首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
离心泵非设计工况空化振动噪声的试验测试   总被引:7,自引:6,他引:1  
在离心泵闭式试验台上,基于虚拟仪器数据采集系统和泵产品测试系统建立了离心泵空化诱导振动噪声的试验测试系统,实现了泵性能参数和空化诱导振动噪声信号的同步采集。以一台单级单吸离心泵为研究对象,测量了模型泵在不同流量下,空化余量(NPSH)变化时的振动和噪声信号并对其进行了处理,得到了不同流量下振动加速度和噪声声压级随NPSH变化的曲线图。试验结果表明:不同流量下,随NPSH的下降,振动加速度和声压级先保持不变然后明显升高,据此可以初步判断泵的初生空化余量;泵体的振动强度高于其他测点;除轴向振动变化规律复杂外,其余测点随着流量的增加振动加强。  相似文献   

2.
泵作透平振动噪声机理分析与试验   总被引:1,自引:1,他引:0  
为了深入了解泵作透平不同流量不同转速下的振动噪声情况,在离心泵作透平开式试验台上,基于INV3020C数据采集系统和透平测试系统建立了泵作透平振动噪声试验测试系统,实现了性能参数和振动噪声信号的同步采集。为研究泵反转作透平振动和水动力激励诱发的进出口噪声特性,以一台单级单吸离心泵作透平为研究对象,利用加速度传感器和水听器测量了泵作透平在不同转速及流量下的振动和噪声。试验结果表明:随着转速的增加,泵作透平的扬程增大,高效区范围增加,效率有所提高且最高效率点向大流量偏移,同时,泵体加速度的总有效值和进出口噪声总声压级也随转速的增加而增加;随流量的增加,各测点的振动加速度和声压级逐渐升高;泵体的振动强度高于其他测点,各测点的振动强度主要反映于水平向;相同流量下出口噪声的声压级高于进口。该研究可为泵作透平减振降噪提供参考。  相似文献   

3.
S形下卧式轴伸贯流泵装置的振动特性分析   总被引:1,自引:1,他引:0  
为分析S形下卧式轴伸贯流泵装置的振动特性,该文通过物理模型试验,研究了5个叶片安放角时S形下卧式轴伸贯流泵装置的能量性能,在导叶体进口处布置2个振动测点,采用EN900数据采集分析仪和振动速度传感器VS-080对叶片安放角为+4°与4°时各工况的泵装置模型进行振动测试和分析。测试结果表明:在叶片安放角2°时,S形下卧式轴伸贯流泵装置的最高效率达83.55%,此时流量为289.28L/s,装置扬程为4.438m。在相同叶片安放角时,泵装置在径向的振幅峰峰值Ap-p高于铅垂方向。随泵装置扬程的增大,径向振幅峰峰值呈先减小后增大的趋势,泵装置的不平衡振动频率与转频成倍数函数关系。在扬程相同时,在叶片安放角为+4°时泵装置在径向的振幅峰峰值较大,不同叶片安放角时泵装置铅垂方向的振幅峰峰值差异性较小。研究结果可为该泵装置的安全稳定运行及同类型泵装置的振动分析提供参考。  相似文献   

4.
叶片数对离心泵振动噪声性能的影响   总被引:1,自引:1,他引:0  
叶片数是离心泵的主要几何参数之一。为研究叶片数对离心泵振动噪声性能的影响,以比转速为97的离心泵为例,对比了不同叶片数下的水力和振动噪声性能,并采用FEM\BEM声振耦合计算方法对流动激励下的振动及其声辐射噪声进行了数值模拟,同时与试验数据进行对比分析。结果表明:提出的数值模拟方法可用于预测泵的流动诱导振动和声辐射性能,且在模拟中考虑口环泄漏的影响能够提高计算精度,有口环方案预测得到的振幅较无口环方案的预测精度提高了13.5%。随着叶片数的增加,扬程和轴功率均逐渐增大,最大增幅分别为15.9%和14.1%;效率随叶片数的增加呈先增大后减小再增大的趋势。离心泵蜗壳的压力脉动幅值随叶片数的减小而增大。由于叶轮蜗壳动静干涉的作用,蜗壳隔舌处、第1到第2断面间和扩压管壁面等3个区域的压力脉动幅值相对较高。随着叶片数的减少,蜗壳壁面的振动位移有所增大,最大位移主要发生蜗壳第8断面处。振动速度随着叶片数的增大后减小,与振动位移的规律有一定的差异,振动高速区主要集中在隔舌、蜗壳的第4与第6断面之间和靠近扩压管的第8断面处。设计工况下,泵在叶频对应的声压级和声强随着叶片数的增加先增大后减小,高声压级区域主要出现在泵出口附近的高振动速度引起的垂直方向。综合考虑水力和振动噪声性能,确定该模型泵的最佳叶片数为6。  相似文献   

5.
叶片出口安放角对离心泵作透平噪声的影响   总被引:1,自引:4,他引:1  
为研究叶片出口安放角对离心泵作透平内外场噪声的影响,运用声学边界元法(boundary element method,BEM)分析透平在叶轮和壳体壁面偶极子作用下产生的内场流动噪声,基于声学有限元的自动匹配层技术(finite element method/automatically matched layer,FEM/AML)计算考虑结构振动壳体声源作用的外场噪声,并验证了内场噪声计算方法和壳体结构有限元模型的准确性。结果表明,壳体偶极子作用的流动噪声能够体现多声源的共同作用,基于BEM法计算与试验频谱曲线吻合较好,叶频处误差仅为3.7%。效率随出口安放角的增加在全流量范围内均降低;以1/3倍频程A计权总声压级和总声功率级为评价指标,叶片出口安放角对透平噪声有一定影响;综合考虑水力性能和噪声,叶片出口安放角为30°透平综合性能较优。该文为后续噪声控制的研究提供了参考。  相似文献   

6.
叶轮出口宽度对离心泵噪声辐射影响的分析与试验   总被引:3,自引:3,他引:0  
为研究叶轮出口宽度对离心泵在水动力激励下泵壳振动辐射噪声的影响,该文以一台单级单吸离心泵为研究对象,保持泵体和叶轮其他几何参数不变,运用FEM\BEM(finite element method\boundary element method)声振耦合计算和试验测量方法进行了叶轮出口宽度分别为10、8和12 mm的噪声辐射分析。采用大涡模拟方法对离心泵内部瞬态流场进行计算,得到蜗壳壁面偶极子声源。在对泵壳体结构进行模态分析的基础上,利用LMS Virtual Lab的间接边界元IBEM声振耦合模块计算非定常流动引起的离心泵内部噪声,并进行了试验验证,在此基础上,对离心泵外场噪声及其声辐射进行计算,并研究了叶轮出口宽度对离心泵外场噪声辐射的影响。结果表明,离心泵叶片通过频率处的辐射声功率随着叶轮出口宽度的增大而增大;叶轮出口宽度存在一个合适的取值范围,使得各流量工况下外场噪声声压级较小;综合考虑离心泵能量性能与外场噪声,叶轮出口宽度为10 mm时,离心泵综合性能较优。研究结果可为低振动低噪声离心泵的水力优化设计提供参考。  相似文献   

7.
基于粒子图像测速的离心泵叶轮内流动分离测试与分析   总被引:1,自引:3,他引:1  
离心泵在小流量工况下运行极易产生流动分离,严重影响泵的运行稳定性。为了揭示离心泵小流量工况下叶轮内流动分离的变化规律,对一比转数为73的离心泵小流量工况下叶轮内部流动进行了PIV测试和分析,并以流动偏移角和回流强度为参数对测试结果做了量化分析。不同工况的测试结果表明,0.6Qd工况下叶轮内开始出现流动分离,到0.2Qd工况下流动分离已发展充分;随着流量的降低分离泡向流道中部和出口方向移动发展。0.2Qd工况下不同相位的试验结果显示叶轮流道接近隔舌时会出现分离泡,经过隔舌后分离泡迅速发展,远离隔舌后分离泡逐渐消失。流动偏移角的量化分析能够准确反映出叶轮流道内分离泡的数目;回流强度的量化分析表明叶片旋转过隔舌135°后,动静干涉对流动分离的作用明显减弱。  相似文献   

8.
为了阐明螺旋角对凸轮泵转子腔内部流量特性的影响规律,揭示螺旋角和凸轮泵特性曲线的定量关系,基于FLUENT动网格技术和RNG k-ε湍流模型,对凸轮泵转子腔内部进行三维瞬态流动数值计算,比较了9种螺旋角凸轮泵转子腔内部流量特性,揭示了螺旋角对转子腔内部瞬态流动结构的影响机制,并通过理论计算及试验验证数值预测分对比析,其相对误差在2.5%~5.7%,具有较高的准确性。研究表明:螺旋角对凸轮泵流量特性及泵腔内部流动有显著影响,相比直叶转子,螺旋转子出口的平均流量和流量脉动幅值均明显降低,从而有效抑制转子腔内二次流、旋涡结构与转子间隙区速度突变;螺旋角为45°~60°时,泵出口平均流量达峰值,泵出口流量脉动幅值最低,转子腔内部流动结构较好,结果表明凸轮泵转子腔最优螺旋角取值为45°~60°。该研究可为凸轮泵转子优化设计提供参考。  相似文献   

9.
管道泵不稳定压力及振动特性研究   总被引:5,自引:5,他引:0  
为了找到引起管道泵振动的原因,该文研究了一比转速为59的管道泵叶轮-蜗壳的动静干涉所引起的压力脉动现象,及其对泵振动特性的影响。该文通过对比数值计算方法与试验方法获得的能量特性曲线,验证了计算模型的有效性;在此基础上分析管道泵蜗壳内的脉动压力场,通过数值计算有效研究了蜗壳周向不同位置处43个监测点在不同流量下的压力脉动幅值,特别在叶片通过频率下,蜗壳内的压力脉动特征与流量及蜗壳内监测点位置的关系。同时,通过振动试验,获取泵4个监测区域内25个监测点在不同流量下的振动幅值,通过快速傅里叶变换对振动信号进行频谱分析。计算和试验结果共同表明,隔舌区域的压力脉动幅值最大,叶片通过频率210Hz是压力脉动的主导频率;压力脉动及泵振动均在叶片通过频率下达到最大峰值,进一步论证了叶片通过频率是管道泵产生振动的主要频率值,由该频率引起的压力脉动冲力是管道泵产生振动的主要作用力;泵的压力脉动幅值和振动幅值均高于设计工况;4个监测区域内的振动幅值从大到小依次为:管道支撑,电机,泵体,底座。研究结果可为管道泵低振动的设计提供参考。  相似文献   

10.
为充分探究离心泵作透平专用叶轮叶片进口安放角的确定方法,该文建立了液力透平专用叶轮叶片进口安放角与设计流量的关系表达式;基于ANSYS Blade Gen与NX软件,分别设计了4个不同叶片进口安放角的透平专用叶轮;在试验验证基础上,通过全流场数值计算,分析了叶片进口安放角对透平外性能的影响。结果表明:叶片进口安放角从60°增大到72°、90°和105°时,透平高效点对应的流量分别为85、90、100和110 m3/h,4台透平数值计算最高效率点流量与理论计算设计流量基本吻合,表明采用该文推导的设计流量与进口安放角的关系式合理。外特性性能曲线显示随叶片进口安放角增大,透平高效点向大流量偏移,最高效率值有所下降,且下降的速率增大。综合考虑透平最高效率及高效区范围,对于比转速为193蜗壳式单级单吸离心泵反转作透平,叶片进口安放角宜设计在60°与90°之间。该研究可为液力透平专用叶轮设计提供参考。  相似文献   

11.
为使离心式长轴泵能够在不同工况下高效运行,该文以500GJC-32.3×3型离心式长轴泵为例,对其进行优化,首先根据传统方法估算离心式长轴泵叶轮参数,通过正交方法对离心式长轴泵叶轮进行优化设计,对正交试验结果进行极差分析,得到了叶轮几何参数对离心式长轴泵扬程和效率影响的主次顺序。综合考虑各参数对离心式长轴泵性能的影响,选取重要因素,基于不等扬程设计理论,采用控制变量法对叶轮进行多方案优化设计,对比不同方案计算结果可知:基于不等扬程理论优化设计的叶轮具有较好的水力性能,选择合适的后盖板无穷叶片数理论扬程系数,可使叶轮水力性能趋于最佳。对于该型离心式长轴泵,当后盖板无穷叶片数理论扬程系数取1.1时可获得较优的水力性能,对比较优方案的试验与计算结果可知:二者变化趋势相同,扬程、效率、轴功率的最大误差分别为4.02%、5.58%、3.59%,在(0.8~1.2)倍设计流量工况下,扬程、效率、轴功率的误差小。同时由试验可知:该型离心式长轴泵在设计流量时扬程大于97 m,效率高于82%,最高效率点出现在1.1倍设计工况附近为83.22%,曲线具有较宽的高效区和无过载特性,能够满足设计要求,在丰水期和枯水期均能高效稳定的运行,同时可降低电机的配套功率,减少一次成本投入。因此,该文的研究结果对离心式长轴的优化设计有较好的参考价值。  相似文献   

12.
螺旋离心泵内回流涡空化特性   总被引:1,自引:4,他引:1  
为了研究回流涡空化特性,对一台螺旋离心泵内部的空化流动进行了可视化研究,在一定的工况下该泵内部发生了回流涡空化,捕捉到了不同流量下螺旋离心泵内部回流涡空化形态,发现回流漩涡空化中存在2个旋转的空化云,并且随着流量的减小,回流涡空化云体积逐渐减小;对该泵进行了数值模拟,发现随着流量的减小,泵进口外部形成的回流区域变小,从而导致回流涡空化云体积逐渐减小。该文对螺旋离心泵内回流涡空化体积演变机理的深入研究提供了参考。  相似文献   

13.
离心泵内部流动时序效应的CFD计算   总被引:5,自引:5,他引:0  
为了研究导叶时序效应对离心泵性能的影响,采用CFD方法对设计流量工况下导叶不同时序位置时离心泵内部流动进行了数值计算,定义导叶叶片尾缘与隔舌夹角为0时为时序位置0,每增加10°增加一个时序位置。得到了泵内外特性随时序位置不同的变化规律,并分析了不同时序位置对隔舌处压力脉动及叶轮径向力非定常特性的影响。结果表明:随着导叶时序位置的增加,泵扬程和效率呈先上升后下降的趋势,导叶与隔舌相对位置在20°时达到最大值,扬程较最低值提高0.6 m;时序效应对隔舌处1倍和2倍叶片通过频率影响最大,且随时序位置的增加,主频和压力脉动幅值呈先减小后增加的趋势,时序位置1时幅值为4时的70%;导叶时序位置的改变主要影响泵底座-出口方向叶轮径向力分量。研究结果为离心泵径向导叶设计提供参考。  相似文献   

14.
后掠式叶片轴流泵固液两相流数值模拟与优化   总被引:5,自引:5,他引:0  
针对轴流叶轮在污水固液两相流介质中的磨损问题,该文设计了不同后掠式叶轮结构方案进行优化设计,分别对后掠角度为40°、65°、90°的后掠叶片和原型叶片进行固液两相流数值模拟和试验对比,并分析了不同后掠方案叶轮内固体颗粒的分布特性。数值模拟结果表明,随着后掠角度的增加,叶片压力面固相体积分数会逐渐减少,而叶片吸力面上固相体积分数会先增加后减小,叶轮内固相的径向流动越明显并且叶片后掠角度越大,固相就越难与叶片压力面接触,而越易与叶片吸力面接触;颗粒直径越大,后掠叶片压力面上固相体积分数越大,而叶片吸力面进口边靠近轮毂处的固相体积分数增加;颗粒浓度越大,后掠叶片压力面上固相体积分数减少,叶片吸力面上固相体积分数增加。当优化后的后掠叶片角为90°时,该叶片结构优化了固体颗粒的分布,可大幅降低叶片轮缘处的磨损,提高了轴流叶轮在污水介质中的使用寿命和运行可靠性。  相似文献   

15.
离心泵中存在各种间隙,其间隙流动极其复杂,易出现泄漏流、间隙涡等复杂湍流,影响离心泵的水力性能及运行稳定性.该文结合数值模拟与试验方法,采用SSTk–ω湍流模型,研究半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,重点探讨半高导叶端面间隙对离心泵水力性能的影响机理.结果表明,适当的半高导叶端面间隙能有效改善离心泵水力性能,拓宽其高效区,导叶叶高为1.0时,最高效率点流量37.5m3/h处,而导叶叶高为0~0.8时,其最高效率点流量42.5m3/h处;导叶端面间隙为0.4~0.6导叶叶高时,离心泵的效率与扬程最优,且最大效率为57.5%;在0.6倍设计工况、0.8倍设计工况和1.0倍设计工况时,带半高导叶端面间隙的离心泵中叶轮做功和导叶内总压损失均高于普通导叶式离心泵,在0.6倍设计工况,导叶叶高为1.0时叶轮做功比导叶叶高为0~0.8时叶轮做功低将近7m水头,且在0.6倍设计工况和0.8倍设计工况下,导叶叶高为0时导叶内总压损失平均值比导叶叶高为1.0时分别高6.66m、4.62m水头;在1.2倍设计工况和1.4倍设计工况时,其叶轮做功和导叶内总压损失均低于普通导叶式离心泵;在各流量工况下,带导叶端面间隙的离心泵中蜗壳内总压损失均小于普通导叶式离心泵;随着流量增加,带半高导叶端面间隙的离心泵中叶轮-导叶动静干涉作用在逐渐减弱,叶轮-蜗壳动静干涉作用逐渐凸显.研究结果为离心泵导叶优化设计提供参考.  相似文献   

16.
基于径向基神经网络与粒子群算法的双叶片泵多目标优化   总被引:5,自引:4,他引:1  
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号