首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of level of nitrogen application upon the dynamics of herbage growth in a continuously grazed sward of tall fescue was investigated during two successive years. In order to obtain a large range of sward structural conditions, the experiments were carried out with two contrasting cultivars: cv. Clarìne and cv. Barcel, and, in Year 2, with two different sward heights or leaf area indices (LAIs). During each of five experimental periods (2-3 weeks), swards received either optimum (N2) or deficient (N1) N applications, were maintained at their target LAI, and leaf growth was measured on labelled tillers. With continuously defoliated tillers, N-shortage had only a small effect on the leaf elongation rate compared with tillers protected by cages. The leaf production per tiller was only slightly reduced by N shortage, and it was mainly by the means of a reduction in tiller density that the N deficiency resulted in reduced herbage growth per hectare. These results indicate that, in continuously grazed swards, in contrast with results previously found in intermittently defoliated swards, leaf elongation is not the only important component of difference in herbage growth and that the promotion of tillering rate is an additional pathway for N response in such management regimes.  相似文献   

2.
The effects of application of sodium fertilizer on the turnover and defoliation of leaf tissue were investigated in a perennial ryegrass (Lolium perenne) pasture grazed by dairy cows. Eight plots were allocated to treatments either with or without sodium fertilizer, with the former receiving 32 kg Na ha–1 applied in five applications of NaNO3 over the grazing season. An equivalent amount of nitrogen was given to the controls as ammonium nitrate, the application of which was reduced in the sodium treatment to equate nitrogen fertilizer applications for the two treatments. In nine periods between April and September, marked tillers were recorded to measure leaf turnover, leaf lamina growth and specific leaf weight and, when combined with tiller density measurements, gave an estimate of herbage flux for the sward. The defoliation and net growth of the marked tillers were monitored at 3-day intervals and the data were combined with tiller density and specific leaf weight data to determine the intake of the expanding, penultimate and oldest live leaf laminae. Sodium fertilizer application did not affect the rate at which leaves appeared, but it retarded their rate of disappearance. The extension rate and the specific weight of green laminae were both increased by sodium fertilizer application and therefore the net gravimetric growth rate was increased. Tiller density was not affected by sodium fertilizer application and hence the estimated herbage growth and net herbage flux were increased by sodium fertilizer application. Application of sodium fertilizer did not affect lamina length, and in both treatments the penultimate laminae were approximately twice as long as expanding and oldest live laminae. Defoliation frequency decreased from the expanding to the oldest live laminae in the control treatment without sodium. Sodium fertilizer application increased the frequency of defoliation of the oldest live leaf and also increased the length of the expanding leaf that was defoliated. For penultimate leaf laminae sodium fertilizer application reduced the defoliation frequency and length of foliage grazed. The dry-matter (DM) intake of the oldest live laminae was increased by the application of sodium fertilizer. It is concluded that sodium fertilizer application increases net herbage growth both by increased extension rate of leaf laminae and specific leaf weight and by delayed laminae senescence, and that it increases herbage DM intake by increasing the defoliation frequency of the oldest live leaf laminae.  相似文献   

3.
The possibility of increasing the herbage utilized over a grazing season was investigated in a study comparing continuously stocked steady-state swards maintained at optimum height (3.5 cm) with intermittently grazed swards. The intermittent systems were designed (a) to allow periodic increase in leaf area and hence growth rate, (b)to ensure that the accumulated herbage was eaten before it senesced, and (c) lo retain high tiller density by alternating periods of herbage accumulation with periods of continuous stocking. Two treatments (no animals or animal numbers reduced to half those on the 3.5 cm steady-state treatment) were used during the 17-18-d periods of herbage accumulation. Grazing down was completed in 3–4 d, after which two treatments (14 d or 28 d) were used for the intervening periods of continuous stocking when sward height was maintained at 3.5 cm. Herbage production was estimated using the tissue turnover technique, with tiller population densities and rates of growth, senescence and net production per tiller measured at frequent intervals. Intermittent grazing treatments where animals were removed during herbage accumulation resulted in changes in tiller size and number, and in growth rates, but not senescence rates, per tiller such that short-term deviations in the net rate of herbage production occurred compared with the continuously stocked control. The periods of advantage during phases of herbage accumulation were counterbalanced by those of disadvantage during the subsequent steady-state phases. Where animal numbers were reduced during herbage accumulation, sward conditions differed little from those of the continuously stocked control, implying that intake per individual animal was increased. It was concluded that intermittent grazing systems offered no advantage over simpler continuous stocking systems, provided that a flexible approach to conservation was incorporated to allow control of sward conditions on the grazed area.  相似文献   

4.
In continuously stocked swards or pastures the frequency at which individual tillers and individual leaves are defoliated by ruminant livestock, relative to leaf lifespan of the grass species within the sward, determines the proportion of each leaf defoliated before senescence, and hence the efficiency of harvesting of herbage. In this paper, sets of data obtained in a range of climatic conditions and with a range of grass species are used in order to document this relationship. It is shown that the frequency of defoliation of individual tillers or individual leaves is closely linked to the average stocking density used within a period of time for maintaining a steady state sward or pasture height, herbage mass or leaf area index. Consequently, any decrease in herbage growth rate should lead to a decrease in the efficiency of harvesting of herbage and then to a more than proportional decrease in total herbage consumption by ruminant livestock. These effects will be more important for grass species having short leaf lifespan than for species with long lifespan. In rotational stocking, the link between herbage growth rate and frequency of defoliation of leaves can be broken by controlling the grazing interval, so any decrease in herbage growth would not be systematically associated with a decrease in efficiency of harvesting of herbage. Rotational stocking should be more efficient than continuous stocking in low herbage production conditions, while in high herbage production systems rotational and continuous stocking would have similar efficiency. The implications of these conclusions for the management of swards and pastures to meet different objectives are discussed briefly.  相似文献   

5.
The change in structure of continuously grazed versus infrequently cut swards of perennial ryegrass ( Lolium perenne L), cv. S23, was investigated during their first full harvest year. Measurements were made from early May until late September. The intensity of stocking by sheep in the grazed sward was adjusted in an attempt to maintain a high level of radiation interception and the cut sward was harvested at approximately monthly intervals.
The herbage mass, lamina area index and radiation interception of the cut sward varied in a cyclic pattern between harvests but in the grazed sward these parameters showed considerably less variation, although they all increased early in the season and then declined later. The proportion of dead material above ground increased throughout the season in both sward types but was more marked in the grazed sward.
There were major differences between the grazed and cut swards in the number of tillers per unit ground area; the difference became more marked throughout the season and by September the tiller densities in the grazed and cut swards were 3·204 m-2 and 6·203 m-2 respectively. Divergence in tiller density was associated with differences in specific stem weight and leaf area per tiller.
Rates of appearance and death of leaves on tillers in the grazed sward were determined. During May, leaf appearance exceeded leaf death but this was reversed in June. During the rest of the season as a new leaf appeared on a tiller so the oldest leaf died.  相似文献   

6.
The response of swards which have been previously grazed to N fertilizer applied in early February was studied in two experiments in Northern Ireland. The effect of N fertilizer applied at a range of dates in autumn and spring on swards for out-of-season utilization was studied in a further experiment. Deep soil coring was also undertaken, subsequent to grazing with dairy cows, in grazed and protected areas in November and March to investigate the effect of out-of-season grazing on soil mineral N levels.
Dry-matter (DM) yield response to early spring N application in previously grazed swards was low, with no effect on DM yield in February or March. Progressively delaying N application (and commencement of herbage accumulation) in autumn from 8 September until 18 October reduced herbage availability in late autumn and early spring but increased leaf lamina content. The greater the amount of herbage accumulated to 1 December, the lower the tiller density in the following April.
N fertilizer had a greater impact on soil mineral N in spring than in late autumn/early winter, suggesting that fertilizer N was more prone to loss in the latter. Soil mineral N was not significantly affected by out-of-season grazing.
It is concluded that in well-fertilized, previously grazed swards response to N for out-of-season herbage is low and the probability for N loss is increased. Herbage quality will decline and the sward may be damaged if about 2 t DM ha−1 or more of harvestable herbage accumulates for use in winter or in early spring.  相似文献   

7.
An experiment was conducted lo compare the effects of the grazing by ewes and weaned lambs on aftermath and previously continuously grazed perennial ryegrass-dominant swards, at two sward heights (4 and 8 cm) in (he autumn, on changes in structure and growth of the swards. The experiment had a factorial design, was replicated twice and was conducted from mid-August to early November with measurements being made on three occasions in the autumn. Aftermath swards had lower tiller population densities and lower herbage masses than those that had been previously continuously grazed, the differences being greatest in August. On an area basis net growth rates of herbage on aftermaths were lower than those on previously continuously grazed swards in August and September but not in October. Growth rates of herbage were higher on the taller sward, but the senescence rates were similar at the two sward heights. It was concluded that autumn swards may be managed at taller sward heights than summer swards without increasing senescence of the sward and a consequent reduction in efficiency of utilization. The effects of previous sward management on tissue turnover in the autumn were not long lasting.  相似文献   

8.
A small‐plot experiment was carried out in Northern Ireland on a predominantly perennial ryegrass sward over the period July 1993 to March 1994 to investigate the effect of timing and rate of fertilizer nitrogen (N) application on herbage mass and its chemical composition over the winter period. Eighty treatment combinations, involving four N fertilizer application dates (28 July, 9 and 30 August and 20 September 1993), four rates of N fertilizer (0, 30, 60 and 90 kg N ha?1) and five harvest dates (1 October, 1 November, 1 December 1993, 1 February and 1 March 1994), were replicated three times in a randomized block design experiment. N application increased herbage mass at each of the harvest dates, but in general there was a decrease in response to N with increasing rate of N and delay in time of application. Mean responses to N applications were 13·0, 11·5 and 9·5 kg DM kg?1 N at 30, 60 and 90 kg N ha?1 respectively. Delaying N application, which also reduced the length of the period of growth, reduced the mean response to N fertilizer from 14·3 to 7·4 kg DM kg?1 N for N applied on 28 July and 20 September respectively. Increasing rate of N application increased the N concentration and reduced the dry‐matter (DM) content and water‐soluble carbohydrate (WSC) concentration of the herbage but had little effect on the acid‐detergent fibre (ADF) concentration. Delaying N application increased N concentration and reduced DM content of the herbage. The effect of date of N application on WSC concentration varied between harvests. A decrease in herbage mass occurred from November onwards which was associated with a decrease in the proportion of live leaf and stem material and an increase in the proportion of dead material in the sward. It is concluded that there is considerable potential to increase the herbage mass available for autumn/early winter grazing by applying up to 60 kg N ha?1 in early September.  相似文献   

9.
A study was conducted to determine the influence of a change in herbage mass on rates of herbage growth (G), senescence (S) and net production of green herbage (NP) in swards of Lolium perenne L., Poa annua L. and Trifolium repens L. under continuous stocking with sheep. Swards were maintained at either high (1700–1900 kg OM ha−1; H) or low (700–900 kg OM ha−1; L) herbage mass from April to 20 August. From 20 August to 13 September half of the L sward was permitted to grow until a herbage mass similar to that of the H sward was achieved (LH), and at the same time half of the H sward was grazed down until a herbage mass similar to that of the L sward was achieved (HL). The other half of each sward was held at constant mass (LL and HH). Estimates of G, S and NP were obtained for each plant species over a 2-week period from 17 September to 1 October and estimates of species population densities were also made.
The combined species rates of G and S per unit area were highest in treatment LH and lowest in treatment HL, whilst the rates for the LL and HH swards were intermediate. The rate of NP was similar in the LL, HH and LH treatments (34.5, 29.3, 33.6 ± 6.2 kg DM ha−1d−1) but was lower in the HL sward (100 ± 6.2). The effects of alteration of herbage mass on individual tiller or stolon G and S rates were rapid but population density changes were slower.
Within the limited conditions of this trial it was not possible to increase NP by manipulation of herbage mass under continuous stocking management but the results indicate that NP can be reduced in the short term if a sward of high herbage mass and low population density is grazed hard.  相似文献   

10.
Two experiments were carried out in Guadeloupe to estimate the organic matter intake (OMI) and digestibility (OMD) of a Dichanthium spp. sward, grazed by tethered Creole heifers [mean live weight (LW) 202 ± 2·0 kg], at three daily herbage allowances. Experiment 1 examined herbage allowances of 16, 25 and 31 kg of dry matter (DM) d–1 on a fertilized sward at 21 days of regrowth whereas, in experiment 2, lower allowances of 11, 15 and 19 kg DM d–1 were examined on the same sward, which was unfertilized and grazed at 14 days of regrowth. In each experiment, the herbage was grazed with three groups of two heifers in a 3 × 3 Latin square design. Sward characteristics were described before grazing. OMI was calculated from total faecal output, and OMD was predicted from the crude protein (CP) content of the faeces. The amount of herbage defoliated by the heifers was also estimated on tillers selected at random.
Organic matter intakes were on average 26 g and 19 g OM kg–1 LW, and OMD values were 0·740 and 0·665 for Experiments 1 and 2, respectively, and were not affected by allowance. In Experiment 1, the herbage quality was high [0·50 of leaf and 116 g CP kg–1 organic matter (OM)] for a tropical forage, whereas in Experiment 2, the quality of the herbage (0·27 of leaf and 73 g CP kg–1 OM) was lower. These differences were reflected in differences in intake and digestibility in the two experiments.
The experimental tropical Dichanthium spp. swards can have intake characteristics similar to those of a temperate sward.  相似文献   

11.
A framework for managing rotationally grazed pastures for dairy cattle which enables the cows’ energy and protein requirements to be met while simultaneously limiting the amount of N excreted in order to reduce N losses is described. The first objective is achieved by ensuring that lamina mass and the N concentration of herbage do not limit herbage intake or feeding value. The second objective is achieved by limiting N fertilizer supply or increasing the interval between defoliations to reduce the N concentration of herbage. Lower and upper thresholds for the N concentration of herbage and lamina mass were estimated from published data. The method is illustrated using two vegetative regrowths (beginning and end of spring) in a cutting experiment with two fertilizer treatments, 0 or 120 kg N ha?1 (?N and +N), and early or late cutting. Decreasing N supply led to a reduction in grazing management flexibility, i.e. the defoliation interval ranges which were compatible with the required sward characteristics (minimum lamina mass and N concentration of lamina) for herbage intake and to meet the protein requirements of dairy cows. Aiming for the upper threshold N concentration of herbage increased the minimum interval between defoliations only for the +N treatments. Nevertheless, grazing management flexibility remained the highest for the +N treatments.  相似文献   

12.
Three experiments were conducted to determine the association between leaf number per tiller at defoliation, water‐soluble carbohydrate (WSC) concentration and herbage mass of juvenile ryegrass plants when grown in a Mediterranean environment. Seedlings of ryegrass were grown in nursery pots arranged side‐by‐side and located outside in the open‐air to simulate a mini‐sward in Experiments 1 and 2, and a mixture of annual ryegrass and subterranean clover (Trifolium subterraneum L.) was grown in a small plot field study in Experiment 3. Swards were defoliated mechanically with the onset of defoliation commencing within 28 d of germination. Frequency of defoliation ranged from one to nine leaves per tiller, whilst defoliation height ranged from 30 mm of pseudostem height that removed all leaf laminae in Experiment 1, to 50 mm of pseudostem height with some leaf laminae remaining post‐defoliation in Experiments 2 and 3. A positive relationship between herbage mass of ryegrass, WSC concentration and leaf number per tiller at defoliation was demonstrated in all experiments. In Experiment 1, the herbage mass of leaf, pseudostem and roots of tillers defoliated at one leaf per tiller was reduced to 0·10, 0·09 and 0·06 of those tillers defoliated less frequently at six leaves per tiller. However, the reduction in herbage mass from frequent defoliation was less severe in Experiment 2 and coincided with a 0·20 reduction in WSC concentration of pseudostem compared with 0·80 measured during Experiment 1. In Experiment 3, the highest harvested herbage mass of ryegrass occurred when defoliation was nine leaves per tiller. Although the harvested herbage from this sward contained senescent herbage, the in vitro dry‐matter digestibility of the harvested herbage did not differ significantly compared with the remaining treatments that had been defoliated more frequently. Leaf numbers of newly germinated ryegrass tillers in a Mediterranean environment were positively associated with WSC concentration of pseudostem and herbage mass. A minimum period of two to three leaf appearances was required to restore WSC concentrations to levels measured prior to defoliation thereby avoiding a significant reduction in herbage mass. However, maximum herbage mass of a mixed sward containing ryegrass and subterranean clover was achieved when defoliation was delayed to nine leaves per tiller.  相似文献   

13.
The frequency and severity of defoliation of individual grass tillers and clover plant units was studied in Lolium perenne-Trifolium repens swards grazed by sheep at stocking rates ranging from 25 to 55 sheep ha-1 and either receiving no N fertilizer or 200 kg N ha-1. On average, sheep at the highest stocking rate defoliated individual tillers once every 4·2 d compared with once every 9·2 d at the lowest stocking rate with the removal of 58% and 47% of the leaf length of each tiller leaf at these stocking rates. Clover plant units were defoliated once every 4·2 d at the highest stocking rate and once every 7·2 d at the lowest stocking rate with the removal of 51% of its leaves and 12% of its stolon at the high stocking rate and 42% and 4% respectively at the low stocking rate. Differences in frequency and severity of defoliation between N fertilizer treatments were smaller than between stocking rates. Grass tillers and clover plant units were both defoliated less frequently and less severely in swards fertilized with N, though the difference in defoliation frequency between fertilizer treatments decreased as stocking rate increased. Defoliation frequency was related to the length of grass leaf per tiller or number of clover leaves per plant unit, and to the number of these tillers and the herbage on offer.  相似文献   

14.
Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha?1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha?1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha?1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.  相似文献   

15.
A long-term field grazing experiment was begun in 1982 to examine the impact of efficient field drainage on herbage and animal production from swards on an impermeable clay loam in the south-west of England. Drained and undrained lysimeter plots (each of 1 ha) were established on the existing permanent sward and received annual applications of fertilizer N of 200 or 400 kg ha−1. Similar plots were initially ploughed and reseeded with Lolium perenne (cv. Melle), and received fertilizer N at an annual rate of 400 kg ha−1. All plots were continuously stocked by beef cattle and stock numbers were adjusted to maintain a constant sward height and to avoid poaching damage. Results for the first 5 years show that the benefits from drainage were modest and, for beef production, unlikely to pay for its costs over the shorter term. The main benefit was in spring when herbage dry matter yield was 11% greater on the drained plots, but with no significant interaction with fertilizer N level or sward type. This benefit was reduced to 3% on an annual basis, due to the effect of the larger soil water deficits sustained by the drained swards in mid-season. Drainage increased the annual liveweight gain per ha by the grazing cattle by 11%. Possible mechanisms accounting for these effects are discussed in relation to the influences of seasonal patterns of weather.  相似文献   

16.
Defoliation of ryegrass-dominated swards by sheep   总被引:1,自引:0,他引:1  
Patterns of defoliation in perennial ryegrass-dominated swards were examined in two experiments. In Experiment I measurements were made on four swards after a single overnight grazing. In Experiment 2 observations were made repeatedly on marked tillers in two continuously stocked swards which were grazed down over a 24-d period. In both experiments the chance of defoliation was related to lamina height both within and between age classes. Lamina angle was measured in Experiment 2 and within age classes the chance of defoliation was also independent of lamina angle. In Experiment 1 tillers most frequently had both of the two youngest laminae grazed; in Experiment 2 tillers with only lamina 1 grazed occurred most frequently, but defoliation of the two youngest laminae was again common.
The different frequencies of grazing of the different classes of laminae is interpreted as being a function of their frequency of occurrence within the grazed layer at the top of the sward. The pseudostem apparently restricted the depth of the grazed layer in the very short swards of Experiment 2.
Grazing behaviour in relation to sward structure and the patterns of defoliation and their implications for herbage production are discussed.  相似文献   

17.
The effects of short grazing intervals in the early part of the grazing season on the growth and utilization of grass herbage, and the performance of grazing dairy cows, in a rotational grazing system were examined. Seventy-six cows were allocated to two grazing treatments: a normal rotation treatment (20-d rotations for the first 60 d) and a short rotation treatment (12-, 8-, 8-, 8-, 12- and 12-day rotations). Thereafter, both treatments had the same grazing interval and over the season as a whole both treatments received the same amount of nitrogen fertilizer and were stocked at the same rate. The short rotation treatment significantly reduced pre- and post-grazing sward heights and pre-grazing herbage mass in May and June. Total herbage production was significantly lower on the short than the normal rotation treatment as a result of a significant reduction in the growth rate of herbage in May and June. The short rotation treatment had a significantly lower milk output per cow. Grazing shorter swards, as a result of shorter rotations, significantly reduced herbage intake, reflecting reductions in intake per bite, grazing time and total bites per day. Treatment had no significant effect on herbage quality or pre- and post-grazing sward height in August and September, despite the increased grazing severity in May and June with the short rotations. The severity of rotation length in this instance had a detrimental impact on animal performance, whereas a more modest reduction in grazing interval may control herbage production, without reducing animal performance.  相似文献   

18.
A method designed to study the defoliation of individual tillers in a set-stocked sward is described. This was used on S23 ryegrass swards carrying 19 (medium-stocked) and 30 (heavily-stocked) sheep/ac.
The tillers in the heavily-stocked sward were defoliated, on average, every 7–8 days, and those in the medium-stocked sward every 11–14 days. The total green leaf length (GLL) of tillers grazed by the sheep was generally greater than that of tillers not grazed. On average 27 and 40% of the GLL of tillers in the medium- and heavily-stocked swards respectively was removed at each grazing. Older leaves on the grazed tillers were defoliated much less frequently than were younger leaves.
It is suggested that a rational analysis of the relationship between the grazing animal and the grazed sward cannot be made without more work of this nature.  相似文献   

19.
A perennial ryegrass/white clover sward, which had been grazed for over 2 years, was cut at 1-, 2-, 3- or 6-week intervals from 18 April to 28 November 1986. Two rates of fertilizer N application in spring, 0 and 66 kg N ha−1, were compared. Perennial ryegrass growth was studied in three 6-week periods, beginning on 18 April, 18 July and 17 October. Clover growth was studied in the same three periods and described by Fisher and Wilman (1995) Grass and Forage Science , 50 , 162–171.
Applied N increased the number of ryegrass tillers m−2, the rate of leaf extension and the weight of new leaf produced tiller−1 and m−2per week. Increasing the interval between cuts reduced the number of ryegrass tillers m−2 and increased the rate of leaf extension, weight tiller−1and the weight of new leaf produced tiller−1week−1. Increasing the interval between cuts increased the weight of new ryegrass leaf produced m−2 where N had recently been applied, but otherwise had little effect on the weight of new leaf produced m−2. Applying N favoured the grass in competition with the clover in every respect, whereas increasing the interval between cuts only favoured the grass, compared with clover, where N had recently been applied; where N had not been applied, the ratio of ryegrass tillers to clover growing points in the sward was very little affected by the interval between cuts.  相似文献   

20.
The effect of herbage allowance on the herbage intake and performance of ewes and their twin lambs at pasture was investigated. Daily herbage allowances of 40,80.120 and 160 g organic matter (OM) kg-1 ewe live weight, based on herbage mass measured to ground level, were offered during the first 12 weeks of lactation.
The sheep were grazed rotationally around four paddocks of a perennial ryegrass pasture for 7-day periods and herbage mass, extended tiller length and digestibility of the herbage consumed by the animals were estimated. Herbage intake by the ewes was estimated during weeks two to twelve and live weights were recorded weekly: during the last two weeks of the experiment grazing behaviour of one ewe on each treatment was recorded continuously.
Herbage intakes by the ewes (164, 1–81, 2–42 and 268 ± 0153 kg d-1) and live weight gains of the lambs (202, 245, 274 and 300 ± 7–3 g d-1) increased with increasing herbage allowances. Herbage intakes by the ewes and growth rates of their lambs increased up to a herbage allowance which was over five times the amount of herbage eaten by the ewes.
As the animals reduced herbage mass and sward height, biting rates by the ewes during grazing increased by 4 (± 0·08) bites min-1 cm-1 and masticating rates decreased. Mastications reached a maximum of 90 (± 3·5) min-1 at a sward surface height of 9 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号