首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to examine the effect of three grazing treatments (year‐round stocking rates of 0·8 ewes ha?1, 0·5 ewes ha?1 and 0·5 ewes ha?1 plus grazing cattle in summer), imposed for 4 years, on the herbage mass and surface height of a Nardus stricta‐dominated grassland in western Scotland and to obtain estimates of annual productivity of this grassland. Nardus stricta‐dominated grassland comprised proportionately 0·20 of the grazing area. Stocking rate of sheep had no significant effect on the herbage mass of the grassland in the first 2 years of the experiment, although mean summer pasture heights were significantly higher under the lower stocking rate of sheep. The pasture on the treatment with cattle grazing in summer had a significantly lower herbage mass and lower surface height than the two sheep‐only grazing treatments. Year‐to‐year variation in the herbage mass and surface height of herbage in summer was greater than the effect of treatments. Despite changes in surface height, the structural diversity of the grasslands was not increased by the treatments. The annual production of vascular plant material ranged from 417 g DM m?2 in 1994 to 628 g DM m?2 in 1996.  相似文献   

2.
A small‐plot experiment was carried out in Northern Ireland on a predominantly perennial ryegrass sward over the period July 1993 to March 1994 to investigate the effect of timing and rate of fertilizer nitrogen (N) application on herbage mass and its chemical composition over the winter period. Eighty treatment combinations, involving four N fertilizer application dates (28 July, 9 and 30 August and 20 September 1993), four rates of N fertilizer (0, 30, 60 and 90 kg N ha?1) and five harvest dates (1 October, 1 November, 1 December 1993, 1 February and 1 March 1994), were replicated three times in a randomized block design experiment. N application increased herbage mass at each of the harvest dates, but in general there was a decrease in response to N with increasing rate of N and delay in time of application. Mean responses to N applications were 13·0, 11·5 and 9·5 kg DM kg?1 N at 30, 60 and 90 kg N ha?1 respectively. Delaying N application, which also reduced the length of the period of growth, reduced the mean response to N fertilizer from 14·3 to 7·4 kg DM kg?1 N for N applied on 28 July and 20 September respectively. Increasing rate of N application increased the N concentration and reduced the dry‐matter (DM) content and water‐soluble carbohydrate (WSC) concentration of the herbage but had little effect on the acid‐detergent fibre (ADF) concentration. Delaying N application increased N concentration and reduced DM content of the herbage. The effect of date of N application on WSC concentration varied between harvests. A decrease in herbage mass occurred from November onwards which was associated with a decrease in the proportion of live leaf and stem material and an increase in the proportion of dead material in the sward. It is concluded that there is considerable potential to increase the herbage mass available for autumn/early winter grazing by applying up to 60 kg N ha?1 in early September.  相似文献   

3.
Herbage minerals affect performance of grazing cattle. We investigated the response of herbage P, K, Ca and Mg contents and Ca/P and K/(Ca + Mg) ratios to long‐term stocking rate, continuous vs. discontinued grazing practice, and sampling year. Cattle had been stocked at 2·4 and 4·8 animal unit months ha?1 since 1949. Exclosures were installed in April 1998. Herbage samples were collected near peak herbage mass in 2001, 2003, 2008 and 2012 and analysed for mineral content. Mineral contents were similar between the two stocking rates, but were lower (P < 0·05) under discontinued than continuous stocking, with the exception of similar P contents. The content of P and K in herbage was higher and the content of Ca and Mg was lower (P < 0·05) in years with greater precipitation and lower temperatures. Herbage mineral content, with the exception of P, exceeded minimum recommended levels for cattle. Given the low P content in herbage (0·74–1·19 g kg?1) and high Ca/P ratios during the dry and hot year (of 2001), a dietary P supplement should be considered for cattle grazing rough fescue grassland in drought years. The low K/(Ca + Mg) ratios (<2·2) suggest there is little risk of grass tetany in cattle grazing on this grassland.  相似文献   

4.
The redistribution of herbage production during the growing season to synchronize herbage supply with feed demand by livestock by altering the application pattern of a range of nitrogen (N) fertilizer rates was studied. Application rates of N were 50, 150 and 250 kg N ha?1 per annum and patterns were with 0·60 of N fertilizer applied before June (treatment RN) and with only 0·20 of N fertilizer before June (treatment IN). Treatments were imposed in a cutting (simulated grazing) experiment (Experiment 1), which was conducted for 2 years and a grazing experiment (Experiment 2) which was conducted for 3 years. In both experiments, herbage production was reduced in April and May and increased in the June–October period on treatment IN relative to RN, but annual herbage production was not significantly affected except in the third year of Experiment 2, when treatment RN had significantly (P < 0·05) higher herbage production than treatment IN. Crude protein (CP) concentration of herbage was lower in April and May on treatment IN than treatment RN. However, CP concentration of herbage was rarely below 150 g kg?1 DM and so it is unlikely that livestock productivity would be compromised. On treatment IN, concentrations of CP in herbage were higher in the late summer than on treatment RN, which may increase livestock productivity during July and August when livestock productivity is often lower. Altering the strategy of application of N fertilizer did not affect in vitro dry matter digestibility of herbage.  相似文献   

5.
This study investigated the effects of levels of supplementation with maize grain and herbage allowance (HA) on grass herbage and maize intake, animal performance and grazing behaviour in two replicated grazing experiments with Angus beef cattle in Argentina. In Experiment 1, the response to increasing HA (2·5, 5·0 and 7·5 kg DM herbage 100 kg?1 live weight (LW) d?1 with and without 0·5 kg DM maize grain 100 kg?1 LW d?1) was investigated. In Experiment 2, the responses to level of maize grain offered (0, 0·5 and 1·0 kg DM maize grain 100 kg?1 LW d?1) at an HA of 2·5 kg DM herbage 100 kg?1 LW d?1 and an HA of 5·0 kg 100 kg?1 LW d?1 without maize grain were assessed. In Experiment 2, soyabean meal was added to control the crude protein concentration in the diet. Two methods were used for intake estimations: pre‐ and post‐feeding herbage mass difference, and the use of the n‐alkane and 13C technique. The latter predicted most accurately the metabolizable energy requirements calculated from live weights and liveweight gain of beef cattle attained in each treatment in both experiments. Increasing HA significantly increased herbage intake and liveweight gain (P < 0·01), and general quadratic relationships between these variables could be fitted across experiments despite differences in animal and pasture characteristics. Increasing the amount of maize grain offered significantly reduced herbage intake and grazing time, but increased liveweight gain and digestibility of the diet. Substitution rate increased with increasing HA in Experiment 1 but was not affected by level of maize supplementation in Experiment 2. These relationships will aid the development of grazing management models for Argentinean conditions.  相似文献   

6.
The objective of this study was to evaluate the effects of defoliation frequency (either at two‐ or three‐leaf stage) and nitrogen (N) application rate (0, 75, 150, 300, 450 kg N ha?1 year?1) on herbage carbohydrate and crude protein (CP) fractions, and the water‐soluble carbohydrate‐to‐protein ratio (WSC:CP) in perennial ryegrass swards. Crude protein fractions were analysed according to the Cornell carbohydrate and protein system. Carbohydrate fractions were analysed by ultra‐high‐performance liquid chromatography. Sward defoliation at two‐leaf stage increased the total CP, reduced the buffer‐soluble CP fractions and decreased carbohydrate fractions of herbage (P < 0·001). The effect of defoliation frequency was less marked during early spring and autumn (P < 0·001) than for the rest of the seasons. An increase in N application rate was negatively associated with WSC, fructans and neutral detergent fibre (P < 0·001), and positively associated with CP and nitrate (N‐NO3) contents of herbage. Nitrogen application rate did not affect CP fractions of herbage (P > 0·05). The fluctuations in CP and WSC contents of herbage resulted in lower WSC:CP ratios during early spring and autumn (0·45:1 and 0·75:1 respectively) than in late spring (1·11:1). The herbage WSC:CP ratio was greater (P < 0·001) at the three‐leaf than the two‐leaf defoliation stage and declined as the N application increased in all seasons (P < 0·001). The results of this study indicate that CP and carbohydrate fractions of herbage can be manipulated by sward defoliation frequency and N application rate. The magnitude of these effects, however, may vary with the season.  相似文献   

7.
Plant breeding has developed perennial ryegrass varieties with increased concentrations of water‐soluble carbohydrates (WSCs) compared with conventional varieties. Water‐soluble carbohydrates are major metabolic and storage components in ryegrass. Therefore, if perennial ryegrass herbage is allowed to grow to greater heights it should contain higher water‐soluble carbohydrates concentrations, for example as under rotational grazing rather than continuous grazing by livestock. This study investigated this hypothesis and measured the performance of lambs grazed rotationally and continuously. Replicated plots of the variety AberDart (bred to express high WSC concentrations) or the variety Fennema were grazed by a core group of ten male Cheviot lambs for 10 weeks. Lambs were weighed and replicate forage samples were taken every 7 d. Concentrations of WSC in AberDart herbage were significantly (P < 0·05), but not substantially, higher than those in Fennema herbage. Rotational grazing did not increase the differential in WSC concentration between the AberDart and Fennema varieties. However, there was a tendency (P = 0·07) for lambs rotationally grazing the AberDart swards to have a higher final live weight than lambs grazing the Fennema swards. Overall, lamb performance was increased when either perennial ryegrass variety was rotationally rather than continuously grazed (P < 0·001).  相似文献   

8.
Pasture herbage is a major source of minerals for livestock in pasture‐based production systems. Herbage mineral concentrations vary throughout the growing season, whereas mineral supplementation to livestock is often constant. The study objectives were to analyse the seasonal variation in herbage mineral concentrations in tall fescue [Schedonorus phoenix (Scop.) Holub]‐based pasture with regard to beef cattle mineral requirements and to create a statistical model to predict variation in herbage mineral concentrations across the growing season. Pasture herbage was analysed from 12 grazing systems in Virginia to determine its mineral concentration from April to October of 2008–2012. The pasture herbage, grown without fertilization, contained adequate macronutrient concentrations to meet the requirements of dry beef cows through the growing season and the requirements of lactating beef cows in April. Phosphorus supplementation appeared to be unnecessary for dry beef cows given adequate concentrations in pasture herbage. A model using month of harvest, soil moisture and relative humidity explained 75% of the variation in an aggregated mineral factor. The 90% prediction intervals indicated that N, P, K, S and Cu concentrations could be predicted within 1·35, 0·08, 0·80 and 0·07% and 3·83 mg kg?1 respectively. Prediction of herbage mineral concentrations could help to improve livestock health, reduce costs to producers and limit nutrient losses to the environment.  相似文献   

9.
The objective of this study was to examine the effect of herbage mass and daily herbage allowance (DHA) on sward characteristics and animal performance, dry‐matter intake, rumen pH and volatile fatty acid production of unsupplemented spring‐calving dairy cows throughout the main grazing season. Sixty‐eight Holstein‐Friesian dairy cows were randomly assigned across four treatments (n = 17) in a 2 × 2 factorial design. Two swards were created with different levels of pre‐grazing herbage mass [allocated above 4 cm (>4 cm); 1700 kg DM ha?1 (medium; M) or 2200 kg DM ha?1 (high; H)] and two levels of DHA (>4 cm; 16 or 20 kg DM per cow d?1). An additional eight lactating ruminally cannulated Holstein–Friesian dairy cows were randomly assigned to each treatment in a replicated 4 × 4 Latin square design. Sward and animal measurements were collected across four periods each of 1 week duration in April and May (PI) and July and August (PII). Maintaining the medium‐mass sward across the season improved the nutritive value of the sward in the latter part of the grazing season compared with high‐mass swards, thus resulting in increased animal intakes and milk production throughout PII. The higher organic matter digestibility of the medium‐compared with high‐masses during PII indicates that grazing severity and herbage mass in the spring to mid‐summer period will determine sward quality parameters in the late summer period.  相似文献   

10.
The use of imaging spectroscopy to predict the herbage mass of dry matter (DM), DM content of herbage and crude fibre, ash, total sugars and mineral (N, P, K, S, Ca, Mg, Mn, Zn and Fe) concentrations was evaluated. The experimental system used measured reflectance between 404 and 1650 nm at high spatial (0·28–1·45 mm2) and spectral resolution. Data from two experiments with Lolium perenne L. mini‐swards were used where the degree of sward damage or N‐fertilizer application varied. Regression models were calibrated and validated and the potential reduction in prediction error with multiple observations was estimated. The mean prediction errors for DM mass, DM content and N, total sugars, ash and crude fibre concentrations were 235–268 kg ha?1, 9·6–16·8 g kg?1, 2·4–3·4 g kg DM?1, 16·2–27·7 g kg DM?1, 5·8–6·5 g kg DM?1 and 8·4–10·4 g kg DM?1 respectively. The predictions for concentrations of P, K, S and Mg allowed identification of deficiency levels, in contrast to the concentrations of Na, Zn, Mn and Ca which could not be predicted with adequate precision. Prediction errors of DM mass may be maximally reduced to 95–142 kg ha?1 with 25 replicate measurements per field. It is concluded that imaging spectroscopy can provide an accurate means for assessment of DM mass of standing grass herbage. Predictions of macronutrient content and feeding value were satisfactory. The methodology requires further evaluation under field conditions.  相似文献   

11.
The provision of grass for early spring grazing in Ireland is critical for spring calving grass‐based milk production systems. This experiment investigated the effect of a range of autumn closing dates (CD), on herbage mass (kg DM ha?1), leaf area index (LAI) and tiller density (m?2) during winter and early spring. Thirty‐six grazing paddocks, closed from 23 September to 1 December 2007, were grouped to create five mean CD treatments – 29 September, 13 October, 27 October, 10 November, 24 November. Herbage mass, tiller density and LAI were measured every 3 weeks from 28 November 2007 to 20 February 2008; additionally, herbage mass was measured prior to initial spring grazing and tiller density was measured intermittently until September 2008. Delaying CD until November significantly (P < 0·05) reduced herbage mass (by approximately 500 kg DM ha?1) and LAI (by approximately 0·86 units) in mid‐February. On average, 35% of herbage mass present on swards on 20 February was grown between 28 November and 30 January. LAI was positively correlated with herbage mass (R2 = 0·78). Herbage mass increased by approximately 1000 kg DM ha?1 as spring grazing was delayed from February to April. Tiller density increased from November to February, although it did fluctuate, and it was greatest in April (9930 m?2). This experiment concludes that in the south of Ireland adequate herbage mass for grazing in early spring can be achieved by delaying closing to early mid‐October; swards required for grazing after mid‐March can be closed during November.  相似文献   

12.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

13.
Seasonal changes in herbage mass and herbage quality of legume‐based swards under grazing by sheep or cattle were investigated at four locations in climatically different zones of Europe: Sardinia (Italy), southern France, northern Germany and south‐west England (UK). At each location standard treatments were applied to legumes typical of species widely used in each locality: Medicago polymorpha in Italy, Medicago sativa in France, and Trifolium repens in Germany and in UK. At each site comparisons were made of two other legumes: Trifolium subterraneum and Hedysarum coronarium in Italy, Onobrychis sativa and Trifolium incarnatum in France, Trifolium pratense and Lotus corniculatus in Germany, and Trifolium ambiguum and L. corniculatus in UK. Legumes were sown in mixture with locally appropriate companion grasses, and measurements were made over two or three grazing periods. In Italy M. polymorpha swards gave the greatest herbage mass in grazing period 1 but H. coronarium was more persistent. At the French site all legumes established poorly with no significant herbage mass differences between treatments. At both the UK and German sites L. corniculatus maintained a high proportion of legume in the sward; T. repens showed poor persistence under continuous sheep grazing in UK but persisted under cattle grazing in Germany, while T. ambiguum was slow to establish in the UK, and T. pratense proved to be of comparable herbage mass to the standard T. repens‐based sward in the last year of the experiment. The concentration of crude protein and in vitro digestibility of organic matter in the dry matter of herbage showed greater within‐season variation than between treatments at each site. It is concluded that, in addition to currently used species, legume‐based swards containing H. coronarium, O. sativa and L. corniculatus all have potential to contribute to forage production for low‐input grazing and their use merits further consideration in systems of livestock production in Europe.  相似文献   

14.
A perennial ryegrass (Lolium perenne L.)‐dominated sward on a well‐drained soil (Experiment 1) and a creeping bent (Agrostis stolonifera L.)‐dominated sward on a poorly drained soil (Experiment 2) were subjected to four treading treatments: control (C, no damage), light damage (L), moderate damage (M) or severe damage (S) to quantify the effects on herbage dry‐matter (DM) production and tiller density. In Experiment 1, treading damage was imposed in spring. In Experiment 2, one‐third of the site was damaged in autumn, one‐third in spring and one‐third in both spring and autumn. Both sites were rotationally grazed after treading treatments. Pre‐grazing herbage mass was measured eight times in Experiment 1 and seven times in Experiment 2 on each plot, and tiller density was assessed four times in each experiment. In Experiment 1, pre‐grazing herbage mass was reduced by 30% in S plots at the first harvest after damage, but cumulative pre‐grazing herbage DM production was not different between treatments (12·7 t DM ha?1). In Experiment 2, annual cumulative pre‐grazing herbage mass was reduced by between 14 and 49%, depending on intensity of treading damage event and season when damage occurred. Tiller density was not affected by treatment in either experiment. A perennial ryegrass‐dominated sward on a well‐drained soil was resilient to heavy treading damage. A creeping bent‐dominated sward on poorly drained soil requires a more careful grazing management approach to avoid major losses in cumulative pre‐grazing herbage mass production during wet weather grazing events.  相似文献   

15.
The effects of allowance of extended (deferred) grazed herbage (AEGH) and herbage allocation management (HAM) were studied in ewe lambs (248) and late‐gestation ewes (152), respectively, on commercial farms in south‐east Ireland in 2005–06. In Experiment 1, which consisted of four treatments, the effects of AEGH (0·75, 1·25 and 1·75 kg DM per head daily) and concentrate supplementation (0·5 kg per head daily with the 0·75 kg DM herbage allowance) on lamb performance during the extended grazing (16 December to 3 March) and subsequent grazing (4 March to 11 August) seasons were evaluated. Increasing AEGH increased herbage intake linearly (P < 0·001) and live weight (P < 0·001) at the end of extended grazing and the subsequent grazing season. In Experiment 2, single‐ and twin‐bearing ewes were allocated to either a conventional (single‐ and twin‐bearing ewes grazed separately) or leader–follower system (twin‐ and single‐bearing ewes, as leaders and followers respectively) of HAM from 30 January to 24 March. The same quantities of herbage were offered daily for each system. System of HAM affected ewe condition score at lambing but did not alter (P > 0·05) subsequent lamb birth or weaning weights. It is concluded that increasing AEGH to ewe lambs increased liveweight gain during extended grazing and resulted in heavier animals in mid August of the subsequent grazing season. For ewe lambs each 1 kg concentrate DM had the same feed value as 2·4 kg DM AEGH. Use of a leader–follower system for ewes in late pregnancy did not alter lamb birth weight or subsequent performance.  相似文献   

16.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

17.
The effect of feeding indoors fresh perennial ryegrass vs. grazing on ingestive behaviour, release of cell contents and comminution of particles during ingestion, as well as on gas production of ingested boli fermented in vitro, was studied. Indoor feeding and grazing were compared using four dairy cows according to a triple reversal design with six periods. Chemical and morphological composition of the ingested herbage was similar for both indoor feeding and grazing treatments. The intake rate was markedly higher indoors compared with grazing [52·1 vs. 22·9 g dry matter (DM) min?1] with heavier boli and less saliva added per gram of DM intake. The proportions of intracellular nitrogen and chlorophyll released during mastication after ingestion of herbage fed indoors were lower, and the median size of the particles in the boli was larger (5·97 vs. 4·44 mm) compared with grazing. As a result, the rate of gas production in vitro was also lower for herbage fed indoors compared with grazing (0·423 vs. 0·469 mL min?1 g?1 incubated DM). Indoor feeding or grazing may have limited consequences in vivo on the kinetics of availability of nutrients for micro‐organisms in the rumen, because the consequences of the more extensive physical damage suffered by herbage ingested at grazing could be compensated by a lower intake rate.  相似文献   

18.
Growth of grass herbage in Ireland is highly seasonal with little or no net growth from November to February. As a result, feed demand exceeds grass supply during late autumn, winter and early spring. At low stocking rates [≤2 livestock units (LU) ha?1], there is potential to defer some of the herbage grown in autumn to support winter grazing. This study examined the effects of four autumn‐closing dates and four winter‐grazing dates in successive years on the accumulation of herbage mass and on tiller density in winter and subsequent herbage production at two sites in Ireland, one in the south and one in the north‐east. Closing swards from grazing in early and mid‐September (north‐east and south of Ireland respectively) provided swards with >2 t DM ha?1 and a proportion of green leaf >0·65–0·70 of the herbage mass above 4 cm, with a crude protein (CP) concentration of >230 g kg?1 DM and dry matter digestibility (DMD) of >0·700. The effects of autumn‐closing date and winter‐grazing date on herbage production in the subsequent year varied between the two sites. There was no significant effect of autumn‐closing date in the north‐eastern site whereas in the south earlier autumn closing reduced the herbage mass in late March by up to 0·34 t DM ha?1 and delaying winter grazing reduced the herbage mass in late March by up to 0·85 t DM ha?1. The effects of later grazing dates in winter on herbage mass continued into the summer at the southern site, reducing the herbage mass for the period from late March to July by up to 2 t DM ha?1. The effects of imposing treatments in successive years did not follow a consistent pattern and year‐to‐year variation was most likely linked to meteorological conditions.  相似文献   

19.
Warm‐season pasture residue may create problems for no‐till overseeding with cool‐season grasses in the USA Southern Plains. Removal of residue to facilitate overseeding, however, represents additional cost and labour that may not be available on small livestock farms. Field experiments were undertaken to assess the effects of above‐surface residues of warm‐season pasture averaging 1·62, 2·48 or 3·36 t DM ha?1 on establishment and herbage production of Italian ryegrass (Lolium multiflorum) or tall fescue (Festuca arundinacea) overseeded by broadcasting or by no‐till drilling into dormant warm‐season pasture. On average, no‐till drilling was more effective than broadcasting in establishing both grass species, but it was no more effective than broadcasting when used with the greatest amount of residue. Cool‐season grass production was increased by 0·16 when no‐till drilled, but combined yearly total herbage production of cool‐ and warm‐season grasses was increased by 0·07 when cool‐season grasses were established by broadcasting. Amount of residue at sowing did not significantly affect herbage yield of cool‐season grass, but increased residue in autumn resulted in a 0·16 increase in total herbage production in the year following sowing. Residue amount did not affect over‐winter survival of grass seedlings, and productivity benefits of increased residue are small compared with reduced harvest arising from underutilization of warm‐season pasture residue in autumn.  相似文献   

20.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号