首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate matter measurements (PM10, PM2.5) using a beta radiation attenuation monitor were performed at the Akrotiri research station (May 2003–March 2006) on the island of Crete (Greece). The mean PM10 concentration during the measuring period (05/02/03–03/09/04) was equal to 35.0?±?17.7 μg/m3 whereas the mean PM2.5 concentration (03/10/04–04/02/06) was equal to 25.4?±?16.5 μg/m3. The aerosol concentration at the Akrotiri station shows a large variability during the year. Mean concentrations of particulate matter undergo a seasonal change characterised by higher concentrations during summer [PM10, 38.7?±?10.8 μg/m3 (2003); PM2.5, 27.9?±?8.7 μg/m3 (2004) and 27.8?±?9.7 μg/m3 (2005)] and lower concentrations during winter [PM10, 28.7?±?22.5 μg/m3 (2003/2004); PM2.5, 21.0?±?13.0 μg/m3 (2004/2005) and 21.4?±?21.9 μg/m3 (2005/2006)]. Comparative measurements of the PM10 concentration between the beta radiation attenuation monitor, a standardized low volume gravimetric reference sampler and a low volume sequential particulate sampler showed that PM10 concentrations measured by the beta radiation attenuation monitor were higher than values given by the gravimetric samplers (mean ratio 1.17?±?0.11 and 1.21?±?0.08, respectively). Statistical and back trajectory analysis showed that elevated PM concentrations (PM10, 93.8?±?49.1 μg/m3; PM2.5: 102.9?±?59.9 μg/m3) are associated to desert dust events. In addition regional transport contributes significantly to the aerosol concentration levels whereas low aerosol concentrations were observed during storm episodes.  相似文献   

2.
PM2.5 and PAHs bound to PM2.5 were investigated in downtown Bologna, from January to June 2003, in order to determine the burden of the fine fraction in the aerosol of a typical urban environment of the Po Valley, a critical area in Northern Italy in terms of atmospheric pollution. The sampling campaign was divided into three parts: a winter sub-campaign, an intermediate campaign where PM2.5 and PM10 were simultaneously sampled and which identified PM2.5 as the major component of PM10, and a summer sub-campaign. Critical concentrations of both PM2.5 and PAHs were observed in winter time; for example, in January 2003 the mean value for the 24-h average PM2.5 concentration was 58 μg/m3, much higher than the annual arithmetic mean of 15 μg/m3 established by the US ambient air quality standard (NAAQS). Correspondingly, the mean value for benzo[a]pyrene (BAP) in PM2.5 was 1.79 ng/m3, again higher than the annual mean of 1 ng/m3, required by European regulations for BAP in PM10. In summer time the BAP concentration considerably decreases to 0.10 ng/m3 as the likely effect of photolysis and dilution on a higher boundary layer; PM2.5 decreases too, but the mean concentration (22 μg/m3) is still higher than the NAAQS value. Further analysis included TEM microscopy of collected particles and correlations between PM2.5, PAHs and gases (benzene, O3, CO, NO2, SO2). All these observations identified on-road mobile sources as the main source of emissions and, in general, of the poor air quality level in the city of Bologna.  相似文献   

3.

Purpose

A comprehensive study was conducted to investigate the presence of polycyclic aromatic hydrocarbons (PAHs) in Dongjiang River Basin (DRB) soils and to evaluate their sources and ecological and health risk. In addition, factors affecting the distribution and fate of PAHs in the soils such as emission density, soil organic matter, degradation, etc. were studied.

Materials and methods

Surface soil (0–20 cm) samples from 30 sampling sites in the rural areas of DRB were collected and analyzed for 17 polycyclic aromatic hydrocarbons (16 EPA priority PAHs and perylene). Positive matrix factorization model was used to investigate the source apportionment of these PAHs, and an incremental lifetime cancer risk (ILCR) was used to estimate the integrated lifetime risks of exposure to soil-borne PAHs through direct ingestion, dermal contact, and inhalation collectively.

Results and discussion

The total PAH concentrations in the rural soils in DRB range from 23.5 to 231 μg/kg with a mean concentration of 116 μg/kg. The predominant PAHs in the rural soils were naphthalene, fluoranthene, phenanthrene, and benzo(b)fluoranthene. Cluster analysis was performed to classify the soil PAHs into three clusters, which could be indicative of the soil PAHs with different origins and different properties. Source apportionment results showed that coal, biomass, oil, commercial creosotes, and vehicle contributed 24 %, 24 %, 17 %, 17 %, and 18 % of the total soil PAH burden, respectively. The ILCR results indicated that exposure to these soil-borne PAHs through direct ingestion, dermal contact, and inhalation collectively produces some risk.

Conclusions

PAHs in the soils of the DRB will produce long-term influences on rivers and oceans via soil erosion and river transport. Therefore, PAHs in rural soils of DRB have potential impacts on the water supply and human health risk.  相似文献   

4.
Surface and core sediments from Lake Maryut, Egypt, one of the most polluted lakes in Egypt, were analyzed for polycyclic aromatic hydrocarbons (PAHs) using gas chromatography?Cmass spectrometry. This investigation represents the first extensive study of the distribution and sources of PAHs in sediments from Lake Maryut. The total PAHs concentrations (sum of 39 PAH compounds) in surface sediments varied greatly depending on the sampling location and ranged from 106 to 57,800 ng/g dry weight with a mean concentration of 6,950 ng/g. The most polluted areas are distributed in areas which are mainly influenced by municipal sewage and industrial effluent discharges, suggesting a direct influence of these sources on the pollutant distribution patterns. PAH concentrations were one to two orders of magnitude higher in comparison with those reported for riverine/estuaries systems around the world. Molecular indices, such as pyrogenic index (PI), methylphenanthrenes to phenanthrene ratio, HMWPAH/LMWPAH, A-PAHs/P-PAHs, FL/FL?+?PY, BaP/BaP?+?C, IP/IP?+?BgP, and Per/??(penta-aromatics) were calculated to evaluate different hydrocarbon origins and their relative importance. In general, sediments from the main basin and northwest basin of Lake Maryut showed the highest PAH concentrations with petrogenic signatures, indicating major sources of petrogenic PAHs in the city. On the other hand, lower levels of PAHs with a pyrogenic signature were widely recorded in areas that are distant from anthropogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. The concentrations of perylene relative to the penta-aromatic isomers are dominant especially in locations associated with terrestrial inputs and in the deepest core sediments, indicating diagenetic origin for the presence of perylene. Temporal trends of PAH concentrations in both cores sediments were influenced by input pathways and followed the economic development and the environmental policies of the Egyptian Government in the last 15 years. Finally, PAH levels in sediments were compared with Sediments Quality Guidelines (effects range median?Ceffects range low) for evaluation probable toxic effects on organism. Results suggest an ecotoxicological risk for benthic organisms mainly in the main basin area, where high concentrations of PAHs were found in sediments influenced by anthropogenic activities.  相似文献   

5.
The concentration and size distribution of bacterial and fungal aerosol was studied in 15 houses. The houses were categorized into three types, based on occupant density and number of rooms: single room in shared accommodation (type I), single bedroom flat in three storey buildings (type II) and two or three bedroomed houses (type III). Sampling was undertaken with an Anderson six-stage impactor during the summer of 2007 in the living rooms of all the residential settings. The maximum mean geometric concentration of bacterial (5,036 CFU/m3, ± 2.5, n?=?5) and fungal (2,124 CFU/m3, ± 1.38, n?=?5) aerosol were in housing type III. The minimum levels of indoor culturable bacteria (1,557 CFU/m3, ±1.5, n?=?5) and fungal (925 CFU/m3, ±2.9, n?=?5) spores were observed in housing type I. The differences in terms of total bacterial and fungal concentration were less obvious between housing types I and II as compared to type III. With reference to size distribution, the dominant stages for culturable bacteria in housing types I, II and III were stage 3 (3.3–4.7 μm), stage 1 (7 μm and above) and stage 5 (1.1–2.1 μm), respectively. Whereas the maximum numbers of culturable fungal spores were recovered from stage 2 (4.7–7 µm), in housing type I, and from stage 4 (2.1–3.3 μm) in both type II and III houses. The average geometric mean diameter of bacterial aerosol was largest in type I (4.7 μm), followed by type II (3.89 μm) and III (1.96 μm). Similarly, for fungal spores, type I houses had the highest average mean geometric diameter (4.5 μm), while in types II and III the mean geometric diameter was 3.57 and 3.92 μm, respectively. The results indicate a wide variation in total concentration and size of bioaerosols among different residential settings. The observed differences in the size distributions and concentrations reflect their variable airborne behaviour and, as a result, different risks of respiratory exposure of the occupants to bioaerosols in various residential settings.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in the urban atmosphere. In particular, atmospheric pollution has increasingly become severe in China due to its rapid urbanization and industrialization. In recent years, a few studies have presented information about POPs (such as PAHs, PCBs, OCPs) in aerosols at a molecular level in a limited number of cities such as Beijing, Qingdao and Guangzhou, as well as Hong Kong. Whereas, these cities are located in northern and southern China, respectively, where characteristics of atmospheric pollution might be different from those in the eastern cities, such as Shanghai. Atmospheric particle pollution is a persistent problem in Shanghai, a typical metropolis of China, which has several huge industrial regions. In order to gain a comprehensive understanding of the present state, properties and sources of PAHs pollution in Shanghai, PM10 samples were collected at Coal-Fired Power Plant (CFP), Chlor-Alkali Chemical factory (CAC) and Coking and Chemical factory (CCF) in an industrial area, during the period, November 2004–September 2005. The concentrations of 16 PAHs were analyzed using the HPLC with UV visible detector. The results showed that the mean value of total PAHs in the industrial area was 64.85 ng m?3; 3-ring PAHs were found at low levels, while 4-, 5- and 6-ring PAHs were found at high levels. The levels of BaP were 3.07 and 7.16 ng m?3 at Chlor-Alkali Chemistry Factory and Coking and Chemistry Factory sites, respectively. PAHs levels exhibited distinct seasonal variation, with the highest level in autumn and the lowest in summer. The major source of PAHs at the industrial area was fossil fuel combustion, coal-burning, industrial furnaces including others. There was a very significant correlation of PAHs levels between CCF and CAC (R 2?=?0.91). The average concentration of BaP in the industrial area during the sampling period was 5.95 ng m?3. It could be concluded the local population appears to be exposed to significantly high cancer risk (exceeding 2 ng m?3 in autumn and winter) as compared to the population of other areas.  相似文献   

7.
Aerosol samples were collected during the wintertime from Nov. 24, 1998 to Feb. 12, 1999 in Beijing, China. Chemical composition was determined using several analytical techniques, including inductive coupled plasma atomic emission spectroscopy (ICP-AES), graphite furnace atomic absorption spectroscopy (GFAAS) and flame atomic absorption spectroscopy (FAAS) for trace elements, ion chromatography (IC) for water-soluble ions and CHN elemental analyzer for organic carbon (OC) and elemental carbon (EC). The average concentration of aerosol was 375?±?169 μg m?3, ranging from 136 to 759 μg m?3. Multilinear regression (MLR) analysis was performed and crustal matter, secondary particles and organics were identified as three major components of aerosol in wintertime in Beijing, accounting for 57.3%?±?9.8%, 13.4%?±?8.0%, and 22.8%?±?5.9% of the total concentration, respectively. Based on performance evaluation, Al, SO4 2? and OC were selected as tracers of the three components, with the regression coefficients of 23.5, 1.78 and 1.26, respectively. A regression constant of 19.6 was obtained, which accounts for other minor components in aerosol. On average 93.5% of the total aerosol concentration, ranging from 82% to 105%, was explained by crustal matter, secondary particle and organics. Meteorological conditions are important factors that can influence the concentration level and chemical composition of aerosols. Wind would be favorable for the pollutant dilution, leading to low aerosol levels, whereas too strong a wind may cause regional soil dust and local road dust to be resuspended resulting in a high contribution of crustal matter. Circuitous air movement, high RH% and low wind speed facilitated the secondary particle formation, not only inorganic salts, such as sulfate and nitrate, but also secondary organic carbon in a similar way.  相似文献   

8.
The size distribution of 14 polycyclic aromatic hydrocarbons (PAHs) present in particulate aerosol in two different areas of the city of Las Palmas de Gran Canaria was investigated in May 2002. One of the study areas (Bravo Murillo) was under the influence of heavy traffic and the other (Pedro Lezcano) under that of small-scale industries of various nature. The average concentration of total suspended particulates (TSP) at Bravo Murillo (35.2 μg m-3) was roughly one-half that at Pedro Lezcano (73.6 μg m-3); the former, however, exhibited a higher PAH content (sum of PAHs: 6.6 ± 1.8 versus 5.1 ± 3.9 ng m-3). The aerosol size partition of total PAHs at Bravo Murillo, with a unimodal peaking at 0.08—0.3 μm, was completely different from that at Pedro Lezcano, where accumulation observed in the 3.8—7.4 μm range suggests the ageing of particles occurred, with PAHs have redistributed according to surface extension of particles.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were measured in two wetland plant species grown outdoors in pots of sediment contaminated with up to 730,000 μg/kg total PAHs. After approximately 3 months, the plants were harvested, cleaned, and analyzed for an expanded suite of PAHs which included both the 16 priority PAHs and 22 alkyl PAH homologs. Sediment and air samples were also collected and analyzed. PAH compounds were detected in all of the samples, with the highest concentrations in the contaminated sediment. The root sample concentrations were generally about one order of magnitude lower than that of the sediment, and were strongly correlated with the concentration in the sediment in which they were grown. The concentrations in foliage were much lower and did not correlate with sediment concentration. Concentrations of low molecular weight PAH compounds detected in the foliage were not significantly lower in plants grown in control sediments, suggesting that the sediment is not the primary source of these PAHs. Several high molecular weight PAHs were detected only in plants grown in contaminated sediment. Plants of both species grown in control sediment were larger than plants grown in contaminated sediment.  相似文献   

10.
Ustica is an island relatively far from continental, industrial and urban settlements and it has been designated as a marine protected area with the aim of preserving the natural diversity of flora and fauna of the surrounding sea. In such an environment, the assessment of the levels and origin of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) can shed light on the mechanisms and effects of pollutant long-distance transport in the western Mediterranean Sea. PAHs concentrations resulted relatively low when compared with those of other coastal areas of the Mediterranean Sea. The low values of the ratio between low- and high-molecular-weight (LMW and HMW, respectively) PAHs and the fluoranthene and pyrene ratios underlined a pyrolytic origin of these contaminants. The prevalence of HMW-PAHs, however, may also be due to the effect of LMW-PAH preferential degradation during transport and burial into sediments. On the other hand, petrogenic sources prevailed in the past. Whilst PAHs concentrations showed a recent increase, especially at the site close to the port, the estimated sedimentary fluxes of PAHs ranged from 0.5 to 25 μg m?2 year?1.  相似文献   

11.
Metal (Cu, Mn, Ni, Zn, Fe) concentrations in marine sediment and zooplankton were investigated in Izmir Bay of the Eastern Aegean Sea, Turkey. The study aimed to assess the levels of metal in different environmental compartments of the Izmir Bay. Metal concentrations in the sediment (dry weight) ranged between 4.26–70.8 μg g?1 for Cu, 233–923 μg g?1 for Mn, 14.9–127 μg g?1 for Ni, 25.6–295 μg g?1 for Zn, 12,404–76,899 μg g?1 for Fe and 38,226–91,532 μg g?1 for Al in the Izmir Bay. Maximum metal concentrations in zooplankton were observed during summer season in the inner bay. Significant relationships existed between the concentrations of certain metals (Al, Fe, Mn and Ni) in sediment, suggesting similar sources and/or similar geochemical processes controlling such metals. Higher concentrations of Cu, Zn and percent organic matter contents were found in the middle-inner bays sediments. Based on the correlation matrix obtained for metal data, organic matter was found to be the dominant factor controlling Cu and Zn distributions in the sediment. In general, mean Cu and Zn levels in the bay were above background concentrations in Mediterranean sediments. Zooplankton metal concentrations were similar to sediment distributions.  相似文献   

12.
The concentration level of carbonyl compounds in Bangkok ambient air were measured in five roadside sites and five residential sites during July 2007 to April 2008. About 250 samples were collected and ten carbonyls were identified. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds found in Bangkok ambient air. The ambient concentration of formaldehyde at the roadside areas in Bangkok during July 2007 to April 2008 ranged from 5.14 to 17.2 ??g/m3 (average 11.53 ??g/m3) while, the ambient concentrations of formaldehyde in residential areas in Bangkok during the same period ranged from 3.06 to 19.9 ??g/m3 (average 9.65 ??g/m3). The concentrations of acetaldehyde in roadside areas ranged from 1.59 to 7.95 ??g/m3 (average 3.51 ??g/m3) while at the residential areas the concentrations of acetaldehyde during the same period ranged from 1.07 to 8.05 ??g/m3 (average 3.11 ??g/m3). Other compounds showed low concentration. The concentrations of formaldehyde and acetaldehyde were low during the rainy season due to rain washout since these compounds are water soluble. The concentrations were high during the cold season due to stable conditions during these months. The concentrations slightly decreased during the summer due to photochemical reactions and photolysis under extreme temperature. Formaldehyde and acetaldehyde showed good correlation during 17:00 P.M. to 05:00 A.M. due to absence of solar radiation that may enhance photochemical reactions and mobile sources may be the sources of emission in the environment. It was also found that the concentrations of formaldehyde and acetaldehyde were low during the night time.  相似文献   

13.
The purpose of this study was to determine the degree of PAH contamination and the association of PAHs with metals in urban soil samples from Sevilla (Spain). Fifteen polycyclic aromatic hydrocarbons-PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) and seven metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn) have been evaluated in representative urban soil samples. Forty-one top soils (0–10 cm) under different land use (garden, roadside, riverbank and agricultural allotment) were selected. PAHs from soil samples were extracted by sonication using dichloromethane. The simultaneous quantification of 15 different PAH compounds were carried out by HPLC using multiple wavelength shift in the fluorescence detector. For qualitative analysis a photo diode-array detector was used. Metal (pseudo-total) analysis was carried out by digestion of the soils with aqua regia in microwave oven. The mean concentration of each PAH in urban soils of Sevilla showed a wide range, they are not considered highly contaminated. The results of the sum of 15 PAHs in Sevilla soils are in the range 89.5–4004.2 μg kg?1, but there seems not to be a correlation between the concentration of PAHs and the land use. Of the 15 PAHs examined, phenanthrene, fluoranthene and pyrene were present at the highest concentrations, being the sum of these PAHs about 40% of the total content. Although metal content were not especially high in most soils, there are significant hints of moderate pollution in some particular spots. Such spots are mainly related with some gardens within the historic quarters of the city. The associations among metals and PAHs content in the soil samples was checked by principal components analysis (PCA). The largest values both for ‘urban’ metals (Pb, Cu and Zn) and for PAHs were mainly found in sites close to the historic quarters of the city in which a heavy traffic of motor vehicles is suffered from years.  相似文献   

14.

Purpose

A multi-compartment monitoring study was performed to characterize the effect of environmental variables, such as temperature and water flow as well as sediment characteristics, on the distribution and transport of persistent organic pollutants (POPs) in a dynamic river system during 1 year in an industrial region in central Europe.

Materials and methods

Waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of 1 year at five sampling sites in the Morava River in the Czech Republic. Contaminants were measured monthly in riverbed sediments, freshly deposited sediments, water samples and passive samplers.

Results and discussion

Sediments are the main carrier of POPs in the river. Distinguishable patterns of PAHs, OCPs and PCBs in sediment indicate that their origin is from distinct sources and different transport pathways. The PAHs were identified as the dominant contaminant group of compounds with a mean concentration in sediment of 5,900 μg kg?1. Such concentrations are up to 10 times higher than in the Danube River, into which Morava drains. In contrast, mean concentrations of PCBs, hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane and its breakdown products (DDTs) and hexachlorobenzene (HCB) of 6.0, 0.4, 4.2 and 6.0 μg kg1, respectively, are similar to those in the Danube. With some exceptions, no significant difference in composition of surficial riverbed sediments and those collected using sediment traps was observed. Despite the presence of potential local pollutant sources, the differences in contaminant concentrations between sites in the region were in most cases not significant. Variations in POP concentrations in sediments are mainly induced by high flow events, whereas seasonal variability was not observed.

Conclusions

The changes in contaminant concentrations in Morava River sediments are induced by episodic high flow events that cause erosion of contaminant-containing particles and their deposition at suitable downstream sites.  相似文献   

15.
Atmospheric and sea sediment concentrations were measured for eight nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) and three unsubstituted PAHs in a suburban area and sea sediments in the Hiroshima Bay watershed area, Japan, from July to December, 2006 (atmospheric particulate matter) and in September and November, 2004 (sea sediments). Atmospheric concentration was higher in winter than summer for both nitro-PAHs and PAHs. Concentrations in sea sediments were less than 10%, and pattern was similar to those of atmospheric particles. Several combustion emission sources were also measured, and the 1-NP/Pyr ratio was compared to environmental values. The ratio of atmospheric and sea sediments were significantly lower than diesel particulate matters. Further, the vehicle emission loading and sea sedimentation loading was evaluated in this watershed area, and from the comparison, the existence of other important sources PAHs were suggested.  相似文献   

16.
The ambient concentration of SO2, NOx and Ox in the atmosphere of Hiroshima, Fukuyama and Fuchu city which were monitored by the prefectural monitoring stations, are examined to give a picture of the typical air pollution at these sites. Results show that the yearly concentrations of SO2 in these areas are significantly fall from 20 to 6 ppb during 1978–1996 when the NOx concentrations having no such significant change which varies from 40 to 30 ppb. The Photo-chemical Oxidant (Ox) increases annually at the rate of 0.3 ppb to 0.6 ppb in Hiroshima city only. To know the present situation of air pollution the Differential Optical Absorption Spectroscopy (DOAS) system is used in the city of Higashi Hiroshima. The daily average concentrations of SO2, NO2, O3 and HONO measured during the period of August 1999 to March 2000 ranged from 1.4 ppb to 2.8 ppb, 13 ppb to 26.9 ppb, 21 ppb to 53.6 ppb and 1 ppb to 4.3 ppb respectively. The patterns of concentrations of NO2 and O3 measured by DOAS look similar to the seasonal patterns of NOx and Ox by the conventional system.  相似文献   

17.

Purpose

The management of sediments from stormwater infiltration basins is nowadays a key issue for local authorities to ensure long-term performance. Speciation of pollutants is particularly required in view of reuse of these materials. If fractionation of trace metals in sediments is relatively well described, polycyclic aromatic hydrocarbons (PAHs) speciation was only studied using particle size distribution. Therefore, this study aims at the characterization of the PAHs-bearing fractions in sediments.

Materials and methods

Three sediments with various physicochemical properties were sampled in the west and north of France to characterize the distribution of PAHs among organic and inorganic components. Respective organic and inorganic matrixes were obtained by alkaline extraction and methyl isobutyl ketone (MIBK) fractionation procedure. The nature of the solid fractions was assessed through microanalyses: infrared spectroscopy (Fourier transform infrared spectroscopy), X-ray diffraction (XRD), and scanning electron microscopy with X-ray spectroscopy. Bulk sediments and extracted fractions were analyzed for organic matter parameters: elemental analysis (C, N, and H), total organic matter, total organic carbon, hydrocarbons (C10–C40), and PAHs.

Results and discussion

The characterization of bulk sediments highlighted that they were mainly composed of single particles, originating from the geological background, and aggregates (10 to 300 μm) composed of minerals and large organic matter content. The C/N ratio and PAH ratios were shown to be helpful for the determination of the natural or anthropogenic origin of organic matter or to evaluate additional contribution of industrial activities. The fractionation results underlined the role of the aggregates on the distribution of PAHs. Humin fraction and bound-humic acids were mainly composed of aggregates (10 to 150 μm) and accounted for 60 to 70 % of sample mass. The PAHs are mainly sequestrated in these fractions. Only up to 1 % of PAHs are adsorbed on the mineral fraction.

Conclusions

Both alkaline extraction and MIBK procedure demonstrated that PAH residues were readily sequestrated in humin and bound-humic acids fractions and that fulvic acids, humic acids, and mineral fractions contained poor concentrations of PAHs. Microanalyses underlined the high level of aggregation of particles in sediments and their mixed inorganic and organic nature. In case of stormwater sediments, the location of PAHs in highly organic aggregates is consistent with their sources, being both oil products and debris from vehicles and road.  相似文献   

18.
Aljustrel mining area is located in the Iberian Pyrite Belt, one of the greatest concentrations of massive sulphide deposits that extends from Lousal (Portugal) to Aznalcóllar (Spain). The surrounding streams, Roxo, Água Azeda and Água Forte, are influenced by the erosion of the tailing deposits and the input of acid mine drainage (AMD) from the abandoned Aljustrel pyrite mines, recently reopened in 2007. The purpose of this study was to understand how these adverse conditions influenced the stream sediments, water quality and periphytic diatom communities and establish the pre-restoration local conditions to judge the success of rehabilitation program now under way. For stream sediments, the highest metal concentration samples were found at sites F, G and H. Arsenic, Cu, Fe, Pb and Sb detected concentrations, generally exceeded the probable effect concentration values reaching level 4: the highest toxicity level. In surficial water samples of AMD affected sites (F, G and H), low pH values (1.5 to 3.5) and high metal concentrations of As (6,837 μg L?1), Cd (455 μg L?1), Cu (68,795 μg L?1), Fe (1,262,000 μg L?1), Mn (19,451 μg L?1), Pb (136 μg L?1), and Zn (264,377 μg L?1) were found. In these sites, the diversity index (H′) for diatoms was low (0.6 to 2.8) and the dominant taxa were Eunotia exigua (site F, 33.5%) and Pinnularia acoricola (abundances in sites: F, 86.8%; G, 88.5%; and H, 91.1%). In opposition, in less AMD impacted, H′ was high (1.5 to 4.6) and low metal concentrations and high pH were found. Achnanthidium minutissimum was the dominant taxon in (abundances in sites: A, 76.1% and B, 24.39%). Canonical correspondence analysis showed that spatial variation due to mine influence was more important than seasonal variation, which did not show any pattern.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs); their derivatives nitro, and methyl-PAHs; n-alkanes; and organic acids were investigated in the aerosol samples collected during two field campaigns conducted at three sampling stations in an industrialized city in southern Italy. The main sources affecting the atmosphere and its toxicity were investigated by means of the diagnostic ratios of: specific particulate-phase PAHs, marker compounds among nitro-PAHs, alkanes, and acids, the dominant wind direction, daily and seasonal abundance of carcinogenic organic substances. The potential importance of the non-regulated pollutants to assess the air quality was confirmed; in fact the carcinogenic organic compounds showed to have scarce correlation with particulate matter (PM) concentration. An exceptionally high variability of toxic compounds at a daily scale was due to meteorological condition causing periods of extremely high pollution levels.  相似文献   

20.
The physical characterization of winter-time aerosol in the Detroit area studied over a 7-week period (January–March, 1983) is presented. Total suspended particle levels (<15 μm) were 56 ± 29 μg m?3, with 66% of the material in the fine (<2.5 μm) particle fraction. Coarse and fine particle masses were reasonably correlated, indicating that local sources, not long-range transport, influenced winter-time aerosol at the site. Mobile sources were responsible for a marked diurnal variation in the nuclei mode particle count and accounted for about 10% of the submicron aerosol mass. Decreases in submicron aerosol concentrations during precipitation appear to be associated with advection of clean air into the area during frontal passage rather than to precipitation scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号