首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

2.
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550  ±  10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change.  相似文献   

3.
The impact of rising carbon dioxide concentration ([CO2]) in the atmosphere on wheat grain protein concentration and proteome was investigated in this study. Wheat genotypes (H45, SB003, SB062 and Yitpi) were grown in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility, Horsham, Victoria, Australia under ambient [CO2] (a[CO2], 391 μmol mol−1) and elevated [CO2] (e[CO2], 550 ± 20 μmol mol−1). Grain yield and grain protein concentration were measured. Global grain proteome comparison was carried out using stable isotope dimethyl labelling followed by liquid chromatography - mass spectrometry (LC-MS/MS). Grain yield was significantly increased at e[CO2], whereas protein concentration was significantly decreased and responses varied between genotypes. Proteome-wide analysis revealed that protein composition was also altered under e[CO2]. Grain protein concentration and composition of SB003 was very responsive to e[CO2]. Mainly storage proteins were decreased at e[CO2] and the responses varied between genotypes. These findings suggest that e[CO2] may have a major impact on grain protein quality and thus bread quality and human and animal nutrition. Further, these findings suggest that [CO2] insensitive cultivars can be identified for grain quality improvement under changing climate.  相似文献   

4.
Effects of elevated atmospheric CO2 on grain quality of wheat   总被引:3,自引:2,他引:1  
Wheat (Triticum aestivum L.) is one of the most important agricultural crops worldwide. Due to its high content of starch and unique gluten proteins, wheat grain is used for many food and non-food applications. Although grain quality is an important topic for food and feed as well as industrial processing, the consequences of future increases in atmospheric carbon dioxide (CO2) concentrations on quality parameters such as nutritional and bread-making rheological properties are still unclear. Wheat productivity increases under CO2 enrichment. Concomitantly, the chemical composition of vegetative plant parts is often changed and grain quality is altered. In particular, the decrease in grain protein concentration and changes in protein composition may have serious economic and health implications. Additionally, CO2 enrichment affects amino acid composition and the concentrations of macro- and micro-elements. However, experimental results are often inconsistent. The present review summarises the results from numerous CO2 enrichment experiments using different exposure techniques in order to quantify the potential impacts of projected atmospheric CO2 levels on wheat grain yield and on aspects of grain composition relevant to processing and human nutrition.  相似文献   

5.
Wheat (Triticum aestivum L.) grain Zn data from six open-top chamber experiments performed in south-west Sweden were combined to study the relationship between Zn accumulation and grain yield, grain protein, and yield components. Treatments included, in addition to open-top chamber controls, elevated CO2, elevated O3, combined CO2 and O3 exposure, combined elevated CO2 and supplemental irrigation, supplemental irrigation, and ambient air comparison plots. The grain Zn concentration was strongly correlated with grain protein (R2 = 0.90) over the range of the experimental treatments, representing non-soil factors. A significant yield dilution effect was found for Zn. For a 10% increase in grain yield, Zn yield was increased by 6.8% on average. Effects on Zn yield correlated strongly with effects on grain protein yield, with a slope close to unity, showing that yield dilution effects for grain Zn and grain protein were similar. Treatment effects on grain Zn concentration were related to effects on grain weight (P < 0.01) and grain number (P < 0.05), but not to harvest index. It was concluded that yield stimulation caused by rising CO2 concentrations is likely to lead to reduced Zn concentrations of wheat grain, thus reducing the nutritional quality.  相似文献   

6.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

7.
Spring wheat (Triticum aestivum L. cv. Triso) was grown in a free-air CO2 enrichment (FACE) field experiment in order to gain information on CO2-induced effects on grain composition and quality at maturity. A proteome analysis was performed using two-dimensional gel electrophoresis (2-DE) and protein identification was done with mass spectrometry (MALDI-TOF MS). In elevated CO2 (526 μl l−1), an increase of 13.5% in grain yield was observed relative to 375 μl l−1 at a low level of significance (P = 0.528). Total grain protein concentration was decreased by 3.5% at a high level of statistical significance. Most importantly, a number of statistically significant changes within the grain proteome were observed, as the levels of 32 proteins were affected by elevated CO2: 16 proteins were up-regulated and 16 were down-regulated. Our experiment demonstrates that high-CO2 can markedly affect the proteome of mature wheat grain. The potential role of the proteins, changed in response to CO2 enrichment, is discussed as some may affect grain quality. For the task of selecting cultivars resistant to CO2-induced quality loss, we propose to consider the proteins affected by elevated CO2 identified in this work here.  相似文献   

8.
Wheat (Triticum aestivum L.) is one of the most important agricultural crops worldwide. Due to its high content of starch and unique gluten proteins, wheat grain is used for many food and non-food applications. Although grain quality is an important topic for food and feed as well as industrial processing, the consequences of future increases in atmospheric carbon dioxide (CO2) concentrations on quality parameters such as nutritional and bread-making rheological properties are still unclear. Wheat productivity increases under CO2 enrichment. Concomitantly, the chemical composition of vegetative plant parts is often changed and grain quality is altered. In particular, the decrease in grain protein concentration and changes in protein composition may have serious economic and health implications. Additionally, CO2 enrichment affects amino acid composition and the concentrations of macro- and micro-elements. However, experimental results are often inconsistent. The present review summarises the results from numerous CO2 enrichment experiments using different exposure techniques in order to quantify the potential impacts of projected atmospheric CO2 levels on wheat grain yield and on aspects of grain composition relevant to processing and human nutrition.  相似文献   

9.
We test the hypothesis that reduction in grain N concentration under elevated CO2 concentration (e[CO2]) is associated with N types (NH4+ and NO3) and their ratios. Wheat (Triticum aestivum L. cv. H45) was grown in a glasshouse under two CO2 concentrations (389 μmol mol−1 and 700 μmol mol−1), supplied with equal amount of N with different ratios of NH4+ and NO3: (i) 100% NO3–N; (ii) 50% NO3–N and 50% NH4+–N; and (iii) 25% NO3–N and 75% NH4+–N. Plant growth, N uptake and partitioning were measured during plant development. Plant biomass and grain yield was increased at e[CO2] when N was supplied as an equal proportion of NO3 and NH4+. Despite the yield increment, grain N concentration was not affected by e[CO2], in 50% NO3–N treatment. In contrast, grain N concentration decreased in 100% NO3–N and 25% NO3–N treatments. In 50% NO3–N treatment, N uptake during post-anthesis stage (from 69 to 141 days after planting) was significantly stimulated under e[CO2] compared to 100% NO3–N and 25% NO3–N treatments. We concluded that supplement of N in an equal proportion of NO3 and NH4+ which increases post-anthesis N uptake, avoid the reduction of grain N concentration under e[CO2].  相似文献   

10.
Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle and high yield potential. However, no attention has been given to its yield responses to rising atmospheric [CO2] in conjunction with nitrogen (N) availability. Therefore we conducted a free air CO2 enrichment (FACE) experiment at Yangzhou, Jiangsu, China (119°42′0′′E, 32°35′5′′N), in 2004–2006. A three-line hybrid indica rice cv. Shanyou 63 was grown at ambient and elevated (ca. 570 μmol mol−1) [CO2] under two levels of supplemental N (12.5 g Nm−2 and 25 g Nm−2). Elevated [CO2] had no effect on phenology, but substantially enhanced grain yield (+34%). The magnitude of yield response to [CO2] was independent of N fertilization, but varied among different years. On average, elevated [CO2] increased the panicle number per square meter by 10%, due to an increase in maximum tiller number under enrich [CO2], while productive tiller ratio remained unaffected. Spikelet number per panicle also showed an average increase of 10% due to elevated [CO2], which was supported by increased plant height and stem dry weight per tiller. Meanwhile, elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain weight (+4%). Compared with the two prior FACE studies on rice, hybrid indica rice cultivar appears to profit much more from elevated [CO2] than japonica rice cultivar (ca. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. The above data has significant implication with respect to N strategies and cultivar selection under projected future [CO2] levels.  相似文献   

11.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure. However, there is no systemic information on interactive effects of elevated [CO2] and nitrogen (N) supply on seasonal changes in phosphorus (P) nutrient of rice crops. In order to investigate the interactive effects of these two factors on seasonal changes in plant P concentration, uptake, efficiency and allocation, a free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significantly increased shoot P concentration (dry base) over the season, the average responses varied between 7.3% and 16.2%. Shoot P uptake responses to FACE declined gradually with crop development, with average responses of 57%, 51%, 37%, 26% and 11% on average during the growth periods from transplanting to early-tillering (Period I), early-tillering to mid-tillering (Period II), mid-tillering to panicle initiation (Period III), panicle initiation to heading (Period IV) and heading to grain maturity (Period V), respectively. Seasonal changes in shoot P uptake ratio (i.e., the ratio of shoot P uptake during a given growth period to final shoot P acquisition at grain maturity) responses to FACE followed a similar pattern to that of shoot P uptake, with average responses of 19%, 14%, 3%, −5% and −16% in Periods I, II, III, IV and V of the growth period, respectively. As a result, FACE enhanced shoot P uptake by 33% at grain maturity. P allocation patterns among above-ground organs were not altered by FACE before heading, but it was modified after heading, with a shift in P allocation patterns towards vegetative organ. FACE resulted in the significant decrease in P-use efficiency for biomass across the season and P-use efficiency for grain yield and P harvest index at grain maturity. Generally, there were no interactions between [CO2] and N supply on above P nutrient variables measured. Data from this study has important implications for P management in rice production systems under future elevated [CO2] conditions.  相似文献   

12.
《Field Crops Research》2006,98(1):12-19
It is reported that stimulating effect of elevated atmospheric [CO2] on photosynthesis of rice (Oryza sativa L.) is likely to be reduced during the plant growth period. However, there is little information on seasonal changes in dry matter (DM) production and distribution of rice under elevated atmospheric [CO2]. A free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003, using Wuxiangging 14, a japonica cultivar. The rice was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with 25 g N m2, which is the normal N application rate for local farmers. DM accumulation of rice in FACE plots was significantly increased by 40, 30, 22, 26 and 16% on average at tillering, panicle initiation (PI), heading, mid-ripening and grain maturity, respectively. Rice DM production under FACE was significantly enhanced by 41, 27, 15 and 38% on average during the growth periods from transplanting to tillering (Period 1), tillering to PI (Period 2), PI to heading (Period 3) and heading to mid-ripening (Period 4), respectively, but significantly decreased by 25% in the period from mid-ripening to grain maturity (Period 5). In general, seasonal changes in crop response to FACE in both green leaf area index (GLAI) and net assimilation rate (NAR) followed a similar pattern to that of the DM production. Under FACE the leaves decreased significantly in proportion to the total above-ground DM over the season, the stems showed an opposite trend, while the spikes depended on crop development stage: showing no change at heading, significant increase (+4%) at mid-ripening and significant decrease (−3%) at grain maturity. Grain yield was stimulated by an average of 13% by FACE, due to increased total DM production rather than any changes in partitioning to the grain. We conclude that the gradual acclimation of rice growth to elevated [CO2] do not occur inevitably, and it could also be altered by environmental conditions (e.g., cultivation technique).  相似文献   

13.
14.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

15.
Spring wheat (Triticum aestivum L.) was grown in a free-air carbon dioxide (CO2) enrichment (FACE) field experiment. Grain and biomass yield and its components were determined at maturity and the grain metabolome was analysed by gas chromatography-mass spectrometry (GC–MS). Elevated CO2 (537 versus 409 μl l−1) increased biomass production except for leaves. In total, levels of 16 grain metabolites were decreased and four were increased. CO2 enrichment resulted in significant decreases of amino acids such as o-acetyl-L-homoserine, leucine, arginine, L-homoserine and the group of ornithine, arginine and citrulline and negative trends for norleucine, L-aspartate, proline, L-cysteine and tyrosine. The amines D/L-diaminopimelate and alpha-ketoaminobutyrate and the polyamine putrescine were significantly decreased. In contrast, the polyamine spermidine tended to increase under elevated CO2. Among sugars and sugar derivatives, ribose-5-P was significantly increased, while gluconate-6-P was decreased. There were also negative CO2-induced effects on sugar alcohols: significant for glycerol-2-P (P = 0.008) and almost significant for myo-inositol-P (P = 0.066). In contrast, organic acids such as pyruvate and glucuronic acid were significantly increased. Overall, the N-rich metabolites especially were reduced. CO2 enrichment can markedly affect the physiology and metabolome of mature grains which may in turn lead to changes in nutritional status.  相似文献   

16.
SUMMARY

Increasing atmospheric CO2 concentrations [CO2] have the potential to enhance growth and yield of agricultural plants. Con-comitantly plants grown under high [CO2] show significant changes of the chemical composition of their foliage and of other plant parts. Particularly, high [CO2] result in a decrease of plant nitrogen (N) concentration, which may have serious consequences for crop quality. This presentation summarizes the results of a variety of CO2 enrichment studies with pasture plants (Lolium spp., Trifolium repens) and cereal species (Triticum aestivum, Hordeum vulgare) which were conducted at our laboratory under different growth and CO2 exposure conditions ranging from controlled environment studies to investigations under free air carbon dioxide enrichment (FACE). With the exception of clover in all experiments a CO2-induced decline of forage and grain N concentration was observed. The magnitude of this reduction differed between species, cultivars, management conditions (N fertilization) and CO2 exposure conditions. No unambiguous evidence was obtained whether N fertilization can contribute to meet the quality requirements for cereals and grass monocultures with respect to tissue N concentrations in a future high-CO2 world. As shown in the FACE experiments current application rates of N fertilizers are inadequate to achieve quality standards.  相似文献   

17.

Background

Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance.

Results

The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars.

Conclusion

Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress.  相似文献   

18.
《Plant Production Science》2013,16(3):238-245
Abstract

Waterlogging is a major predicted agricultural problem for crop production in some areas under current climate change, but no studies are available on the interactive effects of waterlogging and elevated atmospheric CO2 concentration ([CO2]). We hypothesized that elevated [CO2] could alleviate the damage caused by waterlogging, and tested the hypothesis using vegetative growth of soybean (Glycine max) in 10 experiments (different sowing time and different soil type) conducted at Morioka and Tsukuba for three years. The 2-week-old plants grown under elevated and ambient [CO2] were exposed to waterlogging for 2 weeks. Total dry weight at the end of the treatment was higher under elevated [CO2] than under ambient [CO2], and it was significantly reduced by waterlogging under both levels of [CO2], without significant [CO2]×waterlogging interactions, at both locations. The negative effects of the waterlogging were greater in root dry weight than in top dry weight, and the root exudation per unit root dry weight was also reduced by waterlogging, without a [CO2] ×waterlogging interaction. Therefore, the hypothesis of a [CO2]×waterlogging interaction can be rejected, and provide an important basis for predicting future damage caused by waterlogging under elevated [CO2] conditions.  相似文献   

19.
《Field Crops Research》2007,100(1):10-23
Timely sowing is critical for achieving high grain yields in winter cereals. However, inadequate seed-zone moisture for germination commonly delays sowing to reduce biomass and subsequent yield in semi-arid environments. Sowing deep to reach soil moisture is often avoided by growers of Rht-B1b and Rht-D1b semi-dwarf wheat as these wheat show poor emergence when sown deep. Their reduced cell elongation associated with insensitivity to endogenous gibberellins, results in shorter coleoptiles and smaller early leaf area. Alternative dwarfing genes responsive to endogenous gibberellins (e.g. Rht8) are available for use in wheat breeding. These reduce plant height without affecting coleoptile length and offer potential to select longer coleoptile wheat for deep sowing. Nine semidwarf (Rht8, Rht-B1b, and Rht-D1b) and seven tall (rht) wheat genotypes were sown at depths of 50, 80 and 110 mm at three locations in 2 or 3 years. Coleoptile lengths measured in a growth cabinet at four temperatures (11, 15, 19 and 23 °C) were strongly correlated with coleoptile length (rp = 0.77–0.79**) and plant number (rp = 0.49*–0.79**) in deep-sown plots in the field. Furthermore, differences in coleoptile length were genetically correlated with greater numbers of emerged seedlings (rg = 0.97**), shallower crown depth (−0.58**), greater seedling leaf area (0.59**) and seedling biomass (0.44*). Wheat containing the Rht-B1b or Rht-D1b dwarfing genes produced significantly (P < 0.01) shorter coleoptiles (97 mm) than both Rht8 (118 mm) and tall (117 mm) wheat. In turn, compared with emergence from 50 mm depth, the Rht-B1b and Rht-D1b wheat produced significantly fewer seedlings at 110 mm sowing depth (−62%) than either Rht8 (−41%) or tall (−37%) wheat. Effects of deep sowing early in the season were maintained with reductions in spike number and biomass at both anthesis and maturity. Kernel number was also reduced with deep sowing leading to reductions in grain yield. Over all entries, genotypic increases in plant number were associated with increases in fertile spike (rg = 0.61**) and kernel number (0.21*), total biomass (0.26*) and grain yield (0.28*). Reduction in spike number and grain yield with deep sowing was smallest for the Rht8 (−18 and −10%) and rht (−15 and −7%) wheat, and largest for the Rht-B1b/D1b (−39 and −16%) wheat. Plant height and coleoptile length were independent among Rht8 and tall wheat genotypes. This study demonstrates the importance of good seedling emergence in achieving high wheat yields, and the potential use of alternative dwarfing genes such as Rht8 in development of long coleoptile, reduced height wheat suitable for deep sowing.  相似文献   

20.
为明确叶面施锌肥对紫粒小麦产量及品质的影响,选用小麦山农紫(紫粒)和山农129(红粒)为试验材料,采用大田试验,设置不施锌肥(Zn0,对照)、叶面喷施锌肥10 kg·hm-2(Zn10)、20 kg·hm-2(Zn20)、30 kg·hm-2(Zn30)、40 kg·hm-2(Zn40)5个处理,分析了不同施锌量下紫粒小麦产量和品质相关指标的异同。结果表明,与不施锌肥比较,叶面施锌肥后山农129和山农紫分别增产1.4%~4.7%和2.3%~5.2%;随着施锌量的增加,山农129和山农紫的籽粒锌含量、总蛋白含量及蛋白质产量均表现出先增后降的趋势,分别在Zn30和Zn20处理下达到最高值,比Zn0分别提高25.8%、1.2%、16.8%和44.1%、2.1%、20.1%。两品种叶面施锌肥较其对照显著提高了籽粒蔗糖含量、湿面筋含量、面筋指数(P<0.05),但总淀粉和可溶性糖含量无显著性差异;总体上,山农紫小麦增幅大于山农129。综上所述,本试验条件下,叶面喷施锌肥可提高紫粒小麦产量、锌含量以及营养品质,以喷施锌肥20 kg·hm-2较佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号