首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
大豆异黄酮对畜禽生理机能的调控   总被引:2,自引:0,他引:2  
大豆异黄酮作为一类植物雌激素,对动物机体作用非常广泛.近年来研究发现大豆异黄酮对畜禽生理机能有一定的调控作用,本文综述了大豆异黄酮对畜禽生产性能、免疫功能和抗氧化功能等方面的调控作用.  相似文献   

2.
国内外相继有文献报道,红三叶草总异黄酮、大豆黄酮、大豆异黄酮、山楂叶黄酮等一些从植物提取的类黄酮对动物体内的脂类代谢具有调控作用[1~3],其中对大豆黄酮(ISO)的研究报道较多.  相似文献   

3.
大豆是人类膳食和畜禽饲粮中的主要蛋白质来源之一,其中富含大豆异黄酮等生物活性物质。近年来的研究表明,大豆异黄酮具有与哺乳动物内源性雌激素相似的化学结构,能与机体内的雌激素受体结合,发挥类雌激素作用和抗雌激素样作用。大豆异黄酮是否对雌性动物生殖系统产生促进作用,目前仍存在争议。本文从雌性动物生殖器官形态结构、发情周期和卵巢发育、生殖激素和繁殖性能等方面,系统综述和全面分析大豆异黄酮对雌性动物生殖系统的影响,为畜牧业中科学合理利用大豆异黄酮来提高畜禽的生殖性状提供科学依据。  相似文献   

4.
本实验室在异黄酮植物雌激素-大豆黄酮对大鼠、肉用仔鸡、仔猪和反刍动物生长及有关激素水平的影响方面进行了系列研究。结果表明:具有弱的雌激素样活性的大豆黄酮可显著增加雄性动物和公鸡的增重及饲料利用效率,提高血液睾酮、β-内啡肽、生长激素、胰岛素样生长因子一Ⅰ、三碘甲腺原氨酸、甲状腺素和胰岛素水平,但却使血液脲氮和胆固醇浓度降低,从而促进肌肉蛋白质沉积,加速肌肉生长和发育。然而,大豆黄酮对雌性动物生长和代谢激素状态无显著影响。并讨论了有关调控雄性动物肌肉生长的神经内分泌机制。  相似文献   

5.
大豆异黄酮可调控动物机体养分代谢,改善饲料利用率,可改善动物产品的品质,并有抗氧化作用,提高动物免疫功能和生产机能。因此,大豆异黄酮在畜禽营养中的作用越来越受到关注。但是大豆异黄酮主要以结合型的糖苷(glucosides)形式存在,从大豆中提取的大豆异黄酮中游离型的苷元占总量的2%-3%,结合型的糖苷占总量的97%-98%。研究发现:结合型的糖苷不具有最佳的生理活性状态,只有大豆异黄酮糖苷被水解脱去糖基转化成游离型的苷元形式才能被动物体吸收,发挥生理调节作用。  相似文献   

6.
大量医学上的试验证明,大豆异黄酮属于异黄酮类植物雌激素,具有雌激素双向调节作用,还具有抗肿瘤、预防骨质疏松、抗氧化、抗真菌、抗溶血与保护心血管等多种生理功能。文章将对大豆异黄酮调控免疫机能方面的研究作一综述。1大豆异黄酮对机体免疫机能的影响黄酮类化合物对动物免疫功能具有增加、抑制、双  相似文献   

7.
大豆异黄酮在家禽生产中的应用研究   总被引:2,自引:0,他引:2  
大豆异黄酮是大豆生长过程中形成的一类次级代谢产物,具有广泛的生物活性。在家禽的应用研究中发现,日粮中添加适量的大豆异黄酮能显著促进家禽生长、调控机体养分代谢、改善饲料利用率、提高产蛋率、延长产蛋期并具有抗氧化作用,可改善动物产品品质,提高动物免疫机能等作用。  相似文献   

8.
大豆黄酮对畜禽生理及生产的影响   总被引:1,自引:0,他引:1  
大豆黄酮是大豆异黄酮类化合物中主要游离甙元,动物吸收后在肝脏中参与一系列代谢过程,具有抗氧化、弱雌激素样与抗雌激素样、免疫调节等生理作用,能通过调控动物的内分泌以提高对营养成份的利用,改善动物的机体免疫能力以增强机体体质,提高动物繁殖性能、促进畜食生长、维持钙代谢及其动态平衡、提高饲料报酬,是具有良好开发前景的新型绿色饲料添加剂。  相似文献   

9.
大量的研究表明,植物雌激素大豆异黄酮具有广泛的生物学功能.其中抗氧化作用是其重要生理功能之一。该文介绍了大豆异黄酮的来源、理化特性和它在动物体内的代谢特征等,并就大豆异黄酮对畜禽的抗氧化作用和机理进行了综述。  相似文献   

10.
大豆异黄酮的生理作用及其在畜牧生产中的应用   总被引:1,自引:0,他引:1  
大豆异黄酮是从大豆中提取出的一类植物雌激素类物质,主要包括染料木黄酮、大豆黄酮和黄豆黄素等。近年来,研究者对大豆异黄酮在畜禽生产上的应用效果进行了广泛研究,发现其生物利用率高,可调控动物机体养分代谢,改善饲料利用率,并具有抗氧化作用,可改善动物产品品质,提高动物免疫机能和生产性能。此文主要从大豆异黄酮的生理作用及其在畜牧生产中的应用进行综述。  相似文献   

11.
敬敬  姚东  凌英会 《中国畜牧兽医》2020,47(10):3314-3322
骨骼肌是肌肉的主要构成部分,骨骼肌细胞发生增殖和分化的过程都是肌肉发育的基础,直接影响着家养动物的产肉性能。研究发现表观遗传修饰作用对骨骼肌细胞增殖分化具有重要的调控作用,表明该遗传修饰作用对家养动物肌肉发育具有重大的意义。作者从DNA甲基化对骨骼肌细胞增殖分化影响、组蛋白乙酰化所含因子调控基因选择表达作用、非编码RNA调控和染色体重塑作用所起的影响等方面分别介绍了表观遗传在骨骼肌细胞增殖分化过程中的研究进展,简述了不同修饰方式和不同作用因子对骨骼肌增殖和分化两个过程的影响。同时也回顾了前人在研究骨骼肌增殖分化过程所用到的方法和手段,进而分析了表观调控作用因子在骨骼肌生长过程中所起到的作用。旨在进一步阐述表观遗传修饰在骨骼肌增殖和分化过程中所起到的重要作用,增强对骨骼肌增殖分化调控过程的了解,为和动物生产实际相结合提供参考途径,同时也为骨骼肌生长发育等分子调控提供更多参考素材。  相似文献   

12.
Skeletal muscle is the most abundant tissue and the main component of muscle in animals.The process of skeletal muscle cell's proliferation and differentiation is the basis of muscle development and it's directly affects the meat production performance of domestic animals.It has been found that epigenetic modification plays an important role in regulating the proliferation and differentiation of skeletal muscle cells.In this study,the effects of epigenetics on skeletal muscle in terms of the effects of DNA methylation on the proliferation and differentiation of skeletal muscle cells,the selection and expression of factors regulated by histone acetylation,the regulation of non-coding RNA,and the effects of chromosome remodeling.Research progress in the process of muscle cell proliferation and differentiation,briefly describes the effects of different modification methods and factors on the two processes of skeletal muscle proliferation and differentiation.At the same time,the methods and means used by predecessor in the study of skeletal muscle proliferation and differentiation were reviewed,and then the role of apparent regulatory factors in skeletal muscle growth was analyzed.The purpose was to further explain the important role of epigenetic modification in the proliferation and differentiation of skeletal muscle,enhanced the understanding of the regulation of skeletal muscle proliferation and differentiation,provided a reference path for integration with animal production,and also provided skeletal muscle.Molecular regulation of such as growth and development provided more reference materials.  相似文献   

13.
肌细胞分化密切关系到肉用动物的肌肉产量,也与人类的一系列疾病(如肌肉萎缩、心脏病等)密切相关。胚胎成肌分化期决定了肌纤维数量,是动物骨骼肌发育的关键时期。动物成肌分化及骨骼肌发育严格受各种细胞信号分子和转录因子调控,其中microRNA(miRNA)和lncRNA发挥着重要作用。本文从动物胚胎成肌分化及调控途径、卫星细胞的分化及调控、非编码RNA对肌肉形成的调控等方面进行综述,并展望了畜禽动物骨骼肌生长发育分子调控机制的研究方向,为提高畜禽肌肉产量与质量提供一定的分子理论参考。  相似文献   

14.
肌肉生长抑制素对动物肌肉、脂肪和骨骼的影响   总被引:2,自引:0,他引:2  
肌肉生长抑制素是转化生长因子 β超家族成员之一,具有众多的生理功能。近来的研究表明,肌肉生长抑制素除对肌肉生长有负调控作用外,还对脂肪的沉积和骨骼的生长发育具有调节作用,甚至还能影响肌腱和韧带的强硬度。本文主要从肌肉生长抑制素的结构、基因表达及其对动物肌肉、脂肪和骨骼的作用等方面进行综述。  相似文献   

15.
microRNAs(miRNAs)是生物体内自然存在的一类长度约为22 nt的小分子非编码RNA,能够通过与靶基因mRNA 3'UTR不完全互补配对,降解靶基因mRNA或抑制其翻译,在转录后水平调控基因的表达,进而广泛参与调控机体生长、发育、疾病等多个生物学过程。骨骼肌约占人体体重的40%,是动物体维持正常生长发育必不可少的组成部分。miRNAs通过靶向骨骼肌发育、再生与疾病过程的关键因子,进而发挥调控作用。作为骨骼肌疾病的重要调控因子,miRNAs已成为肌肉相关疾病的检测标志物和靶向诊疗药物。近年来,随着对miRNAs研究的深入,有关miRNAs对骨骼肌调控的研究已成为生命科学领域的研究热点。作者综述了miRNAs参与调控骨骼肌细胞增殖、分化、再生与疾病等方面的研究进展,旨在为治疗肌肉疾病及提高畜禽肉品质提供理论依据。  相似文献   

16.
肌肉生长抑制素(MSTN)是转化生长因子β超家族的成员之一,又称生长分化因子8。MSTN主要在骨骼肌中广泛表达,并可在心肌、脂肪、乳腺等多个组织中表达,其作用主要体现在抑制骨骼肌生长发育、诱发肌萎缩等方面。MSTN可以通过多种途径协同作用于骨骼肌,即通过激活TGF-β、p38MAPK、ERK1/2、JNK等信号途径以及抑制IGF-AKT、Wnt信号途径来抑制肌细胞增殖分化;通过调控AKT途径、泛素-蛋白水解酶系统、自噬溶酶体系统来影响骨骼肌蛋白的合成与分解;MSTN还参与了与骨骼肌生成相关的脂肪代谢及骨形成等生理活动。论文重点阐述MSTN在肌细胞增殖分化、肌蛋白合成与分解、脂肪代谢、骨骼发育等方面的作用机制,并对其应用前景进行展望,为相关科学研究提供参考。  相似文献   

17.
骨骼肌生长发育过程及调控研究现状   总被引:1,自引:0,他引:1  
付玉  张博  凌遥  张浩 《中国畜牧兽医》2021,48(10):3565-3574
骨骼肌是哺乳动物最大的组织,其功能或再生特性的丧失会导致生长发育不良及肌肉骨骼疾病。骨骼肌有600多块单独的肌肉,起支撑和运动的作用。骨骼肌可以被机体自主控制,这也是其不同于平滑肌和心肌的一个特点。农业动物的骨骼肌是肉产品的主要来源,为人类提供优质的动物蛋白和营养物质。影响生长发育的因素众多,肌肉的生长和发育决定着肉的产量和品质,是农业动物生产中极其重要的经济性状。骨骼肌的生长、发育调控涉及众多基因及其相关通路的激活或沉默,是一个极其复杂的多层次调控网络。作者综述了骨骼肌的结构、组成和生长发育过程,介绍了包括生长因子和细胞因子等在内的多种调节因子对肌肉发育的调控作用,并结合现有研究结果预测到未来发展方向将是重要候选基因的体外和体内试验验证,最终转化到实际生产应用中,为骨骼肌生长发育的分子调控机制研究和肌肉遗传疾病的治疗提供理论基础和参考依据。  相似文献   

18.
大豆异黄酮的特性及其应用研究进展   总被引:2,自引:0,他引:2  
大豆异黄酮属异黄酮类植物雌激素,主要存在于豆科植物中,其主要成分为染料木素、大豆苷元和大豆黄素,具有类雌激素和抗雌激素活性的双重作用,且具有抗氧化、调节机体免疫系统及内分泌系统等多种生物学功能,在畜牧业中有着极其广泛的用途,其应用前景非常广阔,是目前国内外研究的热点.文章综述了黄酮类和异黄酮类化合物的结构、大豆异黄酮的...  相似文献   

19.
白藜芦醇是自然界中广泛存在于葡萄、花生等植物中的一类多酚类化合物,具有广泛的生物学活性,如抗氧化、抗肿瘤、抗衰老、保护心血管等。近年来,白藜芦醇在骨骼肌纤维类型转化上的功能研究也得到越来越多的关注。研究表明,白藜芦醇能诱导酵解型肌纤维向氧化型肌纤维的转化,从而达到改善禽畜肉质的目的。本文将综合最新研究报道,总结白藜芦醇对骨骼肌纤维类型转化的影响及其可能的作用机理,为其在畜牧生产上的应用提供理论基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号