首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
玉米光合色素含量快速测定   总被引:20,自引:2,他引:20  
叶片中光合色素的含量是植物光合生理生态研究中的一项重要指标.本文旨在介绍:(1)玉米叶片光合色素含量的快速测定方法;(2)叶片中叶绿素a、叶绿素b和类胡萝卜素含量的计算公式.  相似文献   

2.
以叶背绿色型和叶背紫红型两种五唇兰(Doritis pulcherrima)生态型的组培苗为试材,进行叶片CO2吸收的日动态变化、气孔密度及光合色素的测定进行分析研究。结果表明:五唇兰属于CAM(景天酸代谢途径)植物;叶背绿色型的CO2吸收速率大于叶背紫红型;两种生态型的气孔密度没有显著性差异;两种生态型的总叶绿素含量、叶绿素a(Chl a)含量、叶绿素b(Chl b)含量、叶绿素a与叶绿素b的比值、类胡萝卜素(Car)含量也均没有显著性差异,但胡萝卜素与总叶绿素(Chl)含量的比值则有显著性差异。五唇兰的光合特性及叶片光合色素含量,体现了其作为一种热带兰对生长环境的高度适应性。  相似文献   

3.
不同耕作措施玉米高产光合指标的研究   总被引:2,自引:0,他引:2  
李洪勋  吴伯志 《玉米科学》2007,15(2):094-097
2002~2003年在云南农业大学农场采用滇丰4号玉米种,开展了不同耕作措施的玉米光合指标的研究。结果表明:B处理构建了高产玉米冠层的微环境特性和冠层结构,改善了叶片光合特性。生育期间各个坡度B、A、C处理的叶绿素a、b的含量始终大于D处理;光合速率的日变化在12:00时B处理要远远大于对照,增加比例为24.35%;穗位叶蒸腾速率B处理明显大于对照,2003年各坡度平均增加282.8%,2002年为350.4%。经相关分析可知,各个坡度总体上玉米叶片净光合速率、气孔导度都与蒸腾速率呈显著正相关。  相似文献   

4.
基于冠层反射光谱的夏玉米叶片色素含量估算模型研究   总被引:2,自引:0,他引:2  
通过分析不同施氮水平下夏玉米叶片色素含量与冠层光谱反射率及其衍生的比值植被指数(RVI)、归一化植被指数(NDVI)、正交植被指数(MTVI2、MCARI2、SAVI、MSAVI)以及叶绿素吸收比值指数(CARI)之间的关系,建立夏玉米叶片叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a+b(Chl a+b)和类胡萝卜素(Car)含量估算模型。结果表明:NDVI与夏玉米叶片色素含量的相关性最好,RVI、RVI、CARI位居其次。通过逐步回归分析确立的夏玉米叶片Chla、Chlb、Chl a+b及Car含量的估算模型R2分别为0.790 8、0.832 4、0.808 8和0.761 7,说明利用冠层NDVI可以对夏玉米叶片Chla、Chlb、Chl a+b和Car含量进行可靠的监测。  相似文献   

5.
玉米叶片气孔导度、蒸腾和光合特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
玉米叶片气孔导度、蒸腾速率是下表皮高于上表皮。叶片气孔导度的日变化以早上最高,午后下降,18:00时回升;蒸腾速率则在中午最高。果穗叶的蒸腾、光合、叶绿素含量和比叶重高于第9叶和倒2叶。单叶光合速率与可溶性糖、叶绿素含量呈显著正相关,气孔导度与蒸腾速率、全氮含量呈显著正相关,而与比叶重呈显著负相关。高产潜力大的掖单13号较产量潜力小的鲁玉5号,具有较高的光合速率、气孔导度、蒸腾速率、全氮含量、叶绿素含量和比叶重。  相似文献   

6.
不同品种茶树叶片功能性状及光合特性的比较   总被引:2,自引:0,他引:2  
以18个茶树品种(系)为研究对象,测量了茶树叶片的叶面积、叶形指数、比叶面积、干物质含量、叶绿素a、叶绿素b及其比值、叶绿素总量、类胡萝卜素及光合特性,并分析了叶片功能性状和光合特性之间的相关性。结果表明,茶树叶片叶形指数、干物质含量、气孔导度的变异系数低于10%,其余11项指标的变异系数为15.08%~43.22%,表现出较高的多样性水平;比叶面积与干物质含量之间存在显著负相关,叶形指数和叶面积与其他叶片功能指标均无显著相关;干物质含量与光合色素之间存在显著相关,叶绿素a、叶绿素b、叶绿素a/叶绿素b、叶绿素总量和类胡萝卜素两两之间存在极显著相关性;净光合速率、气孔导度、蒸腾速率两两之间存在极显著正相关,且气孔导度与胞间CO_2浓度呈显著正相关,茶叶光合速率主要受气孔限制的影响;净光合速率与干物质含量之间存在显著正相关,净光合速率、蒸腾速率与光合色素含量之间存在显著或极显著正相关,说明光合色素含量高的品种具有更强的光合能力和干物质积累能力;气孔导度、水分利用效率与叶片功能性状之间相关性不显著。14号茶树品种比叶面积相对较低,同时具有较高的干物质含量、净光合速率和水分利用效率,属于抗旱性较强、光合速率和水分利用效率高的品种,可作为抗旱性强、高光效的茶树品种进一步选育和应用。  相似文献   

7.
光、氮及其互作对玉米光合特性与物质生产的影响   总被引:1,自引:0,他引:1  
以豫玉22为试验材料,采用盆栽试验,设置2种遮光处理和3个氮肥水平,研究光、氮及其互作对玉米光合特性和物质生产的影响。结果表明,相对于不遮光处理,抽雄前3 d开始遮光、吐丝后10 d恢复自然光照处理玉米叶片光合速率和叶绿素a含量下降,叶绿素b和总叶绿素含量升高,胞间CO2浓度上升;成熟期不施肥、施肥120、240 kg/hm2的干物质积累量分别降低33.66%、31.69%、24.84%,产量分别降低52.50%、49.10%、40.92%。抽雄前3 d开始遮光、吐丝后10 d恢复自然光照处理,随施氮量的增加,叶片中叶绿素a、叶绿素b、总叶绿素含量以及光合速率均显著上升,成熟期施肥240 kg/hm2处理干物质积累量分别比不施肥、施肥120 kg/hm2增加42.45%、17.39%,产量分别增加59.93%、22.24%。弱光胁迫条件下增施氮肥可以改善玉米的光合特性,增加玉米干物质积累量,减少玉米产量损失。  相似文献   

8.
大气二氧化碳浓度升高条件下大豆光合色素含量的变化   总被引:5,自引:0,他引:5  
通过不同CO2浓度处理的大豆试验测定,分析了大豆叶片光合色素含量在高CO2浓度条件下的变化。结果表明,随着C02浓度的升高,叶绿素a、叶绿素b、叶绿素总量以及类胡萝卜素含量均有增加的趋势。在初花期,CO2浓度为450,550,650和750μmol/mol时,与CO2本底浓度相比,叶绿素总量增加4.4%~14.2%,类胡萝卜素含量提高6.8%~24.6%,鼓粒期也有类似结果。但由于高CO2浓度条件下,叶绿素b含量增幅大于叶绿素a,因此,叶绿素a与叶绿素b的比值降低。  相似文献   

9.
烯效唑浸种对玉米壮苗的生理效应   总被引:7,自引:0,他引:7  
李青苗  杨文钰 《玉米科学》2003,11(4):074-075
研究了烯效唑浸种对玉米苗期光合生理特性及根系活力的影响.结果表明:烯效唑处理后,苗期叶片的PEP羧化酶活性增强,叶绿素含量和叶绿素a/b比值增加,净光合速率和根系活力提高,浓度间以40 mg//kg处理效果最好。  相似文献   

10.
采用盆栽实验,以"云瑞47"为研究材料,Glomus mosseae(Gm)为接种菌剂,研究弱光和丛枝菌根真菌(AMF)对玉米生长生理的影响。结果表明,弱光作用下,玉米根系的AMF侵染率明显降低,叶片数、茎粗和总叶面积减少,植株地上部干重、地下部干重和总干重下降,株高增加,叶绿素a、叶绿素b、类胡萝卜素和总叶绿素含量上升,叶绿素a/b值降低,净光合速率减弱。弱光胁迫下接种Gm,能够增加玉米的叶片数、茎粗、株高和总叶面积,促进地上部干重、地下部干重和总干重的积累,提高叶片叶绿素a、叶绿素b、类胡萝卜素和总叶绿素含量,增强净光合速率。接种Gm真菌,能够缓解弱光对玉米生长产生的不良影响,促进植株生长。  相似文献   

11.
《Plant Production Science》2013,16(5):567-577
Abstract

The changes in chloroplast ultrastructure and the contents of chlorophyll, Na and K in response to salinity stress were investigated in leaves of maize, an NADP-malic enzyme-type C4 plant species possessing dimorphic chloroplasts. The seedlings were treated with 0, 1, 2 or 3% NaCl for three or five days under a light or dark condition. In both light and dark conditions, the dry weight of salt-treated plants decreased as NaCl concentration increased. Chlorophyll and K contents of the second leaf blade decreased as NaCl concentration increased under the light condition but not under the dark condition. Na content of the second leaf blade was significantly higher at high NaCl concentrations under both light and dark conditions. However, Na content was much lower under the dark condition than light condition. Higher concentrations (2 and 3%) of NaCl significantly increased the size of plastoglobules, decreased the number and size of starch granules and altered the chloroplast ultrastructure. Under the light condition, mesophyll cell (MC) chloroplasts appeared more sensitive to the damaging effect of salinity than the bundle sheath cell (BSC) chloroplasts. MC chloroplasts became more globular in shape and showed swollen and disorganized thylakoids and reduced thickness of grana by salinity. BSC chloroplasts were less affected by salinity than MC chloroplasts. Although chloroplast size and number and size of starch granules were reduced, there was no structural distortion in the thylakoids of BSC chloroplasts. However, the thickness of grana was increased by salinity. Under the dark condition, the chloroplast structure was less affected by salinity. Though the envelope of BSC chloroplasts was occasionally damaged, the thylakoids in both MC and BSC chloroplasts were preserved under salinity stress. The present study suggests that the chloroplast damage caused by salinity is light-dependent and MC chloroplasts are more sensitive to salinity than BSC chloroplasts.  相似文献   

12.
《Plant Production Science》2013,16(2):169-176
Abstract

The effect of NaCl stress on the structure of leaf chloroplasts was investigated in several NAD-Malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) type C4 plant species. Seedlings of the monocot species, except Zoysia japonica, grown in 300 mL pots were subjected to salt stress by adding 50 mL of 3% NaCl solution per day to the soil for 5 d after the fourth leaf blades were fully developed. Z. japonica and the dicot species, Amaranthus tricolor, were also treated with 3% NaCl in a similar manner from 5 wk after germination. Salt stress negatively affected the growth, chlorophyll content and chloroplast structure in all the species. At the ultrastructure level, swelling of thylakoids and disruption of envelopes were more or less observed in mesophyll cell (MC) chloroplasts after salt treatment. The structure of bundle sheath cell (BSC) chloroplasts, on the other hand, was hardly damaged under salt condition although stromal and starch areas were considerably decreased. Furthermore, salinity induced granal development in BSC chloroplasts in most species; the number of thylakoids per granum, granal indices and appressed thylakoid density in salt-treated plants were generally higher than those in control. Since the similar responses have also been reported in all NADP-ME type C4 species investigated in our previous study, the high sensitivity to salt stress in MC chloroplasts and the granal development in BSC chloroplasts by salinity were considered to be common phenomena in all three C4 subtypes.  相似文献   

13.
Nitrogen (N) is one of the major nutrients influencing photosynthesis and productivity of C4 plants as well as C3 plants. C4 photosynthesis operates through close coordination between mesophyll (M) and bundle sheath (BS) cells. However, how the development of structural and physiological traits in leaves of C4 plants is regulated under N limitation remains uncertain. We investigated structural and physiological responses of leaves of the NADP-ME-type C4 grass Sorghum bicolor to N limitation. Plants were grown under four levels of N supply (.05 to .6 g N per 5-L pot). Decreasing N supply resulted in decreases in net photosynthetic rate, stomatal conductance, leaf N and chlorophyll contents, and the activity ratio of phosphoenolpyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase and increases in δ13C values and photosynthetic N use efficiency. Low-N leaves were thinner and had smaller photosynthetic cells, especially in M, resulting in lower M/BS tissue area ratio, and contained smaller and fewer chloroplasts. The BS chloroplasts in the low-N leaves accumulated abundant starch grains. The number of thylakoids per granal stack was reduced in M chloroplasts but not in BS chloroplasts. The low-N leaves had thicker cell walls, especially in the BS cells, which might be associated with less negative δ13C values, and fewer plasmodesmata in the BS cells. These data reveal structural and physiological responses of C4 plants to N limitation, most of which would be related to cellular N allocation, light use, CO2 diffusion and leakiness, and metabolite transport under N limitation.  相似文献   

14.
Abstract

We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis ‘b’ chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 𰂼mol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the ‘b’ chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.  相似文献   

15.
CO2浓度升高对玉米叶片光合生理特性的影响   总被引:3,自引:0,他引:3  
以沈糯3号为研究材料,利用开顶式气室(OTCs)法研究了二氧化碳(CO2)浓度升高处理下,玉米叶片叶绿素含量、光合生理特性及其子粒产量的变化,揭示CO2浓度升高对玉米光合生理特性及子粒产量的影响机理。结果表明,在整个生育期内,与对照相比,高浓度CO2处理下,玉米叶片叶绿素a、叶绿素b及叶绿素(a+b)的含量增加,而叶绿素a/b的值则先升高后降低;在整个处理期间,净光合速率均高于对照(p>0.05),升高幅度为12.6%~71.1%,气孔导度低于对照(p>0.05),其降低幅度为2.9%~18.8%。处理至抽雄期和灌浆期,胞间CO2浓度分别增加152%和161%,均极显著高于对照(p<0.01);蒸腾速率的变化较小。高浓度CO2处理下,玉米穗粒数和穗粒重均明显高于对照(p<0.05)。CO2浓度升高在一定程度上促进了玉米的光合作用,从而使玉米子粒产量增加。  相似文献   

16.
水分胁迫下玉米叶片光合的活性氧限制   总被引:6,自引:1,他引:5  
玉米植株叶片在水分胁迫下,活性氧代谢平衡失调。随着胁迫强度的增加,O-2和H2O2大量产生,导致叶绿素氧化破坏。光合受抑在中度至重度胁迫时,非气孔因素中活性氧伤害起主导作用。抗旱杂交种抵御活性氧伤害的能力强于干旱敏感杂交种。  相似文献   

17.
C4 plants show higher photosynthetic capacity and productivity than C3 plants owing to a CO2-concentrating mechanism in leaves, which reduces photorespiration. However, which traits regulate the photosynthetic capacity of C4 plants remains unclear. We investigated structural, biochemical, and physiological traits associated with photosynthesis and resource use efficiency in 20 accessions of 12 species of Amaranthus, NAD-malic enzyme-type C4 dicots. Net photosynthetic rate (PN) ranged from 19.7 to 40.5 μmol m?2 s?1. PN was positively correlated with stomatal conductance and nitrogen and chlorophyll contents of leaves and was weakly positively correlated with specific leaf weight. PN was also positively correlated with the activity of the C3 enzyme ribulose-1,5-bisphoshate carboxylase/oxygenase, but not with the activities of the C4 enzymes phosphoenolpyruvate carboxylase and NAD-malic enzyme. Structural traits of leaves (stomatal density, guard cell length, leaf thickness, interveinal distance, sizes of mesophyll and bundle sheath cells and the area ratio between these cells) were not significantly correlated with PN. These data suggest that some of the biochemical and physiological traits are involved in interspecific PN variation, whereas structural traits are not directly involved. Photosynthetic nitrogen use efficiency ranged between 260 and 458 μmol mol?1 N s?1. Photosynthetic water use efficiency ranged between 5.6 and 10.4 mmol mol?1. When these data were compared with previously published data of C4 grasses, it is suggested that common mechanisms may determine the variations in resource use efficiency in grasses and this dicot group.  相似文献   

18.
C4 plants show higher photosynthetic capacity and resource use efficiency than C3 plants. However, the genetic variations of these traits and their regulatory factors in C4 plants still remain to be resolved. We investigated physiological, biochemical, and structural traits involved in photosynthesis and photosynthetic water and nitrogen use efficiencies (PWUE and PNUE) in 22 maize lines and four teosinte lines from various regions of the world. Net photosynthetic rate (PN) ranged from 32.1 to 46.5 μmol m?2 s?1. PN was positively correlated with stomatal conductance, transpiration rate, and chlorophyll, nitrogen and soluble protein contents of leaves, but not with specific leaf weight. PN was positively correlated with the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and the C4-acid decarboxylases, NADP-malic enzyme and phosphoenolpyruvate carboxykinase, but not with the activity of phosphoenolpyruvate carboxylase. Leaf structural traits (stomatal parameters, leaf thickness, and interveinal distance) were not correlated with PN. These data suggest that physiological and biochemical traits are involved in the genetic variation of PN, but structural traits are not directly involved. PWUE is in the lower class of values reported for C4 plants, whereas PNUE is in the highest class of values reported for C4 plants. PNUE was negatively correlated with leaf nitrogen content but not significantly correlated with PN. PWUE was not correlated with δ13C values of leaves, indicating difficulty in using δ13C values as an indicator of PWUE of maize. In general, teosinte lines showed lower PN but higher PWUE than maize lines.  相似文献   

19.
ABSTRACT

The successful introduction of the C4 pathway into C3 crops would increase photosynthetic rates and crop productivity. However, our poor understanding of how Kranz leaf anatomy develops poses a great obstacle. In particular, the origin, development, and genetics of bundle sheath (BS) cells in C4 plants are key points to elucidate. Here we report that Elymus tsukushiensis, a common C3 grass of the subfamily Pooideae, contains chloroplasts in the mestome sheath (MS) cells of the leaf, unlike most MS cells of C3 grasses. The chloroplasts are smaller than those of mesophyll cells. Immunogold localization showed that the chloroplasts and mitochondria of MS cells, respectively, accumulate ribulose 1,5-bisphosphate carboxylase/oxygenase and a photorespiratory enzyme, glycine decarboxylase, as in mesophyll cells. Thus, we suggest that the MS cells have weak photosynthetic and photorespiratory functions. This finding provides an insight into the development and evolution of C4-type BS cells in leaves of C3 grasses.  相似文献   

20.
Leaf photosynthesis, an important determinant of yield potential in rice, can be estimated from measurements of chlorophyll content. We searched for quantitative trait loci (QTLs) for Soil and Plant Analyzer Development (SPAD) value, an index of leaf chlorophyll content, and assessed their association with leaf photosynthesis. QTL analysis derived from a cross between japonica cultivar Sasanishiki and high-yielding indica cultivar Habataki detected a QTL for SPAD value on chromosome 4. This QTL explained 31% of the total phenotypic variance, and the Habataki allele increased the SPAD value. Chromosomal segment substitution line (CSSL) with the corresponding segment from Habataki had a higher leaf photosynthetic rate and SPAD value than Sasanishiki, suggesting an association between SPAD value and leaf photosynthesis. The CSSL also had a lower specific leaf area (SLA) than Sasanishiki, reflecting its thicker leaves. Substitution mapping under Sasanishiki genetic background demonstrated that QTLs for SPAD value and SLA were co-localized in the 1,798-kb interval. The results suggest that the phenotypes for SPAD value and SLA are controlled by a single locus or two tightly linked loci, and may play an important role in increasing leaf photosynthesis by increasing chlorophyll content or leaf thickness, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号