首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滴灌水肥条件对樱桃产量、品质和土壤理化性质的影响   总被引:5,自引:0,他引:5  
以樱桃果树为研究对象,通过滴灌对植株进行灌溉施肥,设置9个不同水、肥量的试验处理,测定了樱桃果园土壤水分和理化性质,同时测定不同处理下樱桃果实产量和品质,综合分析了土壤养分各指标与樱桃果实微量元素之间的线性关系,引入Spearman秩相关系数法对土壤养分各指标与果实品质各指标作了敏感性分析。结果表明:不同水分处理下,在樱桃整个生育期内,土壤含水率呈下降趋势,在灌水时期,灌水越多,浅层土壤含水率越高,而对较深层次土壤含水率无明显影响。试验处理下的水肥条件能显著提高樱桃果实品质,较高施肥量能提高果实果径;适当灌水量能显著提高果实硬度;较高施肥量和较低灌水量能降低可滴定酸含量;较低灌水量和施肥量能提高可溶性固形物含量;中等施肥量和较低灌水量能提高粗蛋白的含量;较低灌水量和较低施肥量能提高果实内维生素C含量;适当灌水量以及较低施肥量能提高可溶性总糖含量。土壤中铵态氮与硝态氮含量处于不稳定状况,养分变化无明显规律;土壤各养分指标中,有机质含量与果实内全铁含量正相关;有效铵态氮含量与全氯含量呈正相关;有效硝态氮含量与果实内全钙、全锌、全氯含量呈正相关;有效磷含量与全铁含量正相关;速效钾含量与全钙含量呈负相关。土壤养分中,铵态氮、硝态氮含量与果实品质中的大多数指标有着密切联系。  相似文献   

2.
为了探讨再生水地下滴灌条件下土壤脲酶活性和硝态氮的关系,通过2a再生水地下滴灌试验,研究了滴灌带埋深和灌水量对玉米生育期0~50cm深度土壤脲酶活性和硝态氮分布的影响。灌水量设置灌溉需水量的70%、100%和130%3个水平,滴灌带埋深设置0、15和30cm 3个水平。结果表明,再生水地下滴灌提高了0~50cm脲酶活性。灌水量和滴灌带埋深均对土壤脲酶活性和硝态氮含量产生了显著影响,硝态氮随灌水量和滴灌带埋深的增大运移深度增加,0~10cm深度脲酶活性以70%灌溉需水量和埋深0cm较高,10~50cm深度脲酶活性以130%灌溉需水量和埋深30cm较高。相关分析表明,硝态氮含量和脲酶活性在玉米生育期内由极显著正相关向负相关转变。  相似文献   

3.
以当地灌溉施肥模式为对照并以探索河西走廊春小麦适宜喷灌灌溉施肥制度为目的,在甘肃省永昌县试验基地开展了田间基础性试验研究,试验分别设置高、中、低三个灌水(3 300、2 550、1 800 m~3/hm~2)、施肥(337.5、225、187.5 kg/hm~2)水平。研究了喷灌条件下不同处理间土壤硝态氮分布运移规律,分析了产量及水分利用效率与灌水量、施肥量之间相关性。结果表明:土壤硝态氮含量主要受施肥量影响;喷灌条件下中等灌水水平土壤硝态氮主要分布在0~40 cm土层,有利于春小麦根系对氮素的吸收利用,灌水水平过高或过低都不利于根系对氮素的吸收;产量及水分利用效率与灌水量呈线性正相关关系,与施肥量相关性不显著;中等灌水水平比大水漫灌增产5%、节水32%,节水、增效效果显著;根据产量回归结果,适合河西走廊喷灌灌溉施肥制度为中等灌水施肥水平。  相似文献   

4.
土壤速效养分赋存状况直接影响到枣树的生长和水肥的合理利用,研究了滴灌和地面灌下枣树根区土壤速效养分田间尺度的空间分布和变异特性。对滴灌和地面灌应用年限5年不同深度的枣树根区土壤进行了采样分析。结果表明:枣树根区土壤硝态氮含量随土壤深度的增加呈减少趋势,随水平距离的增加而逐渐升高。生育期初期土壤硝态氮含量较低,新梢期土壤硝态氮逐渐增加,滴灌和地面灌土壤硝态氮变异系数均随着土壤深度和水平距离的增加而减少,减少幅度滴灌大于地面灌;生育期初始阶段两种灌溉方式下土壤碱解氮随深度的增加均呈现减少的趋势,水平方向上碱解氮含量差异不明显,新梢期土壤碱解氮呈现增加的趋势,灌溉方式对土壤碱解氮的空间异质性影响较小;枣树生育初期,滴灌和地面灌枣树根区各层土壤速效钾含量较高,进入新梢期后其含量迅速下降。滴灌和地面灌下土壤速效钾含量的变异系数均随着土壤深度的增加而减小,随着水平距离的增加呈现先减小后增大的趋势;土壤有效磷枣树生育期开始阶段含量较高,新梢期迅速降低。滴灌和地面灌在水平方向的变异系数均随着距离的增加而减小,滴灌处理变异性大于地面灌。综上,灌溉方式对土壤硝态氮的空间分布和变异性的影响最大,对碱解氮的影响最小。  相似文献   

5.
温室滴灌施肥条件下土壤硝态氮的运移及分布特征   总被引:1,自引:0,他引:1  
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的82%~92%。与大水高肥(W_1F_3)处理相比,节水节肥(W_4F_1)处理下土壤剖面硝态氮累积量减少了36.65%。与CK相比,节水节肥(W_4F_1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W_1F_3)处理相比,W_4F_1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

6.
不同灌水模式对土壤水分和硝态氮分布的影响   总被引:8,自引:0,他引:8  
通过2年带防雨棚微区试验研究了传统灌水施肥与水肥异区交替灌水施肥对土壤中水分和硝态氮分布的影响。结果表明:土壤水分和硝态氮分布与灌水方式和灌水量有关。无论灌水量高低,第1次灌水后,水肥异区的施肥沟与灌水沟在0~60 cm土层土壤水分和硝态氮含量存在差异。第2次灌水后,施肥沟与灌水沟之间土壤水分含量的差异会随灌水量增加而缩小,而二沟之间0~60 cm土层中硝态氮含量的差异则随灌水量的增加而增加。同时,土壤中表层及亚表层硝态氮含量随灌水量的增加而增加。考虑到减少水分的深层渗漏和提高肥料的有效性,在交替灌水时必须控制灌水量,建议灌水量在450~600 m3/hm2为佳。  相似文献   

7.
滴灌水肥耦合对农田水氮利用的影响   总被引:2,自引:0,他引:2  
为了寻求适宜华北地区的滴灌优化水肥耦合制度,针对华北地区冬小麦,以Φ20cm蒸发皿的水面蒸发量(E)为参考,通过大田试验,研究了大田滴灌水肥耦合模式对土层储水量、储氮量及水分利用效率的影响。结果表明,土壤水分的变化和冬小麦产量受灌溉定额的影响更为明显;由于水肥耦合的效应,高施氮量未必产生较大的硝态氮累积,适宜的灌水定额和施肥量配比能够促进产量的累积和提高水分利用效率;试验组合中,在灌水定额0.8 E、施肥量为190kg/hm~2的水肥耦合模式下,产量和WUE最高,硝态氮淋失潜在风险相对较小。  相似文献   

8.
通过室外小区试验,分析了拔节期追肥和灌水对膜孔灌玉米土壤硝态氮分布和累积的影响。研究表明,施肥量越大,土壤硝态氮浓度峰分布越宽;施肥量增加,硝态氮淋洗效应增强,并且这种影响在距离膜孔中心较近时明显。拔节期追施肥料后灌水,对后期土壤剖面硝态氮分布仅在灌水定额较高时表现出较大的影响。适当的增加施肥量,对收获后土壤剖面硝态氮累积量的影响较小。灌水量越大,下层土壤硝态氮累积量越大,距膜孔中心水平距离越近累积作用越明显。在试验条件下,建议玉米拔节期追施氮肥约为112 kg/hm2,灌水定额不大于525 m3/hm2。  相似文献   

9.
为了指导垄沟间(套)作种植田间灌水技术和灌溉系统合理设计,通过长方体土槽模拟垄沟灌溉施氮二维土壤入渗试验,探究4种土壤质地的入渗量随时间变化规律,分析肥液入渗湿润体特征,研究土壤水分、硝态氮和铵态氮空间分布特征.结果表明,随着土壤黏粒含量的增多,土壤比表面积增大,在相同灌水时间内入渗量则小;入渗量累积曲线上升趋势因土壤质地不同存在显著差异.含3参数的Horton入渗模型计算的肥液入渗量精度高,其稳定入渗率参数实用性强,对灌水流量设计有重要的参考价值.随着土壤砂粒含量的增多,同等入渗条件下,湿润锋运移距离越远,且垂向运移距离均大于水平侧渗距离.水平侧渗距离与入渗时间呈指数函数关系,垂向湿润锋运移距离与入渗时间的1/2次方呈线性函数关系.垄沟灌溉施氮方式下,硝态氮在湿润锋边缘累积,铵态氮峰值出现在灌水沟附近.在质地重的土壤下应用垄沟灌溉施肥技术好.  相似文献   

10.
【目的】研究新型灌溉模式对农田水氮及小麦产量的影响。【方法】选用鲁麦21为试验对象进行大田试验,采用二因素裂区设计,灌水量为主区,设拔节期和扬花期均测墒补灌至田间持水率的65%(W65)、75%(W75)、85%(W85)3个水平;灌溉方式为副区,设滴灌(D)、微喷灌(WP)和拔节期微喷灌扬花期滴灌(WP+D)共3种灌溉方式,研究灌水量和灌溉方式对土壤水氮分布、小麦产量、水分利用效率及经济效益的影响。【结果】低于田间持水率的灌溉只对0~40 cm土层产生影响,小麦全生育期内40~100 cm土层土壤含水率没有波动,即0~40 cm土层为主要的供水层及持水层,土壤含水率表现为W85处理>W75处理>W65处理;0~60cm土层土壤硝态氮量在W65、W75灌水量及微喷灌模式下较高,且随着灌水量增多硝态氮淋溶风险增大;成熟期,灌水量、灌溉方式及二者交互作用对40~100 cm土层土壤硝态氮量产生了极显著影响...  相似文献   

11.
通过室外田间试验,分析了膜孔灌玉米苗期不同灌水量对土壤水氮分布的影响.灌水量越大,土壤含水率越大,分布范围越广,土壤表层硝态氮含量越小,对深层80~100 cm硝态氮含量影响越大;随灌水量的增加,硝态氮累积峰越靠下,增加了硝态氮的淋失.  相似文献   

12.
张艳  樊贵盛 《节水灌溉》2014,(3):58-61,65
以山西省清徐县孟封镇、柳杜乡农田灌区(属于汾河污灌区)为研究对象,在灌区内布设采样点以分层采集土样。对采样点的各分层土壤中的有机质、硝态氮、铵态氮、全磷和全钾的含量进行系统分析,并对不同深度土壤养分物质的分布特征及原因进行了讨论。结果表明:污灌区各采样点表层土壤中养分含量均较大,土壤剖面中养分的分布均有一定的规律性,铵态氮含量随深度增加无明显变化,有机质、硝态氮含量呈现明显的"S"型变化,全磷、全钾在剖面中部有少许浮动,整体呈现逐渐降低趋势;灌溉方式的不同对土壤养分含量有一定的影响,纯污水灌溉地区的养分含量要高于污水井水相结合灌溉地区的养分含量,其中有机质、硝态氮含量在整个土壤剖面均较为明显,全磷、全钾在0~40cm土层中的含量差异明显,40cm以下土壤的含量无明显差异;土壤有机质含量与硝态氮、全磷呈显著正相关性,铵态氮、全钾含量与其他养分之间均无相关性。  相似文献   

13.
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的 82%~92%。与大水高肥(W1F3)处理相比,节水节肥(W4F1)处理下土壤剖面硝态氮累积量减少了36.65%。与 CK 相比,节水节肥(W4F1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W1F3)处理相比,W4F1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

14.
土壤容重对涌泉根灌土壤水氮运移特性的影响   总被引:7,自引:0,他引:7  
在室内通过人工配置不同水平土壤容重(1.35、1.40、1.45、1.50 g/cm~3),用土箱进行水肥入渗模拟试验,研究土壤容重对累积入渗量、湿润锋运移、土壤水分以及铵态氮和硝态氮运移的影响,建立以土壤容重和入渗时间为自变量,累积入渗量和各向湿润锋运移距离为因变量的经验模型。结果表明:土壤容重对累积入渗量、各向湿润锋运移距离及湿润体内水分和氮素的分布、转化均具有较为显著的影响。随着土壤容重的减小,累积入渗量、湿润锋运移距离、湿润体内水分、铵态氮及硝态氮含量均呈增大趋势。入渗系数K随着土壤容重的增大而减小,入渗指数α随着土壤容重的增大而增大;在同一时刻,湿润体内铵态氮和硝态氮含量的平均值、变化量及转化率均随着土壤容重的增大而增大。距离灌水器越近,铵态氮、硝态氮含量越高;湿润体内铵态氮分布主要集中在灌水器附近,随着再分布进行,湿润体内铵态氮含量、转化率逐渐减小,转化量逐渐增加。灌水结束、再分布3、5、10、15、20 d条件下,以灌水结束时刻为基准,铵态氮含量降幅依次为2.34%、11.41%、34.22%、59.06%和73.75%。湿润体内硝态氮分布区域与水分分布相似,随着再分布进行,湿润体内硝态氮含量、转化量逐渐增大,再分布15 d达到最大值;而转化率呈现出先增大后减小的趋势,再分布10 d转化率达到最大值。灌水结束、再分布3、5、10、15、20 d条件下,以灌水结束时刻为基准,湿润体内硝态氮含量依次增加0.76%、60.12%、156.95%、204.68%和180.51%。土壤容重对涌泉根灌土壤水分和氮素运移、分布及其转化的影响均较为显著。  相似文献   

15.
为了探明滨海盐碱地不同灌溉方式及氮肥施用量对水肥盐迁移过程及作物生长的影响,基于大田试验,研究不同灌溉方式及灌水量(F:漫灌,360 mm;D1:滴灌,360 mm;D2:滴灌,288 mm;D3:滴灌,216 mm)、氮肥处理(N1:280 kg/hm2;N2:196 kg/hm2;N3:112 kg/hm2)对盐碱地土壤水肥盐分布含量及对春玉米各生长指标的影响.结果表明,在滴灌模式下,同一灌水量,N1的剖面平均含水量最低,D1,D2出现洗盐点,存在适合作物生长的浅盐区;灌水后D1N1的硝态氮含量增加最显著且含量最高,滴灌处理对应的低氮处理无明显硝态氮积累点,相同灌水量下,漫灌的有效氮含量均高于滴灌,但其有效氮利用率低于滴灌处理;不同施氮对春玉米干物质的差异随灌水量增加而增加.各处理水分利用效率与肥料偏生产力之间产生明显差异,高水低氮肥料偏生产力明显提高,但其水分利用效率低下,D1N1产量最高;在考虑作物产量及水肥利用效率时,采用滴灌方式,则灌水量288~360 mm、施氮量196 kg/hm2为推荐水肥措施.  相似文献   

16.
同步滴灌施肥条件下根际土壤水氮分布试验研究   总被引:2,自引:1,他引:2  
通过室内土槽试验,探讨了停灌后不同时间,同步施肥滴灌对土壤水分及土壤硝态氮在土壤剖面分布的影响。结果表明:停灌后,各处理土壤水分以滴头为中心沿径向向四周扩散;由于水分在横向及纵向运动,上下层土壤水势梯度随径向距离增加而逐渐减少。停灌后,氮浓度3、2 g/L处理硝态氮的含量与径向距离及土层深度成反比;氮浓度0 g/L处理硝态氮的含量随径向距离及土层深度增加先增大后减小,氮浓度0 g/L处理硝态氮在深度分布表现为"上低中高下稳定"抛物线分布。  相似文献   

17.
以土壤水分运动的动力学方程和溶质运移的对流-弥散方程为基础,结合灌溉施肥过程中的初始和边界条件,建立了地下滴灌施肥条件下土壤水肥运动模拟模型,以SWM-2源代码为蓝本,模拟了新疆棉花地下滴灌施肥后土壤中氮的分布与变化过程。结果表明,地下滴灌条件下,施肥时机直接影响到土壤中氮的分布,施肥后冲洗管道1 h,使氮的运动在剖面上呈双峰曲线,以毛管为中心,氨态氮的运动局限于20 cm以内,其含量随时间延长而减少,同时向下层土壤运动;与氨态氮相比,硝态氮的运动范围略有增加,在垂直方向上向上运动大于向下运动。  相似文献   

18.
水氮互作对宁夏沙土春玉米产量与氮素吸收利用的影响   总被引:2,自引:0,他引:2  
为探明滴灌不同水氮调控对宁夏沙土地区春玉米生长、产量、氮素吸收和根区土壤硝态氮分布及残留量的影响,设计灌水和施氮2因素、3个灌水量水平(W0.6,0.6KcET0; W0.8,0.8KcET0; W1.0,KcET0,Kc为作物系数,ET0为潜在作物蒸发蒸腾量)和4个施氮量水平(N150,150 kg/hm~2; N225,225 kg/hm~2; N300,300 kg/hm~2; N375,375 kg/hm~2),进行了大田试验。结果表明:相同灌水条件下,春玉米地上部干物质累积速率和氮素累积速率(W0.8灌水水平除外)均随施氮量的增加先增加后减小。快增期内,W1.0N300处理的春玉米地上部干物质平均累积速率和W0.8N375处理的氮素平均累积速率最大,分别为513.71、2.75 kg/(hm~2·d)。春玉米地上部干物质累积量(W0.8N375除外)和产量随施氮量的增加先增加后减小,其中W0.8N300处理的产量最大,为16 387 kg/hm~2。相比其他灌水处理,W0.8灌水水平下的营养器官氮素转运量较大,最大为41.14 kg/hm~2。随着灌水量和施氮量的增加,60~100 cm土层硝态氮累积量所占的比例逐渐增加,其中,W0.6灌水水平下,土壤残留的硝态氮主要聚集在0~60 cm土层中,W0.8灌水水平下,土壤残留的硝态氮主要聚集在0~90 cm土层中。考虑试验区年际降雨量分布不均,选取灌水量与有效降雨量之和为532 mm、施氮量300 kg/hm~2为宁夏沙土地区适宜的滴灌灌水施肥制度。  相似文献   

19.
以当地畦灌模式为对照,采用完全随机裂区设计,在河西走廊(甘肃省永昌县)地区进行了大田喷灌试验,试验设置了灌水量(I高、I中、I低:3 300、2 550、1 800 m~3/hm~2)与施肥量(F高、F中、F低:337.5、225、187.5 kg/hm~2)两个因素,研究了不同灌水方式、灌溉施肥处理、生育期下0~80 cm土层硝态氮的分布特征。结果表明:喷灌灌水后硝态氮含量在0~60 cm土层处于较高水平;施肥量是引起同一土层硝态氮含量变化的主要因素;抽穗期与收获后的硝态氮差值分析结果表明,高灌水水平时硝态氮有明显淋失,大水漫灌时部分硝态氮被淋移至80 cm土层下;喷灌灌水技术对提高河西走廊地区水肥利用率有利。  相似文献   

20.
喷灌小麦土壤氮素分布规律及对地下水影响试验研究   总被引:1,自引:0,他引:1  
探索喷灌条件下冬小麦农田土壤中无机氮含量和分布特征以及对地下水环境影响,对控制农民化肥使用量,保护地下水环境具有重要意义。选择在保定市白庄村冬小麦农田进行灌溉与施肥试验,同时对地下水水位和水质进行了观测。结果表明:喷灌条件下冬小麦生育期内0~100 cm内土层土壤水分含量变化较大呈S型,100 cm以下其值较高且基本保持同一水平。氨氮在土壤剖面中变化受施肥影响较大,之后在氨氮土层中变化稳定。冬小麦生育期200 cm以内土层的硝态氮累积量呈逐渐递减趋势。硝态氮含量主要受化肥施用、灌溉和降雨作用影响,随灌水、降雨垂向迁移较快,灌水后第5 d硝态氮变小,对地下水水质变化影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号