposition was monitored for 5 years after treatment. From the humus layer, samples were taken 10 years after treatment. Harvest method affected the mass loss of the litter material very little but the C-to-N ratio of the remaining material was slightly higher in whole-tree harvest than in stem-only harvest, particularly in the needle material. In the humus layer samples, taken 10 years after treatment, the rate of C mineralization was lower in whole-tree harvest than in stem-only harvest; also the rate of net N mineralization and the amounts of C and N in the microbial biomass tended to be lower, although not statistically significantly. Removal of logging residue had no effect on pH (pHH2OpHH2O 3.9 in both treatments) or C-to-N ratio (28 in both treatments) in the humus layer. The concentrations of total water-soluble phenols and an important group of phenols, condensed tannins, were both lower in the humus layer of whole-tree harvest than in that of stem-only harvest. Concentrations of sesqui-, di- or triterpenes in the humus layer were similar in both treatments. In conclusion, 10 years after harvest, soil microbial activities and organic matter characteristics in whole-tree harvest differed from those in stem-only harvest.  相似文献   

6.
Short-term (three to four years) effects of forest harvesting on soil solution chemistry were investigated at two Norway spruce sites in southern Norway, differing in precipitation amount and topography. Experimental plots were either harvested conventionally (stem-only harvesting, SOH) or whole trees, including crowns, twigs and branches were removed (whole-tree harvesting, WTH), leaving residue piles on the ground for some months before removal. The WTH treatment had two sub-treatments: WTH-pile where there had been piles and WTH-removal, from where residues had been removed to make piles. Increased soil solution concentrations of NO3–N, total N, Ca, Mg and K at 30?cm depth, shown by peaks in concentrations in the years after harvesting, were found at the drier, less steep site in eastern Norway after SOH and WTH-pile, but less so after WTH-removal. At the wetter, steeper site in western Norway, peaks were often observed also at WTH-removal plots, which might reflect within-site differences in water pathways due largely to site topography.  相似文献   

7.
Harvesting branches, unmerchantable tree tops and stumps for bioenergy reduces the carbon stock and the sink capacity of forest. We analyzed forest management changes that are financially viable for a forest owner to compensate for carbon loss resulting from the forest harvest residue extraction, and thus lead to truly carbon-neutral forest bioenergy. The management options studied included forest fertilization, elongated rotation periods, varying the type of forest residues extracted, and leaving high stumps. The costs of carbon loss compensation varied widely from 5 to 4000  ha 1 between the management options. The lowest costs resulted from harvesting quickly decomposing branches combined with low levels of fertilization. Harvesting all residues and applying intensive fertilization regimes or postponing final felling generated the highest costs. A requirement for fast carbon loss compensation increased the costs. The results indicated that changes in the forest management improve the carbon benefits of forest bioenergy, and some of these changes are inexpensive for the forest owner. The optimization results suggested that the longer time period was allowed for the carbon loss compensation, the fewer cost-effective silvicultural measures existed in the optimal combination of management regimes for the compensation.  相似文献   

8.
Although it is known that forestry mitigates carbon emissions to some degree, there is still a need to investigate the extent to which changes in forest management regimes affect the carbon cycle. In a climate-change scenario, forest management schemes must be optimized to maximize product supply and minimize environmental impacts. It is difficult to predict the mitigating effects of different silvicultural regimes because of differences in the growth characteristics of each species, destination of products, and industrial efficiencies. The objective of the present study was to use a modeling approach to evaluate the effects of different management regimes for fast growing species in southern temperate Europe in relation to mitigating climate change. A comprehensive study was carried out considering the C sink effect in biomass, soil and wood products, the substitutive effect of bioenergy, and particular conditions of the forest industry in southern Europe. The mechanistic CO2Fix model was parameterized for three species used in fast growing plantations in southern Europe: Eucalyptus globulus, Eucalyptus nitens, and Pinus radiata. Data from 120 plots covering the complete age range observed for each species were used to calculate changes in C stocks in aboveground biomass and organic and mineral soil and to validate the parameterized model for these conditions. Additional information about the efficiency of forest industry processes in the region was also considered. A strong bias in soil organic carbon estimation was observed and attributed to overestimations in the decomposition rates of soil compartments. Slight bias was also observed in the carbon biomass estimation when forest-specific yield models were used to simulate afforestation over former pastureland. As regards the model sensitivity, the Yasso model was strongly robust to turnover of leaves, roots, and branches. The chip wood production alternative yielded higher carbon stock in biomass and products, as well as in bioenergy substitution effect, than the sawn wood production alternative. Nevertheless, the sawn wood alternative was the most effective as regards the C stock in the soil. Site index had an important effect for all species, alternatives, and compartments, and mitigating effects increased with site index. Harvesting of clearcutting and thinning slash for bioenergy use led to a slight decrease in the soil carbon equilibrium but significantly increased the mitigation effect through bioenergy use.  相似文献   

9.

Context

To sustainably manage loblolly pine plantations for bioenergy and carbon sequestration, accurate information is required on the relationships between management regimes and energy, carbon, and nutrient export.

Aims

The effects of cultural intensity and planting density were investigated with respect to energy, carbon, and essential nutrients in aboveground biomass of mid-rotation loblolly pine plantations, and the effects of harvesting scenarios on export of nutrients were tested.

Methods

Destructive biomass sampling of a 12 years-old loblolly pine culture/density experiment, and analysis of variance were used to assess the effects of cultural intensity (operational vs. intensive) and six planting densities ranging from 741 to 4,448 trees ha?1. Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of energy, carbon, and nutrient export.

Results

The concentrations of energy, carbon, and nutrients varied significantly among stem wood, bark, branch, and foliage components. Cultural intensity and planting density did not significantly affect these concentrations. Differences in energy, carbon and nutrient contents among treatments were mainly mediated by changes in total biomass. Nutrient contents were affected by either cultural intensity or planting density, or both. Stem-only harvesting removed 71–79 % of aboveground energy and carbon, 29–45 % of N, 28–44 % of P, 44–57 % of K, 51–65 % of Ca, and 50–61 % of Mg.

Conclusions

Stem-only harvesting would be preferred to whole-tree harvesting, from a site nutrient conservation perspective.  相似文献   

10.
Background: Bioenergy is re-shaping opportunities and imperatives of forest management. This study demonstrates,through a case study in Scots pine(Pinus sylvestris L.), how forest bioenergy policies affect stand management strategies.Methods: Optimization studies were examined for 15 Scots pine stands of different initial stand densities, site types, and temperature sum regions in Finland. Stand development was model ed using the Pipe Qual stand simulator coupled with the simulation-optimization tool Opti For Bioenergy to assess three forest bioenergy policies on energy wood harvest from early thinnings.Results: The optimal solutions maximizing bare land value indicate that conventional forest management regimes remain optimal for sparse stands. Energy harvests occurred only when profitable, led to lower financial returns. A forest bioenergy policy which included compulsory energy wood harvesting was optimal for denser stands. At a higher interest rate(4 %), increasing energy wood price postponed energy wood harvesting. In addition, our results show that early thinning somewhat reduced wood quality for stands in fertile sites. For less fertile sites, the changes were insignificant.Conclusions: A constraint of profitable energy wood harvest is not rational. It is optimal to carry out the first thinning with a flexible forest bioenergy policy depending on stand density.  相似文献   

11.
Growing concerns over emissions of green-house gases causing climate change as well as energy security concerns have spurred the interest in bioenergy production pushed by EU targets to fulfil the goal of 20 per cent renewable energy in 2020, as well as the goal of 10 per cent renewable fuels in transport by 2020. Increased bioenergy production is also seen to have political and economic benefits for rural areas and farming regions in Europe and in the developing world. There are, however, conflicting views on the potential benefits of large scale bioenergy production, and recent debates have also drawn attention to a range of environmental and socio-economic issues that may arise in this respect. One of these challenges will be that of accommodating forest uses – including wood for energy, and resulting intensification of forest management – with biodiversity protection in order to meet EU policy goals. We note that the use of biomass and biofuels spans over several economic sector policy areas, which calls for assessing and integrating environmental concerns across forest, agriculture, energy and transport sectors.In this paper, we employ frame analysis to identify the arguments for promoting bioenergy and assess the potential policy conflicts in the relevant sectors, through the analytical lens of environmental policy integration. We conclude that while there is considerable leverage of environmental arguments in favour of bioenergy in the studied economic sectors, and potential synergies with other policy goals, environmental interest groups remain sceptical to just how bioenergy is currently being promoted. There is a highly polarised debate particularly relating to biofuel production. Based on our analysis, we discuss the potential for how those issues could be reconciled drawing on the frame conflict theory, distinguishing between policy disagreements and policy controversies.  相似文献   

12.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   

13.
Interest in the use of bioenergy is increasing because of the need to mitigate climate change, the increasing costs and finite supply of fossil fuels, and the declining price of lumber and paper. Sound bioenergy policies must be informed by accurate estimates of potential feedstock production, rights to the production, social values and economics. Two of the main sources of bioenergy feedstock from forests are (i) harvesting residue and (ii) dead wood resulting from natural disturbances (i.e. standing dead timber). We modeled the production of bioenergy feedstock from these two sources from 2005 to 2020 for Canada's managed forest south of 60° N so that this information can be used in provincial and national strategic planning. Published estimates of harvesting residue vary widely, and our objective was to provide more precise estimates based on new forest inventory data and regional modeling. Natural disturbances result in very large quantities of dead wood on the landscape, but estimates of future stocks and annual production have not previously been made. Our estimates included a 50% discount factor to net-down theoretically available quantities to a more realistic estimate of potential ecologically sustainable bioenergy feedstock. The total future annual production averaged 51 ± 17 Tg year−1 from natural disturbances and 20 ± 0.6 Tg year−1 from clearcut harvesting residues. Harvesting residue for the area logged varied spatially from a low of 1.0 ± 0.77 kg m−2 year−1 to a high of 6.7 ± 0.1 kg m−2 year−1. Dead wood production due to insects was forecast to peak in the Montane Cordillera of British Columbia (BC) at 16.7 Tg year−1 due to the current mountain pine beetle outbreak. Total dead wood production due to fire was highest in the western portion of the boreal forest (3.6 Tg year−1 in the Boreal Shield of Saskatchewan), in part due to the high frequency of fires in these ecosystems and the large area of western boreal forest, but the highest density production was in BC: >9 kg m−2 year−1 in the burned area. Our results showed that the dead wood stocks of 331 Tg oven-dry matter potentially available for bioenergy in 2020 are much smaller than the 3100 ± 84 Tg of dead wood stocks estimated based on ecosystem dynamics. While bioenergy use will accelerate the release of greenhouse gases compared to on-site decay, the energy is renewable and can be used as a substitute for fossil fuels. The net benefit to the atmosphere of forest bioenergy use is affected by many factors, and future research should further assess which sustainable wood-based bioenergy strategies yield the greatest net greenhouse gas benefits over the different time scales needed for post-disturbance forest recovery.  相似文献   

14.
The purpose of this study is to examine the feasibility of a system to harvest logging residues (or slashes) as a new resource for energy in Japan. A harvesting and transporting system for residual forest biomass was constructed with reference to some European countries where the utilization of bioenergy is making steady progress and examined on the basis of field experiments in Japanese forestry. The feasibility of the system is discussed from the standpoints of cost and energy, and the system is compared with those of the European countries. With respect to the system proposed in this study, it is desirable that the process of chipper comminuting is incorporated into the system as early as possible, considering the trends of harvesting cost and fuel consumption per unit weight of residual forest biomass. Such a system is not particularly feasible in Japan from the standpoint of the harvesting cost per MWh of bioenergy. However, no specific problems are found from the point of view of the energy input rate, and it is clarified that it is possible for Japan to reduce domestic carbon dioxide emissions by utilizing biomass as an energy resource. A comparison with the European countries and a preliminary sensitivity analysis of the system demonstrate that the technical development to reduce the harvesting cost,e.g., improving the forwarding and transporting efficiency, and support from the government are essential for realizing bioenergy utilization in Japan. A part of this paper was orally presented at the 111th Annual Meeting of the Japanese Forestry Society (2000). JSPS Research Fellow. This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Ministry of Education, Science and Culture (No. 10460061).  相似文献   

15.
Abstract

Stump harvest in forests can cause both reductions of CO2 emissions through a decrease of decomposable substrate (direct effect) and emission increases as a consequence of deep and extensive soil disturbance (indirect effect). Here, the effects of stump harvest on net ecosystem CO2 exchange (NEE) in a former Norway spruce stand in mid Sweden are presented. CO2 exchange was continuously followed by eddy-covariance measurements during the first years after harvest. Differences in NEE from stump harvested and mounded (reference) plots were determined by soil-surface respiration measurements. Respiration from decaying stumps was estimated by a decomposition model. Fluxes indicated a direct effect (decreased efflux) during the first year after harvest that corresponded to the absence of decomposing stumps. During the following years, this emission reduction was increasingly counteracted by an indirect effect (increased efflux) of similar magnitude. This means that the expected emissions caused by extra soil disturbance occur with a certain delay and seem to increase with time. By these emissions, the substitution efficiency of stumps as bioenergy resource is reduced. Furthermore, at a time scale of centuries, instant combustion of stumps leads to a larger contribution to global warming than slow decomposition, because the stump carbon is available earlier in form of greenhouse gas. This is estimated by the time integral of emissions. Thus, despite the surprisingly low initial emissions, the overall substitution efficiency and climate benefits of stump harvest are likely to be small. The long-term consequences of stump harvest for the carbon budget are, however, still uncertain.  相似文献   

16.
Ecosystem-based management (e.g. partial cut harvesting) attempts to mimic natural forest dynamics and maintain structural complexity, and this less intense harvesting may minimize the impact on forest floor fauna and help maintain soil system biodiversity. We tested how different experimental harvesting regimes affect the diversity, abundance and composition of Oribatida at the sylviculture et aménagement forestiers écosystémique (SAFE) research forest located in the Abitibi region in NW Québec. Litter and soil were sampled in June 2006 in the mixedwood boreal forest at SAFE where the following treatments were applied and replicated three times: clear cut harvest, 1/3 partial cut harvest, 2/3 partial cut harvest, prescribed burn (after clear cut harvest) and uncut control. Eight years after harvest, partial cuts had more similar species composition to the uncut control within their respective blocks; however, burned habitat showed a shift in species dominance patterns and harboured a relatively distinct composition and species richness compared to treatments. With the exception of samples from clear cuts, species composition of the harvesting treatments was more similar within blocks than among blocks, suggesting that for less intense harvesting practices, spatial scale (i.e. regional factors) could have a greater influence in structuring oribatid assemblages than harvesting regime, but in more severe disturbances such as burn-after-clear cut harvest, habitat is altered enough to affect oribatid biodiversity.  相似文献   

17.
The Kyoto Protocol brought a new forest function into focus: forests as carbon sinks. This new forest function may lead to new conflicts, because on the one hand, Switzerland has decided to account for forest management under Kyoto Protocol (Article 3.4), and on the other hand, Swiss Forestry statistics and the Swiss National Forest Inventory indicate that increasing amounts of wood are being harvested. This trend seems likely to continue. In this study, we used the empirical forest model MASSIMO and the soil model YASSO to analyse four different forest management scenarios. These scenarios basically feature different levels of harvesting frequencies and different rotation length, as well as their impact on regional potentials for carbon sequestration and harvesting amounts. Results were analysed both for the whole of Switzerland and for two very different regions: The Swiss Eastern Plateau and the Swiss Eastern Alps. The results indicate that Swiss forests can provide an increasing amount of harvested wood (+18% in relation to the base year 1996) for approximately 20 years and act as a carbon sink accountable under the Kyoto Protocol (0.5 million tons carbon per year). The corresponding forest management strategy aims for a sustainable and harvestable increment and may, therefore, avoid spurious carbon maximization in forests that can happen by accounting for only forest systems, and not for the effect of substitution of non-wood products and fossil fuels by forest products. The regional results indicate that (1) the carbon sink effect of Alpine forests in Switzerland might be limited, because generally, Alpine forests have low growth and yield and (2) a large increase in harvesting may lead to regional carbon sources and necessitate regional monitoring of increment to avoid overexploitation. As MASSIMO does not include the impacts of climate change, the conclusions of this study cannot be interpreted as actual predictions into the future but portray the impact of the applied management actions on the respective trends in carbon stocks and stock changes. They are, therefore, a contribution to support future management decisions. Further studies should focus on interactions with additional forest functions such as the preservation of biodiversity, increase the consideration of forest damage and account for the effect of climate change.  相似文献   

18.
With their ratification of the Kyoto Protocol, many countries have established forests on previously non-forested land with the view of offsetting greenhouse gas emissions. While these forests indisputably result in increased carbon storage in above-ground biomass, consideration of other major implications is often neglected. Forest establishment results in changes in albedo and soil carbon storage, reduced runoff and downstream water supply, and effects on biodiversity. Such effects of forest establishment may be less desirable from environmental, economic and social perspectives. While there have been many studies of the impacts of forest establishment on individual aspects, policy makers need to be able to integrate the benefits and consequences to assist in making decisions on land management. Further, the relative magnitude of the effects of forestry needs to be considered in the context of elevated atmospheric carbon dioxide partial pressure and climate change resulting in increasing temperature and changes in the amount and distribution of rainfall. This introductory review highlights the major benefits and consequences of forest establishment and demonstrates progress in integrating across the services provided by forests. New modelling approaches are being developed that allow analysis of benefits, consequences and trade-offs to assist policy makers in decisions to manage the provision of multiple resources.  相似文献   

19.
New forms of governance are detected in the Swiss forest reserve policy, a policy in the field of forest biodiversity, and they have helped its implementation. A survey on the implementation status of the Swiss forest reserve concept in the cantons shows that (1) governance elements are clearly favored over traditional command-and-control regulations, (2) 6.6% of the Swiss forest area is delimited forest reserves, (3) large forest reserves are still missing in most of the cantons. Impeding factors can be a lack of conviction of the forest owners, a complicated ownership structure or the weak financial condition of a canton. Improvements may be achieved by increasing consultation and financial incentives or through a purchase of ecologically valuable areas by the Confederation and the cantons.Until now, the Swiss forest reserve policy lacks integration with interacting policies such as climate policy. Climate change could promote forest reserves as sinks for carbon dioxide. Yet this could be counteracted by the support of timber as renewable energy. Integration between forest reserve policy and interacting policies needs to be strengthened, especially with respect to the biodiversity policy (national biodiversity strategy; Convention on Biological Diversity).  相似文献   

20.
Increased forest biomass production for bioenergy will have various consequences for landscape scenery, depending on both the landscape features present and the character and intensity of the silvicultural and harvesting methods used. We review forest preference research carried out in Finland, Sweden and Norway, and discuss these findings in relation to bioenergy production in boreal forest ecosystems. Some production methods and related operations incur negative reactions among the public, e.g. stump harvesting, dense plantation, soil preparation, road construction, the use of non-native species, and partly also harvest of current non-productive forests. Positive visual effects of bioenergy production tend to be linked to harvesting methods such as tending, thinning, selective logging and residue harvesting that enhance both stand and landscape openness, and visual and physical accessibility. Relatively large differences in findings between studies underline the importance of local contextual knowledge about landscape values and how people use the particular landscape where different forms of bioenergy production will occur. This scientific knowledge may be used to formulate guiding principles for visual management of boreal forest bioenergy landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号