首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KuKanich, B. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine‐6‐glucuronide in healthy Greyhound dogs. J. vet. Pharmacol. Therap. 33 , 15–21. The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine‐6‐glucuronide after i.v. codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine‐6‐glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine i.v. and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were collected at predetermined time points for the determination of codeine, morphine, and codeine‐6‐glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after i.v. administration (T½ = 1.22 h; clearance = 29.94 mL/min/kg; volume of distribution = 3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine‐6‐glucuronide (Cmax = 735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine‐6‐glucuronide (Cmax = 1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (Cmax = 6.74 μg/mL; Tmax = 0.85 h) and eliminated (T½ = 0.96 h). In conclusion, the pharmacokinetics of codeine was similar to other opioids in dogs with a short half‐life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine‐6‐glucuronide were detected after i.v. and oral administration.  相似文献   

2.
OBJECTIVE: To evaluate the pharmacokinetics and pharmacodynamics of morphine after IV administration as an infusion or multiple doses in dogs by use of a von Frey (vF) device. ANIMALS: 6 dogs. PROCEDURE: In the first 2 crossover experiments of a 3-way crossover study, morphine or saline (0.9%) solution was administered via IV infusion. Loading doses and infusion rates were administered to attain targeted plasma concentrations of 10, 20, 30, and 40 ng/mL. In the third experiment, morphine (0.5 mg/kg) was administered IV every 2 hours for 3 doses. The vF thresholds were measured hourly for 8 hours. Plasma concentrations of morphine were measured by high-pressure liquid chromatography. RESULTS: No significant changes in vF thresholds were observed during infusion of saline solution. The vF thresholds were significantly increased from 5 to 8 hours during the infusion phase, corresponding to targeted morphine plasma concentrations > 30 ng/mL and infusion rates > or = 0.15 +/- 0.02 mg/kg/h.The maximal effect (EMAX) was 78 +/- 11% (percentage change from baseline), and the effective concentration to attain a 50% maximal response (EC50) was 29.5 +/- 5.4 ng/mL. The vF thresholds were significantly increased from 1 to 7 hours during the multiple-dose phase; the EC50 and EMAX were 23.9 +/- 4.7 ng/mL and 173 +/- 58%, respectively. No significant differences in half-life, volume of distribution, or clearance between the first and last dose of morphine were detected. CONCLUSIONS AND CLINICAL RELEVANCE: Morphine administered via IV infusion (0.15 +/- 0.02 mg/kg/h) and multiple doses (0.5 mg/kg, IV, every 2 hours for 3 doses) maintained significant antinociception in dogs.  相似文献   

3.
Grapiprant is the novel selective EP4 receptor inhibitor recently issued on the veterinary market for dogs affected by osteoarthritis. The aim of this study was twofold: to evaluate the pharmacokinetics and the pharmacodynamics of grapiprant in the induced inflammatory pain model in the rabbit after a single IV injection of 2 mg/kg; to compare the thermal antinociception effect after 2 mg/kg IV grapiprant, with that generated by 0.5 mg/kg meloxicam SC injected. Rabbits (= 12) were randomly assigned to two crossover studies (single‐dose, two‐period crossover). The first study group A (= 3) received a single IV dose of grapiprant at 2 mg/kg dissolved in ethanol. Group B (= 3) received a single IV injection of ethanol (equivalent volume to grapiprant volume) at the same site. The second study group C (= 3) received a single SC dose of meloxicam at 0.5 mg/kg. Group D (= 3) received a single SC injection of 15% ethanol (equivalent volume to grapiprant volume) at the same site. After a 2‐week washout period, the groups were rotated and the experiments repeated. Blood samples (0.7 mL) were collected from the right ear artery at assigned times and grapiprant plasma concentrations determined by a validated HPLC‐FL method. Three hours prior to administration of the drugs, inflammation was induced by SC injection of lambda carrageenan (200 μL, 3% in physiological saline) under the plantar surface of the right hind paw. At a similar time to the blood collection, an infrared thermal stimuli (40 °C) was applied to the plantar surface of the rabbits’ hindlimbs to evaluate the thermal withdrawal latency (TWL). The thermal antinociceptive effect was expressed as maximum possible response (% MPR). Grapiprant plasma concentrations were detectable up to the 10‐h time point (concentration range 17–7495 ng/mL). The grapiprant‐treated group showed a significant increase in TWL from 1 h and up to 10 h after drug administration compared to the control. In contrast, the meloxicam group showed a significant increase in TWL from 4 up to 10 h after drug administration, compared to control. The maximal MPR% was not statistically different between the grapiprant and meloxicam group from 4 to 8 h, while significant differences were shown at 1, 1.5, 2, 10 and 24 h. Given these findings, grapiprant appears to be an attractive option for antinociception in rabbits, due to its rapid onset and extended duration of effect.  相似文献   

4.
The objective of the current study was to describe the pharmacokinetics of morphine and its metabolites following intravenous administration to the horse. A total of eight horses (two per dose group) received a single intravenous dose of 0.05, 0.1, 0.2, or 0.5 mg/kg morphine. Blood samples were collected up to 72 h postdrug administration, analyzed using LC‐MS/MS and pharmacokinetic parameters determined. Behavior, step counts, and gastrointestinal activity were also assessed. The beta and gamma half‐life for morphine ranged from 0.675 to 2.09 and 6.70 to 18.1 h, respectively, following administration of the four different IV doses. The volume of distribution at steady‐state and systemic clearance ranged from 6.95 to 15.8 L/kg and 28.3 to 35.7 mL·min/kg, respectively. The only metabolites identified in blood samples were the primary metabolites identified in other species, 3‐morphine‐glucuronide and 6‐morphine‐glucuronide. Muscle fasciculations were observed at 0.2 and 0.5 mg/kg and ataxia noted at 0.5 mg/kg. Gastrointestinal activity was decreased in all dose groups (for up to 8 h in 7/8 horses and 24 h in one horse). This study extends previous studies and is the first report describing the metabolites of morphine in the horse. Plasma concentrations of morphine‐3‐glucuronide, a metabolite with demonstrated neuro‐excitatory activity in mice, far exceeded that of morphine‐6‐glucuronide. Further study is warranted to assess whether the high levels of the morphine‐3‐glucuronide contribute to the dose‐dependent excitation observed at high morphine doses.  相似文献   

5.
Romifidine is an alpha‐2 adrenergic agonist used for sedation and analgesia in horses. As it is a prohibited substance, its purported use at low doses in performance horses necessitates further study. The primary goal of the study reported here was to describe the serum concentrations and pharmacokinetics of romifidine following low‐dose administration immediately prior to exercise, utilizing a highly sensitive liquid chromatography–tandem mass spectrometry assay that is currently employed in many drug testing laboratories. An additional objective was to describe changes in heart rate and rhythm following intravenous administration of romifidine followed by exercise. Eight adult Quarter Horses received a single intravenous dose of 5 mg (0.01 mg/kg) romifidine followed by 1 h of exercise. Blood samples were collected and drug concentrations measured at time 0 and at various times up to 72 h. Mean ± SD systemic clearance, steady‐state volume of distribution and terminal elimination half‐life were 34.1 ± 6.06 mL/min/kg and 4.89 ± 1.31 L/kg and 3.09 ± 1.18 h, respectively. Romifidine serum concentrations fell below the LOQ (0.01 ng/mL) and the LOD (0.005 ng/mL) by 24 h postadministration. Heart rate and rhythm appeared unaffected when a low dose of romifidine was administered immediately prior to exercise.  相似文献   

6.
Six dogs were used to determine single and multiple oral dose pharmacokinetics of ABT‐116. Blood was collected for subsequent analysis prior to and at 15, 30 min and 1, 2, 4, 6, 12, 18, and 24 h after administration of a single 30 mg/kg dose of ABT‐116. Results showed a half‐life of 6.9 h, kel of 0.1/h, AUC of 56.5 μg·h/mL, Tmax of 3.7 h, and Cmax of 3.8 μg/mL. Based on data from this initial phase, a dose of 10 mg/kg of ABT‐116 (no placebo control) was selected and administered to the same six dogs once daily for five consecutive days. Behavioral observations, heart rate, respiratory rate, temperature, thermal and mechanical (proximal and distal limb) nociceptive thresholds, and blood collection were performed prior to and 4, 8, and 16 h after drug administration each day. The majority of plasma concentrations were above the efficacious concentration (0.23 μg/mL previously determined for rodents) for analgesia during the 24‐h sampling period. Thermal and distal limb mechanical thresholds were increased at 4 and 8 h, and at 4, 8, and 16 h respectively, postdosing. Body temperature increased on the first day of dosing. Results suggest adequate exposure and antinociceptive effects of 10 mg/kg ABT‐116 following oral delivery in dogs.  相似文献   

7.
This study reports the pharmacokinetics of buprenorphine in conscious rhesus macaques (Macaca mulatta) after intravenous (i.v.) and intramuscular (i.m.) administration. Four healthy, opioid‐naïve, socially housed, adult male macaques were used. Buprenorphine (0.03 mg/kg) was administered intravenously as a bolus or intramuscularly on separate occasions. Blood samples were collected prior to, and up to 24 h, postadministration. Serum buprenorphine concentrations were analyzed with liquid chromatography–mass spectrometry. Noncompartmental pharmacokinetic analysis was performed with commercially available software. Mean residence time in the i.v. study as compared to the i.m. study was 177 (159–189) vs. 185 (174–214) min, respectively [median (range)]. In the i.v. study, concentration back‐extrapolated to time zero was found to be 33.0 (16.8–57.0) ng/mL [median (range)]. On the other hand, the maximum serum concentration found in the i.m. study was 11.8 (6.30–14.8) ng/mL [median (range)]. Rhesus macaques maintained concentrations >0.10 ng/mL for over 24 h in the i.v. study and over 12 h in the i.m. study. Bioavailability was found to be 68.1 (59.3–71.2)% [median (range)]. No significant adverse effects were observed in the monkeys at the 0.03 mg/kg dose of buprenorphine during either study.  相似文献   

8.
This study reports the pharmacokinetics of amantadine in greyhound dogs after oral administration. Five healthy greyhound dogs were used. A single oral dose of 100 mg amantadine hydrochloride (mean dose 2.8 mg/kg as amantadine hydrochloride) was administered to nonfasted subjects. Blood samples were collected at predetermined time points from 0 to 24 h after administration, and plasma concentrations of amantadine were measured by liquid chromatography with triple quadrupole mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Amantadine was well tolerated in all dogs with no adverse effects observed. The mean (range) amantadine CMAX was 275 ng/mL (225–351 ng/mL) at 2.6 h (1–4 h) with a terminal half‐life of 4.96 h (4.11–6.59 h). The results of this study can be used to design dosages to assess multidose pharmacokinetics and dosages designed to achieve targeted concentrations in order to assess the clinical effects of amantadine in a variety of conditions including chronic pain. Further studies should also assess the pharmacokinetics of amantadine in other dog breeds or using population pharmacokinetics studies including multiple dog breeds to assess potential breed‐specific differences in the pharmacokinetics of amantadine in dogs.  相似文献   

9.
The purpose of this study was to compare the pharmacokinetics of meloxicam in mature swine after intravenous (i.v.) and oral (p.o.) administration. Six mature sows (mean bodyweight ± standard deviation = 217.3 ± 65.68 kg) were administered an i.v. or p.o. dose of meloxicam at a target dose of 0.5 mg/kg in a cross‐over design. Plasma samples collected up to 48 h postadministration were analyzed by high‐pressure liquid chromatography and mass spectrometry (HPLC‐MS) followed by noncompartmental pharmacokinetic analysis. Mean peak plasma concentration (CMAX) after p.o. administration was 1070 ng/mL (645–1749 ng/mL). TMAX was recorded at 2.40 h (0.50–12.00 h) after p.o. administration. Half‐life (T½ λz) for i.v. and p.o. administration was 6.15 h (4.39–7.79 h) and 6.83 h (5.18–9.63 h), respectively. The bioavailability (F) for p.o. administration was 87% (39–351%). The results of this study suggest that meloxicam is well absorbed after oral administration.  相似文献   

10.
The purpose of this study was to determine the pharmacokinetics of the FDA‐approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56% diclazuril pellets (ProtazilTM, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady‐state. To determine the CSF concentration at steady‐state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA‐labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high‐pressure liquid chromatography. A one‐compartment pharmacokinetic model with first‐order oral absorption was fitted to the single administration data. Steady‐state pharmacokinetics was performed using noncompartmental analysis for steady‐state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA‐labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady‐state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady‐state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.  相似文献   

11.
The disposition of plasma glycopyrrolate (GLY) is characterized by a three‐compartment pharmacokinetic model after a 1‐mg bolus intravenous dose to Standardbred horses. The median (range) plasma clearance (Clp), volume of distribution of the central compartment (V1), volume of distribution at steady‐state (Vss), and area under the plasma concentration–time curve (AUC0‐inf) were 16.7 (13.6–21.7) mL/min/kg, 0.167 (0.103–0.215) L/kg, 3.69 (0.640–38.73) L/kg, and 2.58 (2.28–2.88) ng*h/mL, respectively. Renal clearance of GLY was characterized by a median (range) of 2.65 (1.92–3.59) mL/min/kg and represented approximately 11.3–24.7% of the total plasma clearance. As a result of these studies, we conclude that the majority of GLY is cleared through hepatic mechanisms because of the limited extent of renal clearance of GLY and absence of plasma esterase activity on GLY metabolism. Although the disposition of GLY after intravenous administration to Standardbred horses was similar to that in Thoroughbred horses, differences in some pharmacokinetic parameter estimates were evident. Such differences could be attributed to breed differences or study conditions. The research could provide valuable data to support regulatory guidelines for GLY in Standardbred horses.  相似文献   

12.
Resveratrol has generated interest in cats due to reported health benefits. Cats have low activity of β‐glucuronidase, and we hypothesized they could not form two common resveratrol metabolites, resveratrol‐3‐O‐glucuronide and resveratrol‐4′‐O‐glucuronide. Resveratrol, 3 mg/cat/day, was given orally to intact male (= 5) and female cats (= 5) for 4 weeks. A control group (8 intact males) was used for comparison. Plasma and urine were collected weekly and analysed using high‐pressure liquid chromatography coupled with tandem mass spectrometry. Resveratrol and resveratrol‐3‐O‐sulphate, but no glucuronide metabolites, were detected in plasma and urine. Median (range 10–90th percentile) plasma resveratrol for control and treatment groups was 0.46 ng/ml (0.02–1.74 ng/ml) and 0.96 ng/ml (0.65–3.21 ng/ml). Median (range) plasma resveratrol‐3‐O‐sulphate for control and treatment groups was 6.32 ng/ml (2.55–10.29 ng/ml) and 11.45 ng/ml (1.47–53.29 ng/ml). Plasma resveratrol differed from control in week 4, while plasma resveratrol‐3‐O‐sulphate was different in all weeks (p < 0.05). Median (range) urine resveratrol for control and treatment groups was 0.28 ng/ml (0.05–1.59 ng/ml) and 19.98 ng/ml (8.44–87.54 ng/ml). Median (range) urine resveratrol‐3‐O‐sulphate for control and treatment groups was 26.71 ng/ml (10.50–75.58 ng/ml) and 108.69 ng/ml (11.83–231.05 ng/ml). All time points for urine resveratrol and resveratrol‐3‐O‐sulphate were significantly different from control (p < 0.05), except for weeks 1, 3 and 4 for resveratrol. The results support our hypothesis that cats are unlikely able to glucuronidate resveratrol, most likely due to a reduction in the activity of β‐glucuronidase.  相似文献   

13.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

14.
The purpose of the study was to assess the pharmacokinetics of liposome‐encapsulated (DPPC‐C) hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs. A total of eight healthy Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg were used. Dogs randomly received liposome encapsulated hydromorphone, 0.5 mg/kg IV (n = 6), 1.0 mg/kg (n = 6), 2.0 mg/kg (n = 6), or 3.0 mg/kg (n = 7) SC with a 14–28 day washout between trials. Blood was sampled at serial intervals after drug administration. Serum hydromorphone concentrations were measured using liquid chromatography with mass spectrometry. Serum concentrations of hydromorphone decreased rapidly after IV administration of the DPPC‐C formulation (half‐life = 0.52 h, volume of distribution = 12.47 L/kg, serum clearance = 128.97 mL/min/kg). The half‐life of hydromorphone after SC administration of DPPC‐C formulation at 1.0, 2.0, and 3.0 mg/kg was 5.22, 31.48, and 24.05 h, respectively. The maximum serum concentration normalized for dose (CMAX/D) ranged between 19.41–24.96 ng/mL occurring at 0.18–0.27 h. Serum hydromorphone concentrations fluctuated around 4.0 ng/mL from 6–72 h after 2.0 mg/kg and mean concentrations remained above 4 ng/mL for 96 h after 3.0 mg/kg DPPC‐C hydromorphone. Liposome‐encapsulated hydromorphone (DPPC‐C) administered SC to healthy dogs provided a sustained duration of serum hydromorphone concentrations.  相似文献   

15.
The objective of this study was to compare the plasma pharmacokinetic profile of ceftiofur crystalline‐free acid (CCFA) and ceftiofur sodium in neonatal calves between 4 and 6 days of age. In one group (n = 7), a single dose of CCFA was administered subcutaneously (SQ) at the base of the ear at a dose of 6.6 mg/kg of body weight. In a second group (n = 7), a single dose of ceftiofur sodium was administered SQ in the neck at a dose of 2.2 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) in plasma were determined by HPLC. Median time to maximum DCA concentration was 12 h (range 12–48 h) for CCFA and 1 h (range 1–2 h) for ceftiofur sodium. Median maximum plasma DCA concentration was significantly higher for calves given ceftiofur sodium (5.62 μg/mL; range 4.10–6.91 μg/mL) than for calves given CCFA (3.23 μg/mL; range 2.15–4.13 μg/mL). AUC0‐∞ and Vd/F were significantly greater for calves given CCFA than for calves given ceftiofur sodium. The median terminal half‐life of DCA in plasma was significantly longer for calves given CCFA (60.6 h; range 43.5–83.4 h) than for calves given ceftiofur sodium (18.1 h; range 16.7–39.7 h). Cl/F was not significantly different between groups. The duration of time median plasma DCA concentrations remained above 2.0 μg/mL was significantly longer in calves that received CCFA (84.6 h; range 48–103 h) as compared to calves that received ceftiofur sodium (21.7 h; range 12.6–33.6 h). Based on the results of this study, CCFA administered SQ at a dose of 6.6 mg/kg in neonatal calves provided plasma concentrations above the therapeutic target of 2 μg/mL for at least 3 days following a single dose. It is important to note that the use of ceftiofur‐containing products is restricted by the FDA and the use of CCFA in veal calves is strictly prohibited.  相似文献   

16.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

17.
The plasma and synovial fluid pharmacokinetics and safety of cefquinome, a 2‐amino‐5‐thiazolyl cephalosporin, were determined after multiple intravenous administrations in sixteen healthy horses. Cefquinome was administered to each horse through a slow i.v. injection over 20 min at 1, 2, 4, and 6 mg/kg (= 4 horses per dose) every 12 h for 7 days (a total of 13 injections). Serial blood and synovial fluid samples were collected during the 12 h after the administration of the first and last doses and were analyzed by a high‐performance liquid chromatography assay. The data were evaluated using noncompartmental pharmacokinetic analyses. The estimated plasma pharmacokinetic parameters were compared with the hypothetical minimum inhibitory concentration (MIC) values (0.125–2 μg/mL). The plasma and synovial fluid concentrations and area under the concentration–time curves (AUC) of cefquinome showed a dose‐dependent increase. After a first dose of cefquinome, the ranges for the mean plasma half‐life values (2.30–2.41 h), the mean residence time (1.77–2.25 h), the systemic clearance (158–241 mL/h/kg), and the volume of distribution at steady‐state (355–431 mL/kg) were consistent across dose levels and similar to those observed after multiple doses. Cefquinome did not accumulate after multiple doses. Cefquinome penetrated the synovial fluid with AUCsynovial fluid/AUCplasma ratios ranging from 0.57 to 1.37 after first and thirteenth doses, respectively. Cefquinome is well tolerated, with no adverse effects. The percentage of time for which the plasma concentrations were above the MIC was >45% for bacteria, with MIC values of ≤0.25, ≤0.5, and ≤1 μg/mL after the administration of 1, 2, and 4 or 6 mg/kg doses of CFQ at 12‐h intervals, respectively. Further studies are needed to determine the optimal dosage regimes in critically ill patients.  相似文献   

18.
The present study aims to comparatively evaluate the effects of different doses of intravenous xylazine and medetomidine on sedation and antinociception scores, and physiological and laboratory parameters in dromedary calves. Thirty clinically healthy male dromedary calves 15 ± 2 weeks old and weighing 95 ± 5.5 kg were studied. Two groups received xylazine at low (0.2 mg/kg) and high (0.4 mg/kg) doses. Two groups received medetomidine at low (10 µg/kg) and high (20 µg/kg) doses. One group received normal saline. Sedation signs were scored using a 3‐point scale. Analgesic effect was analyzed using pinpricks. Data were analyzed by one‐way ANOVA and Mann–Whitney U‐tests. Sedation and antinociception scores of the animals 1 hr after receiving the higher dose of xylazine and medetomidine were significantly higher than that of other groups. Compared with other studied groups, the animals receiving the higher dose of xylazine showed significantly higher potassium and creatinine serum levels after 24 hr. Doses as high as 0.4 mg/kg for xylazine and 20 µg/kg for medetomidine can be considered safe and useful for procedures associated with mild pain in dromedary calves.  相似文献   

19.
Flunixin meglumine is commonly used in horses for the treatment of musculoskeletal injuries. The current ARCI threshold recommendation is 20 ng/mL when administered at least 24 h prior to race time. In light of samples exceeding the regulatory threshold at 24 h postadministration, the primary goal of the study reported here was to update the pharmacokinetics of flunixin following intravenous administration, utilizing a highly sensitive liquid chromatography–mass spectrometry (LC‐MS). An additional objective was to characterize the effects of flunixin on COX‐1 and COX‐2 inhibition when drug concentrations reached the recommended regulatory threshold. Sixteen exercised adult horses received a single intravenous dose of 1.1 mg/kg. Blood samples were collected up to 72 h postadministration and analyzed using LC‐MS. Blood samples were collected from 8 horses for determination of TxB2 and PGE2 concentrations prior to and up to 96 h postflunixin administration. Mean systemic clearance, steady‐state volume of distribution and terminal elimination half‐life was 0.767 ± 0.098 mL/min/kg, 0.137 ± 0.12 L/kg, and 4.8 ± 1.59 h, respectively. Four of the 16 horses had serum concentrations in excess of the current ARCI recommended regulatory threshold at 24 h postadministration. TxB2 suppression was significant for up to 24 h postadministration.  相似文献   

20.
The study objective was to compare butorphanol pharmacokinetics and physiologic effects following intravenous and subcutaneous administration in horses. Ten adult horses received 0.1 mg/kg butorphanol by either intravenous or subcutaneous injections, in a randomized crossover design. Plasma concentrations of butorphanol were measured at predetermined time points using highly sensitive liquid chromatography–tandem mass spectrometry assay (LC‐MS/MS). Demeanor and physiologic variables were recorded. Data were analyzed with multivariate mixed‐effect model on ranks (≤ 0.05). For subcutaneous injection, absorption half‐life and peak plasma concentration of butorphanol were 0.10 ± 0.07 h and 88 ± 37.4 ng/mL (mean ± SD), respectively. Bioavailability was 87%. After intravenous injection, mean ± SD butorphanol steady‐state volume of distribution and clearance was 1.2 ± 0.96 L/kg and 0.65 ± 0.20 L/kg/h, respectively. Terminal half‐lives for butorphanol were 2.31 ± 1.74 h and 5.29 ± 1.72 h after intravenous and subcutaneous administrations. Subcutaneous butorphanol reached and maintained target plasma concentrations >10 ng/mL for 2 ± 0.87 h (Mean ± SD), with less marked physiologic and behavioral effects compared to intravenous injection. Subcutaneous butorphanol administration is an acceptable alternative to the intravenous route in adult horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号