首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Validation of spatially distributed models using spatially distributed data represents a vital element in the development process; however, it is rarely undertaken. To a large extent, this reflects the problems associated with assembling erosion rate data, at appropriate temporal and spatial scales and with a suitable spatial resolution, for comparison with model results. The caesium-137 (137Cs) technique would appear to offer considerable potential for meeting this need for data, at least for longer timescales. Nevertheless, initial attempts to use 137Cs for model validation did not prove successful. This lack of success may be explained by the important role of tillage erosion in redistributing soil within agricultural fields and, therefore, contributing to the 137Cs-derived soil redistribution rates. This paper examines the implications of tillage erosion for the use of 137Cs in erosion model validation and presents an outline methodology for the use of 137Cs in model validation. This methodology acknowledges and addresses the constraints imposed by the need to: (1) separate water and tillage erosion contributions to total soil redistribution as represented in 137Cs derived rates; (2) account for lateral mixing of 137Cs within fields as a result of tillage translocation; (3) simulate long-term water erosion rates using the model under evaluation if 137Cs-derived water erosion rates are to be used in model validation. The methodology is dependent on accurate simulation of tillage erosion and tillage translocation. Therefore, as greater understanding of tillage erosion is obtained, the potential for the use of 137Cs in water erosion model validation will increase. Caesium-137 measurements remain one of the few sources of spatially distributed erosion information and, therefore, their potential value should be exploited to the full.  相似文献   

2.
Increasing concern for problems of soil degradation and the off‐site impacts of accelerated erosion has generated a need for improved methods of estimating rates and patterns of soil erosion by water. The use of environmental radionuclides, particularly 137Cs, to estimate erosion rates has attracted increased attention and the approach has been shown to possess several important advantages. However, the use of 137Cs measurements to estimate erosion rates introduces one important uncertainty, namely, the need to employ a conversion model or relationship to convert the measured reduction in the 137Cs inventory to an estimate of the erosion rate. There have been few attempts to validate these theoretical conversion models and the resulting erosion rate estimates. However, there is an important need for such validation, if the 137Cs approach is to be more widely applied and reliance is to be placed on the results obtained. This paper reports the results of a study aimed at validating the use of two theoretical conversion models, namely the exponential depth distribution model and the diffusion and migration model, that have been used in several recent studies to convert measurements of 137Cs inventories on uncultivated soils to estimates of soil erosion rates. The study is based on data assembled for two small catchments (1.38 and 1.65 ha) in Calabria, southern Italy, for which measurements of sediment output are available for the catchment outlet. The two catchments differ in terms of the steepness of their terrain, and this difference is reflected by their sediment yields. Because there is no evidence of significant deposition within the two catchments, sediment delivery ratios close to 1.0 can be assumed. It is therefore possible to make a direct comparison between the estimates of the mean annual erosion rates within the two catchments derived from 137Cs measurements and the measured sediment outputs. The results of the comparison show that the erosion rate estimates provided by both models are reasonably consistent with the measured sediment yields at the catchment outlets. However, more detailed assessment of the results shows that the validity of the erosion rate estimates is influenced by the magnitude of the erosion rates within the catchment. The exponential depth distribution model appears to perform better for the catchment with higher erosion rates and to overestimate erosion rates in the other catchment. Similarly, the basic migration and diffusion model performs better for the catchment with lower erosion rates and overestimates erosion rates in the other catchment. However, the improved migration and diffusion model appears to perform satisfactorily for both catchments. There is a need for further studies to extend such independent validation of the 137Cs technique to other environments, including cultivated soils, and to other conversion models and procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The semiarid regions of Spain, including the central part of the Ebro River basin, are under threat due to desertification. Severe erosion, as a result of poor land management, has led to degradation of the soil resource, and there is a clear need for quantitative erosion rate data to evaluate the problem. This study aimed to examine the potential for using caesium-137 to identify the patterns and rates of soil erosion and redistribution within this semiarid environment. Samples for the determination of caesium-137 were collected from uncultivated slopes and cultivated valley floor sites near the head and outlet of a small representative basin in the Las Bardenas area. The measured patterns of caesium-137 mobilization, redistribution and export provide a semiquantitative indication of the variation in erosion within the study site. Calibration of the caesium-137 measurements, taking account of the differing behaviour of radiocaesium on cultivated and uncultivated land, allows estimation of the actual rates of erosion and deposition involved. The results show (1) the erosion rates on the cultivated land (1.6–2.5 kg m−2 yr−1) are typically more than five times those seen on the uncultivated land (0.2–0.4 kg m−2 yr−1), and (2) erosion on the uncultivated land is significantly less severe at the head of the basin than at the outlet. Study of the vegetation cover suggests that lower growing shrubs and grasses may be more effective in reducing erosion in this environment than trees.  相似文献   

4.
The spatial variation of soil erosion and deposition rates was studied in a small catchment cultivated by rainfed agriculture, in the Mouriki area, Viotia Greece, using the 137Cs technique. A 25 m grid was established parallel to the slope and the 137Cs inventories were defined for the grid points. After establishing the local reference inventory, the soil erosion and deposition rates were estimated using the 137Cs residuals for individual points on the grid in conjunction with the four conversion (calibration) models described by Walling and He (2001) [Models for converting 137Cs measurements to estimates of soils redistribution rates on cultivated and uncultivated soils]. The conversion models were validated by means of sensitivity analysis and using local experimental data. The resulting estimates of soil redistribution rates were interpolated by means of kriging, using Surfer Golden software. The magnitude of the soil erosion rates depend on many factors, including the location of the sampling point, the local slope, and the soil properties. The mass balance model 2 (MBM2) and mass balance model incorporating soil movement by tillage (MBM3) conversion models predict soil redistribution rates of the same order of magnitude as the experimental data and are able to take account of Chernobyl fallout. Predicted soil erosion rates for catchment grid varied from 6.71 to 85.55 t ha−1 per year using MBM2 and from 3.54 to 95.78 t ha−1 per year using MBM3. Deposition rates varied from 1.23 to 168.19 t ha−1 per year using MBM2 and from 3.24 to 189.18 t ha−1 per year using MBM3. High correlation was apparent between erosion/deposition rates (MBM2) and soil P (P<0.001), soil K (P<0.001), soil organic matter % (P<0.05), point slope (P<0.05), clay % (P=0.053) and altitude (P=0.057). The total soil losses from the catchment have been estimated at 18.34 t ha−1 per year using MBM2 and 22.12 t ha−1 per year using MBM3.  相似文献   

5.
[目的]探讨用~(137)Cs示踪技术估算土壤侵蚀量方法(以下简称"~(137)Cs示踪方法")所存在的几个关键问题,促进该方法的标准化和系统化。[方法]对大量已发表的相关文献进行分析,根据作者的研究经验,归纳出~(137)Cs示踪方法在实践应用中所存在的核心问题。[结果]~(137)Cs示踪方法中关于~(137)Cs在空间是均匀分布的假设存在不合理性,不能直接用于定量估算单钻点取样的土壤侵蚀量。~(137)Cs活度的空间变化存在随机性的成分。敏感度和不确定性分析结果证明~(137)Cs活度的空间随机变化量是~(137)Cs示踪方法不确性的最大来源。[结论]可以用多钻点样本平均值来减少~(137)Cs随机变化量所引起的侵蚀估算误差。以统计学为基础的试验设计和采取独立样本的办法可以消除该误差。虽然~(137)Cs模型已被广泛应用,但由于缺乏长期观测资料诸多模型还处在理论研究阶段,没有得到严格的验证和评判。因为不同模型估算的侵蚀量差别甚大,模型验证和筛选对该方法的成功运用至关重要。  相似文献   

6.
Caesium-137 (137Cs) has been widely used for the determination of soil erosion and sediment transport rate. However, depth distribution patterns of 137Cs in the soil profile have not been considered. As a result, the erosion rates may be over-estimated or underestimated. This paper presents the depth distribution of 137Cs fallout in different soil profiles using published data. Three types of depth distribution functions of 137Cs are given by using statistical regression methods, the exponential type, the peak type and the decreasing type (including uniform distribution). Relationships between 137Cs loss and soil erosion rate are given by introducing the regression functions. The influence of depth distribution of 137Cs on the estimation of the soil erosion rate was simulated. Simulation results showed that very different soil erosion rates could be deduced for different depth distributions when 137Cs loss is the same, which indicates that the depth distribution pattern should be considered when soil erosion is estimated by using 137Cs. Simulation results also suggested that it is most important to determine the depth distribution of 137Cs near the soil surface and the annual relative loss of 137Cs by using the depth distribution of 137Cs as a criterion to estimate the soil erosion rate.  相似文献   

7.
Although much of the recent attention on the environmental problems has focused on climatic change, there is also increasing concern that accelerated soil erosion and associated land degradation represent a major problem for sustainable development and environmental protection. There is an urgent need to obtain reliable quantitative data on the extent and rates of soil erosion worldwide to provide a more comprehensive assessment of the magnitude of the problems and to underpin the selection of effective soil conservation measures. The use of environmental radionuclides, in particular 137Cs, affords an effective and valuable means for studying erosion and deposition within the landscape. The key advantage of this approach is that it can provide retrospective information on medium-term (30–40 years) erosion/deposition rates and spatial patterns of soil redistribution, without the need for long-term monitoring programmes. Advantages and limitations of the technique are highlighted. The launching of two closely linked International Atomic Energy Agency (IAEA) research networked projects in 1996 involving some 25 research groups worldwide has made a major contribution to co-ordinating efforts to refine and to standardise the 137Cs technique. The efficacy and value of the approach has been demonstrated by investigations in a number of environments. Significant developments that have been made to exploit its application in a wide range of studies are reported in this review paper. Other environmental radionuclides, such as unsupported 210Pb and 7Be offer considerable potential for use in soil erosion investigations, both individually and complementary to 137Cs. The IAEA through research networks and other mechanisms is promoting further development and applications of these radionuclides in soil erosion and sedimentation studies for a sustainable resource use and environmental protection.  相似文献   

8.
Quantitative assessment of soil redistribution in landscapes remains a challenging task. In this study we used radioactive soil redistribution tracer 137Cs together with soil morphological characteristics and empirically-based modeling for quantitative assessment of long-term soil conservation effectiveness. Three pairs of arable slopes were selected, all located within the territory of the Novosil experimental station (the Orel Region, central European Russia). One slope in each pair undergone creation of artificial terraces with forest shelter belts located parallel to topography contour lines and spaced at approximately 100 m from each other.Preliminary results have shown that slopes with soil-protective measures are characterized by a 11–80% reduction of average soil redistribution rates, as shown by soil profile morphology and 137Cs methods. Discrepancy in values obtained can be attributed to differences in temporal resolution of methods as well as possible influence of individual extreme events on results yielded by the 137Cs method. On the other hand, more significant decrease in average soil degradation rates on slopes with soil conservation (62–75% for each pair of slopes) was predicted by the model.The 137Cs method overestimates gross and net soil redistribution rates, as a result of the influence of extreme erosion prior to tillage mixing of a fresh fallout isotope, not accounted for by calibration models used. Another shortcoming of the estimations obtained is that sediment redeposition directly within forest belts was not taken into account. Therefore, net erosion rates obtained for slopes with forest belts should be regarded as overestimation. Nevertheless, it can be generally concluded that the multi-technical approach has allowed acquiring much more detailed information on temporal and spatial variability of soil redistribution rates than single method-based studies.  相似文献   

9.
The bomb-test fallout radionuclide caesium-137, has found increasing application in geomorphological investigations of soil erosion. Comparatively little work has investigated the potential for using 134Cs and 137Cs derived from the 1986 Chernobyl accident. Results are reported from an agricultural foothill environment in the Beskidy Mountains of southern Poland. The high degree of spatial variability associated with Chernobyl fallout deposition poses considerable limitations on the potential for using radiocaesium measurements to elucidate detailed patterns of soil loss. Despite this problem, the redistribution of radiocaesium from field plots to terrace edges suggests a means for estimating the overall budgets for sediment transfer on cultivated slopes.  相似文献   

10.
This study sought to contribute to the understanding of soil redistribution by tillage on terraces and the extent and causes of within-field variation in soil properties by examining the spatial distributions of soil redistribution rates, derived using caesium-137, and of total nitrogen and total phosphorus concentrations, within a ribbon and a shoulder terrace in a yuan area of the Loess Plateau of China. Additional water erosion rate data were obtained for nine other terraces. Water erosion rates on the ribbon terraces were low (<1 kg m−2 yr−1), unless slope tangents exceeded 0·1. However, despite the use of animal traction, high rates of tillage erosion were observed (mean 5·5 kg m−2 yr−1). Soil nitrogen concentrations were related to rates of soil redistribution by tillage on the ribbon terrace examined in detail. In general, higher rates of water erosion (0·5–2·9 kg m−2 yr−1) and lower rates of tillage erosion (mean 1·4 kg m−2 yr−1) were evident on the longer shoulder terraces. On the shoulder terrace examined in detail, soil phosphorus concentrations were related to net rates of soil redistribution. A statistically significant regression relationship between water erosion rates and the USLE length and slope factor was used in conjunction with the simulation of tillage erosion rates to evaluate a range of terrace designs. It is suggested that off-site impacts of erosion could be further reduced by ensuring that the slope tangents are kept below 0·06 and lengths below 30 m, especially on the shoulder terraces. Tillage erosion and the systematic redistribution of soil nutrients could be reduced by modification of the contour-cultivation technique to turn soil in opposing directions in alternate years. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This study was carried out to obtain a representative set of data on long-term erosion rates from a pilot area located close to the Jaslovske Bohunice village, in western Slovakia using the 137Cs-method. The study area chosen was representative of the hilly loess cultivated areas of Slovakia. The sampling strategy was based on a multiple transect approach. Analyses of the samples for 137Cs activity were made at the Nuclear Power Plant Research Institute, Jaslovske Bohunice. The 137Cs-method was used to obtain long-term estimates of soil erosion in the Jaslovske Bohunice site, a representative hilly loess cultivated area of Slovakia. The estimated reference 137Cs inventory was 2910 Bq m−2, with a coefficient of variation of 4.3%.Examination of the 137Cs redistribution in relation to the topography of the study area revealed that, within individual transects the 137Cs inventories were closely related to major landforms. The 137Cs inventories were considerably lower on the slopes than on the plateau and they were highest in the valley. However, when plotted against a selection of individual quantitative slope parameters, i.e. the S and the LS factors of the USLE or slope inclination, the correlations obtained were weak.Three conversion models, i.e. the proportional model (PM), the simplified mass balance model (MBM1) and the standard mass balance model (MBM2), from the set of models developed at Exeter University, Great Britain were selected to interpret the resulting 137Cs measurements into soil erosion/deposition rates. The mean erosion rates estimated with the PM were 22.4, 35.6 with MBM1 and 17.3 t ha−1 per year with MBM2. There was a good agreement between the average of these mean erosion rates (25.1 t ha−1 per year) for the Jaslovske Bohunice site and the estimated mean soil erosion rate obtained for small erosion plots (15 t ha−1 per year) for conditions similar to the study site. Nevertheless, further research on the application of the 137Cs-method, in particular the independent validation of the results obtained, is needed. Several issues requiring further study have been highlighted.  相似文献   

12.
Buyukcekmece Reservoir, located in the western outskirts of Istanbul, is one of the major water resources of Istanbul, and supplies drinking water to about 4 million people. Erosion in the catchment of the reservoir is an important problem in terms of its longer-term sustainability for water supply. There is an urgent need to obtain reliable quantitative data regarding erosion and deposition rates within the catchment to assess the magnitude of the problem and to plan catchment management strategies. In the absence of existing data, attention has focussed on the potential for using 137Cs measurements to provide retrospective estimates of medium-term soil erosion rates within the catchment over the past ca. 40 years. To date, the 137Cs approach has not been used to document soil redistribution rates in Turkey and this contribution reports an attempt to confirm the viability of the approach and the results of a preliminary investigation of rates of soil loss from uncultivated areas within the catchment. The soil redistribution rates estimated using the profile distribution conversion model varied from − 16.11 (erosion) to 4.59 (deposition) t/ha/year.  相似文献   

13.
利用137Cs示踪农业耕作土壤侵蚀速率的定量模型   总被引:32,自引:4,他引:28  
建立了一个根据农业耕作土壤剖面中^137Cs的损失量与土壤侵蚀量之间关系的定量模型,在假设^137Cs在耕层中得到充分的混合而变得均一的基础上,根据质量平衡模型推导而成,模型显示^137Cs的衰变常数,年沉降分量,耕层厚和采样年份对年平均土壤侵蚀速率都有重大影响,模型结果还说明,^137Cs的损失量与年平均土壤侵蚀量之间的关系既非线性关系亦非指数关系,而是一种复杂的曲线关系。  相似文献   

14.
Soil erosion significantly affects the most productive lands in Argentina, particularly the region called “Pampa Ondulada”. Quantification of the actual rates and patterns of soil loss is necessary for designing efficient degradation control strategies. The aim of this investigation was to gather using the 137Cs technique a reliable set of data of erosion and sedimentation rates, in order to describe the long-term erosive landscape dynamic in a 300 ha basin representative for the “Pampa Ondulada” region of Argentina. The general topography of the basin is undulated with slopes gradients between 0 and 2.5% and slope lengths up to 800 m long. The main land use consisted in annual cropping under conventional tillage.For the soil erosion study in the basin the 137Cs technique was used, which is based on the comparison between the 137Cs inventories surveyed with a local reference 137Cs profile. The sampling strategy was based on a multiple transect approach.The estimated mean soil erosion rates obtained applying Mass Balance Model 2 for the studied hillslopes ranged between −11.5 and −36 t ha−1 per year and fitted the low and moderate erosion classes according to FAO. These values ranged beyond the admitted tolerance. Sedimentation was observed at the lower landscape positions probably related to changes from convex to concave slopes. The application of the 137Cs technique in the studied basin proved to be a useful and sensible tool for assessing erosion/deposition rates. In areas with low topographic gradients like the Pampa Ondulada region, the slope length appears to be an important property for predicting spatial patterns of erosion rates.  相似文献   

15.
The southeastern Tibetan Plateau, which profoundly affects East Asia by helping to maintain the stability of climate systems, biological diversity and clean water, is one of the regions most vulnerable to water erosion, wind erosion, tillage erosion, freeze–thaw erosion and overgrazing under global climate changes and intensive human activities. Spatial variations in soil erosion in terraced farmland (TL), sloping farmland (SL) and grassland (GL) were determined by the 137Cs tracing method and compared with spatial variations in soil organic carbon (SOC) and total nitrogen (total N). The 137Cs concentration in the GL was higher in the 0–0.03 m soil layer than in the other soil layers due to weak migration and diffusion under low precipitation and temperature conditions, while the 137Cs concentration in the soil layer of the SL was generally uniform in the 0–0.18 m soil layer due to tillage-induced mixing. Low 137Cs inventories appeared at the summit and toe slope positions in the SL due to soil loss by tillage erosion and water erosion, respectively, while the highest 137Cs inventories appeared at the middle slope positions due to soil accumulation under relatively flat landform conditions. In the GL, the 137Cs data showed that higher soil erosion rates appeared at the summit due to freeze–thaw erosion and steep slope gradients and at the toe slope position due to wind erosion, gully erosion, freeze–thaw erosion and overgrazing. The 137Cs inventory generally increased from upper to lower slope positions within each terrace (except the lowest terrace). The 137Cs data along the terrace toposequence showed abrupt changes in soil erosion rates between the lower part of the upper terrace and the upper part of the immediate terrace over a short distance and net deposition on the lower and toe terraces. Hence, tillage erosion played an important role in the soil loss at the summit slope positions of each terrace, while water erosion dominantly transported soil from the upper terrace to the lower terrace and resulted in net soil deposition on the flat lower terrace. The SOC inventories showed similar spatial patterns to the 137Cs inventories in the SL, TL and GL, and significant correlations were found between the SOC and 137Cs inventories in these slope landscapes. The total N inventories showed similar spatial patterns to the inventories of 137Cs and SOC, and significant correlations were also found between the total N and 137Cs inventories in the SL, TL and GL. Therefore, 137Cs can successfully be used for tracing soil, SOC and total N dynamics within slope landscapes in the southeastern Tibetan Plateau.  相似文献   

16.
Data on quantification of erosion rates in alpine grasslands remain scarce but are urgently needed to estimate soil degradation. We determined soil‐erosion rates based on 137Cs in situ measurements. The method integrates soil erosion over the last 22 y (time after the Chernobyl accident). Measured erosion rates were compared with erosion rates modeled with the Universal Soil Loss Equation (USLE). The comparison was done in order to find out if the USLE is a useful tool for erosion prediction in steep mountainous grassland systems. Three different land‐use types were investigated: hayfields, pasture with dwarf shrubs, and pasture without dwarf shrubs. Our test plots are situated in the Urseren Valley (Central Switzerland) with a mean slope steepness of 37°. Mean annual soil‐erosion rates determined with 137Cs of the investigated sites ranged between the minimum of 4.7 t ha–1 y–1 for pastures with dwarf shrubs to >30 t ha–1 y–1 at hayfields and pastures without dwarf shrubs. The determined erosion rates are 10 to 20 times higher compared to previous measurements in alpine regions. Our measurements integrated over the last 22 y, including extreme rainfall events as well as winter processes, whereas previous studies mostly reported erosion rates based on summer time and short‐term rainfall simulation experiments. These results lead to the assumption that heavy‐rainfall events as well as erosion processes during winter time and early spring do have a considerable influence on the high erosion amounts that were measured. The latter can be confirmed by photographs of damaged plots after snowmelt. Erosion rates based on the USLE are in the same order of magnitude compared to 137Cs‐based results for the land‐use type “pasture with dwarf shrubs”. However, erosion amounts on hayfields and pasture without dwarf shrubs are underestimated by the USLE compared to 137Cs‐based erosion rates. We assume that the underestimation is due to winter processes that cause soil erosion on sites without dwarf shrubs that is not considered by the USLE. Dwarf shrubs may possibly prevent from damage of soil erosion through winter processes. The USLE is not able to perform well on the affected sites. Thus, a first attempt was done to create an alpine factor for the USLE based on the measured data.  相似文献   

17.

Purpose

Forests play a key role in providing protection against soil erosion. Particularly, the role of vertical forest structure in increasing rainfall interception capacity is crucial for mitigating raindrop impact and reducing splash and rill erosion. For this reason, studies on the relationships between forest structures, the past management, and the observed rates of soil loss are needed. In the last few decades, importance was given to the use of cesium-137 (137Cs) as radioactive tracer to estimate soil erosion rates. The 137Cs technique is linked to the global fallout of bomb-derived radiocesium which occurred during a period extending from the mid 1950s to the late 1970s.

Materials and methods

The 137Cs technique, providing long-term retrospective estimates, could be related to forest treatments applied during the last decades in different sites, also considering the tree species composition. This approach could be useful to compare the effect of different canopy cover and biomass on soil erosion rates related to different tree species. In the work proposed here, a study area dominated by pine and beech high forests located in the Aspromonte Mountains (Calabria, Italy) was selected. The measurements, related to forest structural traits, focusing on canopy cover and biomass, and also on management approaches and forest types, are compared with rates of soil erosion provided by 137Cs.

Results and discussion

The overall results suggest that the minimum values of soil loss are documented in areas with higher canopy cover and biomass evidencing the protective effect provided by forests against soil erosion. Also, techniques based on the use of tracers like 137Cs proved to be helpful to select the best forest management options useful to optimize the protective role of forests, with the aim to reduce erosion processes in a long-term perspective.

Conclusions

The experiment indicates that care must be taken when new silviculture treatments are planned. These findings are in agreement with what documented by other authors in similar environments but need further studies to confirm the effectiveness of using 137Cs in different forest ecosystems.
  相似文献   

18.
Abstract. Despite a growing awareness that erosion on arable land in Britain is a potential hazard to long-term productivity, there is still only limited information on the rates involved, particularly long-term values. Use of the caesium-137 (137Cs) technique to study soil erosion within arable fields on various soil types at 13 locations in southern Britain has yielded retrospective measurements of the long-term ( c. 30 years) rates of soil loss and the patterns of soil redistribution within the study fields. The range of long-term rates of net soil loss extends from 0.61 per hectare per year on clay soils in Bedfordshire to 10.5 t per hectare per year on brown sands in Nottinghamshire. The measured rates are compared with other published data for similar soil types and land use, and the implications for long-term productivity and potential environmental impacts are considered.  相似文献   

19.
Soil degradation, by water and wind erosion is a matter of growing concern in Europe. Caesium-137, paired with conventional methods, is used in many countries to assess the extent of soil erosion. This technique was tested in a small watershed of the Laonnois area (Parisian Basin) which has been monitored for several years by traditional computerized and automatic techniques.This study makes possibe a comparison of both methods. The first results suggest a difference in the soil loss estimates in a ratio near 1:1.6. However, the two methods appear complementary: caesium-137 can be used to estimate rapidly the magnitude and the spatial pattern of soil erosion, while the conventional techniques can produce more accurate soil loss data and can be used for in-depth investigations of the influence of various factors (ground cover, cultural practices, etc.) on soil erosion.  相似文献   

20.
The purpose of this research was to evaluate the applicability of conventional 137Cs sampling and a simplified approach, for estimating medium-term tillage- and water-induced soil erosion and sedimentation rates on agricultural land in Chile. For this purpose, four study sites under contrasting land use and management were selected in central-south Chile. First, a conventional 137Cs approach, based on grid sampling was applied, adapting a mass balance conversion model incorporating soil movement by tillage to the site specific conditions of the study region. Secondly, using the same conversion model, the feasibility of estimating soil redistribution rates from measurements of 137Cs inventories based on composite soil samples taken along contour lines was also tested at all four sites. The redistribution rates associated with tillage and water and the total rates estimated using both methods correlated strongly at all four sites. The conventional method provides more detailed information concerning the redistribution processes operating over the landscape. The simplified method is suitable for assessing soil loss and sediment accumulation in areas exhibiting simple topography and almost similar slopes along the contour lines. Under these conditions, this method permits faster estimation of soil redistribution rates, providing the possibility of estimating soil redistribution rates over larger areas in a shorter time. In order to optimise the costs and benefits of the methods, the sampling and inventory quantification strategy must be selected according to the resolution of the required information, and the scale and complexity of the landscape relief. Higher tillage- and water-induced erosion rates were observed in the annually ploughed cropland sites than in the semi-permanent grassland sites. Subsistence managed crop and grassland sites also show greater erosion effects than the commercially managed sites. The 137Cs methods used permit discrimination between redistribution rates observed on agricultural land under different land use and management. The 137Cs technique must be seen as an efficient method for estimating medium-term soil redistribution rates, and for planning soil conservation and sustainable agricultural production under the climatic conditions and the soil type of the region of Chile investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号